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Abstract

Background: Pharmacogenomics (PGx) studies how genomic variations impact variations in drug response
phenotypes. Knowledge in pharmacogenomics is typically composed of units that have the form of ternary
relationships gene variant – drug – adverse event. Such a relationship states that an adverse event may occur for
patients having the specified gene variant and being exposed to the specified drug. State-of-the-art knowledge in
PGx is mainly available in reference databases such as PharmGKB and reported in scientific biomedical literature. But,
PGx knowledge can also be discovered from clinical data, such as Electronic Health Records (EHRs), and in this case,
may either correspond to new knowledge or confirm state-of-the-art knowledge that lacks “clinical counterpart” or
validation. For this reason, there is a need for automatic comparison of knowledge units from distinct sources.

Results: In this article, we propose an approach, based on Semantic Web technologies, to represent and compare
PGx knowledge units. To this end, we developed PGxO, a simple ontology that represents PGx knowledge units and
their components. Combined with PROV-O, an ontology developed by the W3C to represent provenance information,
PGxO enables encoding and associating provenance information to PGx relationships. Additionally, we introduce a set
of rules to reconcile PGx knowledge, i.e. to identify when two relationships, potentially expressed using different
vocabularies and levels of granularity, refer to the same, or to different knowledge units. We evaluated our ontology
and rules by populating PGxO with knowledge units extracted from PharmGKB (2701), the literature (65,720) and from
discoveries reported in EHR analysis studies (only 10, manually extracted); and by testing their similarity. We called
PGxLOD (PGx Linked Open Data) the resulting knowledge base that represents and reconciles knowledge units of
those various origins.

Conclusions: The proposed ontology and reconciliation rules constitute a first step toward a more complete
framework for knowledge comparison in PGx. In this direction, the experimental instantiation of PGxO, named
PGxLOD, illustrates the ability and difficulties of reconciling various existing knowledge sources.
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Background
In this article, we present a simple ontology named PGxO,
developed to reconcile and trace knowledge in pharma-
cogenomics (PGx). We instantiated this ontology with
knowledge of various origins to both illustrate the rele-
vance of the ontology and constitute a Linked Open Data
(LOD) data set for PGx [1].

PGx itself studies how genomics impact individual
variations in drug response phenotypes [2]. Knowledge
in pharmacogenomics is of particular interest for the
implementation of personalized medicine, i.e. a medicine
tailoring treatments (chosen drugs and dosages) to
every patient, in order to reduce the risk of adverse
events. Indeed, best known examples of PGx knowl-
edge already led to the development of clinical guidelines
and practices [3] that recommend considering individ-
ual genotype when prescribing some particular drugs
such as abacavir (an anti-retroviral) or fluorouracile
(an anti-neoplastic) [4, 5].

Units of PGx knowledge typically have the form of a
ternary relationship gene variant – drug – adverse event
stating that a patient having the gene variant and being
treated with the drug will have a higher risk of devel-
oping the mentioned adverse event. For example, one
relationship is G6PD:202A – chloroquine – anemia, stat-
ing that patients with the 202A version of the G6PD gene
and treated with chloroquine (an anti-malarial drug) are
likely to experience anemia (an abnormally low level of red
blood cells in blood).

An increasing volume of state-of-the-art knowledge in
PGx can be found in reference databases, such as Phar-
mGKB [6], or in the biomedical literature [7]. But, a large
part of this knowledge is suffering from a lack of vali-
dation, or “clinical counterpart” [8], and is not yet ready
to be translated into clinical guidelines and practices. For
example, about 91% (as of July 2018) of the relationships
listed in PharmGKB are qualified with a level of evidence
3 or 4, corresponding, at best, to an unreplicated study or
to multiple studies that show a lack of evidence for the
relationship [6]. On the other hand, PGx knowledge can
also be discovered from clinical data, such as Electronic
Health Records (EHRs), particularly when those are linked
to DNA biobanks [9–11]. In this case, discovered knowl-
edge can either be new or can interestingly temper, or
confirm, knowledge elsewhere stated, but that may lack
validation.

However, comparing PGx knowledge coming from dis-
tinct sources is challenging because of the heterogeneity
of these sources. Indeed, such sources may use differ-
ent vocabularies, different levels of granularity or even
different languages to represent knowledge units. There-
fore, there is a strong need for developing a com-
mon schema that would enable comparing knowledge
extracted or discovered from various sources. Several

ontologies have already been developed for pharma-
cogenomics, but with different purposes, making them
unadapted to the present need. In particular, SO-Pharm
(Suggested Ontology for Pharmacogenomics) and PO
(Pharmacogenomic Ontology) have been developed for
knowledge discovery purposes rather than data integra-
tion or knowledge reconciliation [12, 13]. The PHARE
ontology (for PHArmacogenomic RElationships) has been
built for normalizing gene — drug and gene — disease rela-
tionships extracted from text and is not suitable for rep-
resenting ternary PGx relationships [14]. More recently,
Samwald et al. introduced the Pharmacogenomic Clini-
cal Decision Support (or Genomic CDS) ontology, whose
main goal is to propose consistent information about
pharmacogenomic patient testing to the point of care, to
guide physician decisions in clinical practice [15]. We have
built PGxO by learning and adapting from these previous
experiences. For consistency reasons and good practices,
we mapped PGxO to concepts of these four pre-existing
ontologies.

In this work, we propose to leverage Semantic Web
and Linked Open Data (LOD) [1] technologies as a
first step toward building a framework to represent
and compare PGx relationships from various sources.
We import knowledge of three origins to instantiate
our “pivot” ontology, both illustrating the role of the
ontology, and building a community resource for PGx
research.

In the preliminary stage of this work [16], we proposed:
(i) a first version of the PGxO ontology able to rep-
resent simple pharmacogenomic relationships and their
potentially multiple provenances and (ii) a set of rules to
reconcile PGx knowledge extracted from or discovered
in various sources, i.e. to identify when two relation-
ships refer to the same, or to different knowledge units.
In this paper, we extend PGxO to improve its ability to
represent PGx relationships extracted from the literature
and by adding the notion of proxy. We experiment our
approach by instantiating PGxO with knowledge of var-
ious provenances: PharmGKB, the biomedical literature,
and results of studies that analyzed EHR data and linked
DNA biobanks [11].

This paper is organized as follows. The “Methods” section
introduces the methods used for the construction of
PGxO, for encoding provenance information and for our
rule-based approach to reconcile PGx knowledge. Details
are also given about algorithms and techniques used
to instantiate PGxO from the aforementioned sources.
The “Results” section presents our ontology, PGxO, the
reconciliation rules and results of the instantiation and
reconciliation processes. Finally, we conclude this work
by discussing the abilities of PGxO for representing and
reconciling PGx knowledge and the next challenges to
tackle.
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Methods
Ontology construction
PGxO was manually and collaboratively developed by 3
persons (PM, CJ and AC) in 7 iterations (as of July 2018).
We followed classical ontology construction methods and
life cycle [17, 18], including the steps of specification,
conception, diffusion and evaluation of the ontology.

Specification
Our aim is to represent and reconcile what we defined
as PGx knowledge units. These are ternary relationships
between one (or more) genetic factor(s), one (or more)
drug treatment(s) and one (or more) phenotype(s). Such
phenotypes can be the expected outcomes of the drug
treatments or some adverse effects. In order to keep our
ontology simple and leverage existing works represent-
ing PGx components, we restrain the scope of PGxO only
to representing PGx knowledge units and not all facets
of pharmacogenomics. The objective of PGxO is twofold:
reconciling and tracing these PGx knowledge units. To
enable this reconciliation, we need to encode metadata
and provenance information about a PGx relationship.

Conception and diffusion
Because PGxO is of small size, the conception step was
performed simultaneously with conceptualization, for-
malization and implementation steps. The ontology has
been implemented in OWL using the Protégé ontology
editor [19]. PGxO is conceived around the central class
of PharmacogenomicRelationship, which enables
associating two or three of the following key components
of PGx: Drug, GeneticFactor and Phenotype. The
expressive Description Logic (DL) associated with PGxO
is ALCI(D) [20]. Successive versions of PGxO have been
published online and shared with collaborators through
both the NCBO BioPortal [21, 22] and GitHub [23]. We
have followed [24] guidelines to report on the Minimum
Information for the Reporting of an Ontology (MIRO)
associated with PGxO and made this available at [23].

Evaluation
To evaluate our ontology, we used competency questions
as proposed by Gangemi [25]. The questions we defined
are the following:

1 Does PGxO enable to represent a PGx knowledge
unit from the PGx state of the art (i.e. from a
reference database or extracted from the biomedical
literature), along with its provenance?

2 Does PGxO enable to represent a PGx knowledge
unit discovered from clinical data, along with its
provenance?

3 Does PGxO, coupled with its reconciliation rules,
enable to decide if two knowledge units, with distinct
provenances, may refer to the same thing?

We answered these questions twice, once early and once
late in the iterations of the development of PGxO. For
the former iteration, we manually instantiated PGxO with
examples of knowledge units, associated with their prove-
nances, from (i) PharmGKB, (ii) the literature (extracted
by Semantic Medline [26] or FACTA+ [27]) and (iii)
hand designed facts corresponding to what we thought
may be discovered in EHRs. For the latter iteration, we
answered these questions by instantiating PGxO with
knowledge units extracted programmatically from Phar-
mGKB and the biomedical literature, and manually from
results reported by studies analyzing EHR data and linked
biobanks. Details on the methods used to populate PGxO
from these various sources are provided in following
subsections.

Mappings
For consistency reasons and good practices, we manually
mapped concepts of PGxO to the four aforementioned
ontologies related to pharmacogenomics: SO-Pharm, PO,
PHARE and Genomic CDS. These mappings are available
in [28]. Because the NCBO BioPortal generates lexical-
based mappings between the ontologies it hosts, it pro-
vides an initial set of mappings from PGxO to many
standard ontologies. In particular, we manually completed
PGxO BioPortal mappings to three standard and broad
spectrum ontologies: MeSH, NCIt and SNOMED CT.
These mappings are available in [29]. The two resulting
sets of mappings are provided as independent OWL files
to allow a flexible loading of the ontology with, or without
mappings.

Provenance encoding
Data provenance (sometimes called lineage) refers to
metadata that state where data came from, how they were
derived, manipulated, and combined, and how they may
have been updated [30]. With PGxO, we do not only
want to represent units of knowledge of different ori-
gins, but also to trace their origins. Therefore, we need an
encoding of the provenance of knowledge units. For this
purpose, we leverage an existing ontology for provenance,
named PROV-O [31], which is a W3C Recommendation
since 2013. In addition, for some particular provenance
metadata, PGxO reuses object properties of the high-level
ontology DUL (Dolce+DnS Ultralight) [32].

PROV-O is built around three main concepts: Entity,
Activity and Agent. Entities represent things that can
be generated, modified, etc. by activities. Activities are
realized by agents that can be either human or software
agents. Entities can also be directly attributed to agents.

In terms of PROV-O concepts, authorities which pub-
lish sources from which we extract knowledge units
are considered to be agents (e.g. the PharmGKB team,
the National Library of Medicine (NLM) in charge of
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PubMed, an hospital in charge of a repository of EHRs).
Data sources (e.g. a version of PharmGKB, of PubMed,
a repository of EHRs) are attributed to agents, and then
may be used to derive data. These data, in turn, are
used during the execution of an activity (e.g. a mining
algorithm). Such execution generates entities that in our
case are PGx knowledge units. Quantitative and qualita-
tive metadata may be associated to an activity and to the
entities it generates. For instance, one can specify the ver-
sion of an algorithm, the date of its execution, the quality
of the generated entities (such as their levels of confi-
dence, their p-values or odds ratios). Thereby, a further
comparison of two knowledge units having different or
identical provenances may take into account these various
elements.

Reconciliation rules
Besides representing and encoding heterogeneous PGx
relationships within a single knowledge base, a compari-
son mechanism is needed to identify when two relation-
ships refer to the same knowledge unit or not. However,
the description of PGx relationships is highly heteroge-
neous depending on the sources we consider, leading to
many relationships being similar to some extent, but not
exactly identical. For example, one source may document
a relationship between a gene variant gv1, a drug d1 that
causes a drug response phenotype p1, whereas a second
source may only document the relationship between gv1
and d1, omitting any drug response phenotype. Alterna-
tively, a third source may document the same relationship
at a broader level, for instance by mentioning only the
involved gene g1, instead of stating the causative variant
gv1 (that is part of g1).

To take into account this variability, we defined a
set of rules enabling basic comparison mechanisms.
The rules focus on identifying identical relationships,
broader/narrower ones and related ones (to some extent).
They compare two PGx relationships using their associ-
ated components (i.e. drugs, genetic factors, phenotypes).
To represent and implement the defined rules, we inves-
tigated semantic web rule languages, such as SWRL and
DL-Safe rules [33–35]. Unfortunately, we found them
unadapted to our case, for expressiveness reasons. Indeed,
those formalisms do not allow to check equalities or inclu-
sions of sets of individuals, which instantiate defined DL
expressions (see Additional file 1 for examples). There-
fore, we represent the rules with our own formalism. On
the left side of a rule, equalities or inclusions between sets
of components of the two compared PGx relationships
are tested and return a boolean result. Tests of equal-
ities or inclusions can be combined using conjunctions
(AND) and / or disjunctions (OR). On the right side, a link
between the PGx relationships is to be added to the pop-
ulated ontology if and only if the left side of the rule is

true. This link can specify the two PGx relationships as
identical, related or one being broader than the other. As
the rules are not formalized using a particular semantic
web rule language, they are kept separated from the defi-
nitions of PGxO. Therefore, we implemented them in an
independent Python program interacting with the pop-
ulated ontology using the SPARQL query language. This
program is executed once, derives novel facts from the
rules and adds them to the knowledge base.

We take advantage of Semantic Web technologies, by
using associated reasoning mechanisms for the com-
parison of PGx relationships. In particular, we use the
semantics associated with owl:sameAs links that state
that two URIs are actually referring to the same entity.
The interpretation of the rdfs:subClassOf relation
and its transitivity is also used when comparing a PGx
relationship that may be more specific/general than
another one.

Ontology instantiation
We instantiated the ontology with PGx knowledge units
from various sources, first, to answer the competency
questions defined for PGxO and, second, to build a data
set called PGxLOD (PGx Linked Open Data) that we think
may constitute a valuable community resource for PGx
research.

With preexisting LOD
We initiated PGxLOD from a preexisting set of Linked
Open Data made of interconnected genes, drugs, and dis-
eases according to 6 standard databases [36]. Such LOD
data set follows the Semantic Web standards, particu-
larly by using the Resource Description Framework (RDF)
language and Uniform Resource Identifiers (URI) [1],
which makes it adequate to connect with Semantic Web
ontologies.

This preexisting data set is an aggregation of data from
ClinVar [37], DisGeNET [38], DrugBank [39], SIDER [40]
and MediSpan (a proprietary database). Accordingly, it
includes and relates data about drugs, diseases and phe-
notypes, but no PGx relationships. Nevertheless, this data
set groups together data related to entities involved in
PGx relationships, and mappings between entities that
may be present in different data sources, e.g. a drug refer-
enced both in DrugBank and SIDER. These mappings are
of particular interest for our purpose of comparing PGx
relationships, since those may be composed of entities
referenced in these various sources.

The initial instantiation of PGxO with preexisting LOD
is straightforward since entities representing genes, drugs
and diseases are used to instantiate the corresponding
PGxO concepts, using the RDF predicate rdf:type. In
the following, we name PGxLOD v1 the result of this
instantiation process. This constitutes the initial version
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of PGxLOD, with no PGx relationships, to distinguish
from PGxLOD v2, a version enriched with PGx relation-
ships of various provenances.

With PharmGKB data
Second, PGxO was instantiated with data from Phar-
mGKB [6], a reference database for pharmacogenomics.
PharmGKB’s clinical annotations describe PGx relation-
ships between genes (potentially their variants), drugs,
and phenotypes. They are produced by PharmGKB cura-
tors after a review of the biomedical literature and of rec-
ommendations of health agencies such as the US Food and
Drug Administration. In addition, PharmGKB contains
cross-references, i.e. identifiers of genes, variants, drugs
and phenotypes within other databases (such as NCBI
Gene for genes) or ontologies (such as the Anatomical
Therapeutic Chemical Classification System for drugs).

Part of PharmGKB data are already available in the form
of LOD as a part of the Bio2RDF project [41]. Nonethe-
less, this version is outdated and provides only a small
portion of PharmGKB. Therefore, inspired by this pre-
cursor work and following the guidelines of the Bio2RDF
project, we developed new scripts producing a more com-
plete RDF version of PharmGKB. These scripts transform
the latest downloadable text files of PharmGKB, first, into
a SQL database (with a script named pharmgkb2sql) and
then into RDF triples (with a script named pharmgkb-
sql2triples).

Drug response phenotypes provided in clinical annota-
tions by PharmGKB are non easy to translate as they are
reported within plain-text sentences. Because PharmGKB
also provides a broad type of drug responses (Efficacy,
Toxicity/ADR, Metabolism/PK, Dosage, Other) in a struc-
tured manner, we decided, for simplicity, to use those
directly instead of further text mining analysis on tex-
tual descriptions, and then considered only Efficacy and
Toxicity/ADR, because they encompass the drug response
phenotypes we want to capture. Accordingly, PGx rela-
tionships in PGxLOD are associated with these two high
level types of drug responses.

Components of PGx relationships (i.e. drugs, genes
and variants) are represented with URIs using both
PharmGKB identifiers and Bio2RDF naming conven-
tions. In addition, PharmGKB cross-references to external
databases and ontologies are used to map PharmGKB
URIs either to URIs already defined in our LOD, or to new
ones. The type of relation used is bio2rdf:x-ref for
every cross reference; doubled with either a owl:sameAs
relation when the cross-reference points to an identi-
cal entity in an external database, or with a rdf:type
relation when it points to an ontology class.

Among the metadata associated with PharmGKB clini-
cal annotations, we particularly keep the level of evidence.
Levels of evidence have been defined by PharmGKB [6] as

a six-level scale (1A, 1B, 2A, 2B, 3, 4), where higher levels
(1A, 1B, 2A, 2B) indicate that a relationship has been sig-
nificantly studied or is medically implemented; and lower
levels (3, 4) indicate that the PGx relationship has only
been reported in a single study or lacks clear evidence.
Levels of evidence are of particular importance as they
may help us identify PGx knowledge with irregular levels
of validation in various sources.

With the biomedical literature
Third, we instantiated PGxO with elements extracted
automatically from the biomedical literature. Here we
used a supervised machine learning prototype for rela-
tion extraction from text, trained on a manually annotated
corpus. Please note that in this work, we are not aiming
at achieving the best performance, but rather aiming at
showing that we can extract PGx relationships from text,
along with their provenance metadata, and compare these
to others, extracted from distinct sources. This illustrates
that PGxO enables structuring, documenting (the name of
the algorithm used, its performance, etc.), then comparing
a relationship extracted from text.

We assembled a set of 657,538 sentences from 86,520
PubMed abstracts related to pharmacogenomics. Remov-
ing malformed sentences, based on tokenization errors,
and sentences that do not contain at least one drug and
one genetic factor, based on named entities recognized
by PubTator [42], we obtained a corpus of 176,704 sen-
tences. Out of those, we randomly selected 307 sentences
and had each sentence manually annotated with the BRAT
software [43], by 3 distinct annotators from a group of 11
pharmacists, biologists and bioinformaticians. The anno-
tation task is precisely specified in annotation guidelines,
publicly available [44]. Annotations are limited here to
four broad entity types, mainly involved in PGx relation-
ships: Genes, Genomic Variations, Drugs and Phenotypes
and to two broad relation types, “isAssociatedWith” and
“isEquivalentTo”, between these entities. The latter is used
only to relate the numerous acronyms to their extended
form. An example of an annotated sentence is shown
in Fig. 1, and the main characteristics of the corpus are
summarized in Table 1.

Our approach is classically composed of two steps: a
Named Entity Recognition (NER), followed by a relation
extraction. Two supervised machine learning models were
trained for the first step, and a third one for the sec-
ond step. The NER is performed using a Convolutional
Neural Network (CNN) model described in [45], trained
on the 307 annotated sentences. We first annotate shal-
low entities (Fig. 1) using an instance of this model with
PubTator annotations as an input. We name these enti-
ties first − layer entities. Then, a second instance of the
same model is trained to annotate second − layer enti-
ties, i.e. entities with an offset that includes a first − layer
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Fig. 1 Example of a sentence (PMID=18370849), manually annotated with four entities and one relation

entity, using the first − layer entities as input. In Fig. 1,
first−layer entities would be carbamazepine and HLA−B,
and second − layer entities are carbamazepine hyper-
sensitivity and HLA-B*1502. Finally, we trained a model
similar to the one described in [46] to extract relationships
between identified entities.

Reasonable meta-parameters were selected according
to previous experiments. The size of the word embed-
dings was set to 100. The size of the PubTator and first −
layer embeddings was set to 20. The kernel size of the
convolution was set to 100. Word embeddings were pre-
trained on ∼3.4 million PubMed abstracts (corresponding
to all those published between Jan. 1, 2014 and Dec. 31,
2016) using the method described in [47]. Performances
of the two steps, evaluated on a 10-fold cross validation,
are respectively reported in Table 2 and 3. In these two
tables, the f1-score is defined as the harmonic mean of the
precision and recall, i.e. f1-score = 2 × precision×recall

precision+recall .
Trained models are applied to a test set of 176,704

sentences of PubMed abstracts, to extract automatically
relations from text. After filtering out relationships that
relate two GenomicVariations, two Phenotypes, or two
Drugs, both the manually annotated relations and the
automatically extracted ones are transformed into RDF.

Types of entities are manually aligned to the corre-
sponding classes of PGxO. Each annotated and extracted
entity is associated with an URI that is constructed,
depending on its type, either from an identifier of a refer-
ence database (such as NCBI Gene for genes) or from an
identifier of an ontology (such as ATC for drugs). Distinct
reference databases or ontologies may be used for each

Table 1 Statistics of named entities and relations manually
annotated in our 307-sentence corpus

Named entities Relations

Type First-layer Second-layer Type

Gene 452 20 isAssociatedWith 582

GenomicVariation 74 166 isEquivalentTo 77

Drug 459 36

Phenotype 262 251

Total 1720 Total 659

Entities annotated in multiple sentences are counted multiple times. Second-layer
entities refer to entities which offset includes the annotation of a first-layer entity

type of entities depending on their availability. Accord-
ingly, we defined an arbitrary order of choice for searching
for references, presented in Table 4. This choice was moti-
vated in part by the output of PubTator. For each type,
the procedure is the following: given an entity, the first
reference database or ontology is searched for the entry
using string matching; if no entry matches, the next refer-
ence database or ontology is searched. Lastly, if no entry is
found, we create a local URI within the PGxLOD names-
pace. Considering an extracted entity, when an entry is
found in a reference database, its identifier is used to con-
struct the corresponding URI. When an entry is found
in an ontology (i.e. a class of an ontology), the extracted
entity is given a local URI, and instantiates the ontology
class.

With electronic health records and linked biobanks studies
Fourth, we instantiated PGxO with PGx knowledge man-
ually extracted from the reading of ten studies on patient
Electronic Health Records (EHRs) and linked biobanks
[9, 11, 48–55]. For instance, Kawai et al. [53] report a sta-
tistical association (OR=2.05, 95%) between the haplotype
CYP2C9*3, and severe bleeding, in patients treated with
warfarin. Their study was performed on a biobank named
BioVU, linked to patient EHRs of the Vanderbuilt Uni-
versity Hospital [56]. The ten studies were selected from
mentions in CPIC (Clinical Pharmacogenetics Implemen-
tation Consortium) guidelines [3] and in the literature
review of Denny et al. [57].

Entities involved in PGx relationships were manu-
ally associated with URIs already defined in PGxO and
PGxLOD. The aim here is to assess the adequacy of
PGxO to represent results of such studies. Indeed, it is

Table 2 Named Entity Recognition (NER) performance in terms
of precision (P), recall (R) and f1-score (F1)

P R F1 std

Drug 0.92 0.87 0.89 0.03

Gene 0.97 0.91 0.94 0.03

Phenotype 0.84 0.66 0.74 0.09

Genomic variation 0.81 0.69 0.74 0.08

All entities 0.86 0.80 0.83 0.05

Results of second-layer entities take into account the prediction error of the
first-layer entities. Std stands for F1 standard deviation
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Table 3 Relation extraction performance in terms of precision
(P), recall (R) and f1-score (F1)

P R F1 std

isAssociatedWith 0.61 0.35 0.44 0.08

isEquivalentTo 0.73 0.78 0.75 0.14

All relations 0.67 0.56 0.61 0.08

Std stands for F1 standard deviation. Results take into account the prediction error
for the entities

one of our use cases to consider PGx researchers who
want to compare the results they obtained on their local
biobanks+EHRs, to results elsewhere reported.

Results
PGxO
Illustrated in Fig. 2, PGxO is composed of eleven concepts
(owl:Class), organized around the central concept
PharmacogenomicRelationship, which represents
an atomic unit of PGx knowledge.

Instances of the concepts may be related by various
types of relations (i.e. owl:ObjectProperty). Rela-
tion types causes and isCausedBy are used to con-
nect components of a PGx relationship and are defined
as inverses: causes ≡ isCausedBy−. The relation
type partOf (or ro:BFO_0000050), from the Relation
Ontology (RO) [58], is used to express that a genomic vari-
ation is located within the sequence of a specific gene. The
relation type dependsOn (ro:RO_0002502), also from
RO, is used to express complex phenotypes that involve
other entities, e.g. gene expression such as the expres-
sion of VKORC1 or drug response phenotypes such as
carbamazepine hypersensitivity.

The concept PharmacogenomicRelationship is
described by a Description Logics [20] axiom that may be
decomposed into a union of three other axioms. Indeed,
we consider that a PGx relationship involves at least two
or three of the following components: drugs, genetic fac-
tors and phenotypes (i.e. drug response phenotypes). For
more flexibility, we allow drug components to be either
a drug, or something that depends on a drug (Axiom 1).
Similarly, we allow genetic factor components to be either
a genetic factor, or something that depends on a genetic

Table 4 Reference databases and ontologies used to normalize
the entities extracted from text

Order Drug Gene GenomicVariation Phenotype

1st MeSH NCBI Gene dbSNP MeSH

2nd ChEBI PGxLOD PGxLOD MEDDRA

3rd ATC PGxLOD

4th PGxLOD

PGxLOD means that a local URI is created

factor (Axiom 2). This flexibility allows to represent rela-
tionships that involve, for instance, the expression of a
gene (something that depends on a genetic factor, e.g. the
expression of VKORC1) instead of a gene, or a drug resis-
tance or sensitivity (something that depends on a drug,
e.g. carbamazepine hypersensitivity) instead of a drug.

Axiom 1 DComponent ≡ Drug�∃dependsOn.Drug

Axiom 2 GFComponent ≡ GeneticFactor �
∃dependsOn.GeneticFactor

Another flexibility resides in allowing a PGx relation-
ship to have only two of these three components. Indeed,
one component may be missing for multiple reasons: the
relationship may still be under study and some of its
components unknown; we can also expect errors dur-
ing automatic extraction leading to missing components.
Therefore, Axioms 3, 4 and 5 represent the three possibil-
ities of having two components among the three consid-
ered. Axiom 6 is the final axiom describing the concept
PharmacogenomicRelationship. A PGx relation-
ship involving the three types of components trivially
validates the axioms.

Axiom 3 PR1 ≡ ∃causes.Phenotype�∃isCaused
By.DComponent

Axiom 4 PR2 ≡ ∃causes.Phenotype � ∃isCaused
∃By.GFComponent

Axiom 5 PR3 ≡ ∃isCausedBy.DComponent �
∃isCausedBy.GFComponent

Axiom 6 PharmacogenomicRelationship �
PR1 � PR2 � PR3

Axiom 6 is not a concept definition (using ≡) because
we consider that presenting two (or three) components
is a required condition, but not a sufficient one to
be a PharmacogenomicRelationship. Examples of
encoding of PGx relationships and their provenance are
detailed in the next subsection.

PGxLOD: an instantiation of PGxO with knowledge units of
various provenances
PGxLOD is the knowledge base that results from the
instantiation processes of PGxO. Because a large portion
of the data of PGxLOD has no license restriction, we
provide an open access to this portion (only) at https://
pgxlod.loria.fr. Full access to PGxLOD that includes the
small set of proprietary data is granted upon request.
The population processes of PGxLOD are detailed in
the next paragraphs and their results are summarized in
Table 5.
With preexisting LOD
Table 6 summarizes results of the instantiation of PGxO
with our preexisting LOD. At this stage PGxLOD does
not contain any PGx relationship, but provides entities
appearing as components of PGx relationships, as well as
mappings between these entities.

https://pgxlod.loria.fr
https://pgxlod.loria.fr
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pgxo:PharmacogenomicRelationship pgxo:Phenotype

pgxo:Variant

pgxo:causes

pgxo:Drug

pgxo:Gene
pgxo:Disease

pgxo:causespgxo:GeneticFactor

pgxo:GenomicVariation

pgxo:Haplotype

rdfs:subClassOf

rdfs:subClassOf

pgxo:causes

pgxo:PharmacokineticPhenotype

pgxo:PharmacodynamicPhenotype

rdfs:subClassOf

ro:BFO_0000050
'part of'

ro:RO_0002502
'depends on'

Prefixes:
pgxo: http://pgxo.loria.fr/
ro: http://purl.obolibrary.org/obo/

Fig. 2 Main concepts and relations of PGxO. The central concept of the ontology is PharmacogenomicRelationship

With PharmGKB data
Table 7 summarizes results of the instantiation of PGxO
with PharmGKB data (2018-03-05 release).

Figure 3 provides an example of a PharmGKB relation-
ship represented with PGxO. It represents a relationship
between the haplotype TPMT*3C and the drug azathio-
prine. This relationship was extracted with our algorithm
named pharmgkbsql2triples. Accordingly this algorithm

Table 5 Main statistics of PGxLOD v2

PGxO concept Number of instances

Drug 51,459

GeneticFactor 386,801

Gene 172,881

GenomicVariation 213,910

Haplotype 33

Variant 204,875

Phenotype 88,247

Disease 47,573

PharmacodynamicPhenotype 63

PharmacokineticPhenotype 44

PharmacogenomicRelationship 68,431

from PharmGKB 2701

from the literature 65,720

from EHR studies 10

is specified as provenance metadata, along with its ver-
sion and the version of PharmGKB. This allows coexisting
extractions of concurrent versions of PharmGKB or the
algorithm. The level of evidence of the relationship is
represented with PROV-O concepts.

With the biomedical literature
We instantiated PGxO with the manually annotated sen-
tences of our 307-sentence corpus, and with the output
of our prototype for relation extraction on a test cor-
pus formed by the all 176,704 sentences unannotated or
annotated. We extracted from these sentences, 51,924
entities (8412 drugs, 10,812 genes, 8740 genomic varia-
tions and 23,960 phenotypes) and 65,182 PGx relation-
ships between them. Table 8 shows the statistics for the

Table 6 Statistics of the instantiation of PGxO with data from
PGxLOD v1

Source Genes Variants Drugs Diseases Phenotypes

ClinVar 21,487 103,219 0 0 6837

DisGeNET 85,893 49,279 0 38,727 6092

DrugBank 4300 0 7740 0 0

MediSpan 0 0 5820 2481 0

SIDER 0 0 25,479 6291 0

UniProt 25,456 0 0 0 0

Total 137,136 152,498 39,039 47,499 12,929
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Table 7 Numbers of PGx relationships extracted from PharmGKB v2018-03-05

Caused phenotype Level of evidence All

Toxicity/ADR Efficacy 1A 1B 2A 2B 3 4

# PGx relationships 1268 1531 44 11 71 97 2270 208 2701

Some PGx relationships can cause both Toxicity/ADR and Efficacy

normalization of these entities to identifiers of reference
databases or ontologies listed in Table 4. Figure 4 illus-
trates the RDF encoding of a PGx relationship extracted
from the literature. It is noteworthy that the type of
relation is encoded in the provenance metadata. Our pro-
totype only outputs relations of the broad type “isAssoci-
atedWith”, but other types could be expected with a more

advanced system, e.g. “increases” or “decreases”. Figure 4
also illustrates how the entity representing the TPMT
gene reuses an URI from the Bio2RDF transformation of
the NCBI Gene database, while the entity representing the
6-mercaptopurine instantiates a MeSH class. This differ-
entiates the use of reference databases or ontologies when
normalizing.

pgkbannot_v2018-03-
05_1184648909

Azothioprine

Toxicity_ADR

pgxo:Phenotype

pgxo:Drug

pgxo:PharmacogenomicRelationshippgxo:Gene

TPMT
pgxo:causes

a aa

prov:qualifiedGeneration

pharmgkb

pharmgkb_v2018-03-05

pgkbid:1184648909

pharmgkbsql
2triples_v2

prov:wasAttributedTo

prov:wasDerivedFrom

pharmgkb_extract_
2018-10-

30T10:28:56Z

"2018-10-30T10:28:56Z"

prov:atTime

prov:activity

prov:used

prov:wasAssociatedWith

"1A"

prov:influencer

dul:hasDataValue

pharmgkbLevelOfEvidence

dul:hasQuality

dul:hasQuality

prov:specializationOf

pharmgkbsql
2triples

a

TPMT*3C

pgxo:Haplotype

a

ro:partOf pgxo:causes

prov:Activity

prov:Entity prov:Generation

prov:Agent

Namespaces:
dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
pgxlod: http://pgxlod.loria.fr/resource/   (default)
pgxo: http://pgxo.loria.fr/
prov: http://www.w3.org/ns/prov#
skos: http://www.w3.org/2004/02/skos/core#

Fig. 3 A PGx relationship extracted from PharmGKB on October 30th, 2018 and represented with PGxO. For readability purposes, in some cases
labels are used instead of URIs. Only one drug and one variant are represented, whereas this relationship involves more components. The clinical
annotation is available at https://www.pharmgkb.org/gene/PA356/clinicalAnnotation/1184648909

https://www.pharmgkb.org/gene/PA356/clinicalAnnotation/1184648909
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Table 8 Numbers of unique entities recognized in the test corpus
and successfully mapped with reference databases or ontologies

Database / Ontology Drug Gene GenomicVariation Phenotype

MeSH 1600 n/a n/a 1625

ChEBI 285 n/a n/a n/a

ATC 78 n/a n/a n/a

NCBI Gene n/a 4907 n/a n/a

dbSNP n/a n/a 803 n/a

MEDDRA n/a n/a n/a 0

PGxLOD 6449 5905 7937 22,335

Total 8412 10,812 8740 23,960

Reference databases and ontologies are listed in Table 4

With electronic health records and linked biobank studies
Each of the ten studies listed previously results in one
instance of a PGx relationship, along with its provenance.
Interestingly, out of ten, eight were derived from the
BioUV biobank and its linked EHRs [56], one from clini-
cal data of the eMERGE Network [59] and one from data
of the HEGP, a French University Hospital [60]. Out of the
same ten relationships, six were obtained from a statisti-
cal analysis using linear regression and four using logistic
regression. Regarding genetic factors, relationships
involve either a single nucleotide polymorphism (7/10), an
haplotype (2/10) or an enzyme activity (1/10). For exam-
ple, Fig. 5 represents the instantiation of PGxO, achieved
from the results of Neuraz et al. [48] and the thiopurine

literature_PGxCorpusPrediction
_v1_relation_20699

a a

6-mercaptopurine

pgxo:Drug

pgxo:PharmacogenomicRelationshippgxo:Gene

TPMT

aa

prov:qualifiedGeneration

NLM

prov:wasAttributedTo

PubMed

prov:wasDerivedFrom

pubmed:23029095
_1369-1548

PGxCorpusPrediction_V1

run_PGxCorpusPrediction

"2018-09-13T12:08:31Z"

prov:atTime

prov:activity

prov:used

prov:wasAssociatedWith
"isAssociatedWith"

prov:influencer

dul:hasDataValue

relationType

dul:hasQuality

dul:hasQuality

prov:specializationOf

PGxCorpusPrediction

pgxo:causes

mesh:D015122

prov:wasDerivedFrom

pubmed:23029095

prov:Activity

prov:Entity prov:Generation

prov:Agent

Namespaces:
dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
mesh: http://bio2rdf.org/mesh:
pgxlod: http://pgxlod.loria.fr/resource/   (default)
pgxo: http://pgxo.loria.fr/
prov: http://www.w3.org/ns/prov#
pubmed: http://rdf.ncbi.nlm.nih.gov/pubmed/
skos: http://www.w3.org/2004/02/skos/core#

Fig. 4 A PGx relationship extracted from the literature on September 13th, 2018 and represented with PGxO. For readability purposes, in some cases
labels are used instead of URIs. For example, the TPMT gene is identified with the URI http://bio2rdf.org/ncbigene:7172. The abstract
is available at https://www.ncbi.nlm.nih.gov/pubmed/23029095/

http://bio2rdf.org/ncbigene:7172
https://www.ncbi.nlm.nih.gov/pubmed/23029095/
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pgxo:Gene
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prov:used
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0.0004

prov:influencer

dul:hasDataValue

p-value

dul:hasQuality

dul:hasQuality
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pgxo:Haplotype

a

pgxo:causes

pgxo:causes

TPMT very 
high activity

pgxo:Phenotype

a

pgxo:qualifiedProxypgxo:qualifiedVariation

prov:qualifiedGeneration
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prov:wasAttributedTo

Thiopurine CPIC
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Manual
extraction
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prov:activity

prov:used

prov:wasAssociatedWith
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prov:Activity

prov:Entity prov:Generation

prov:Agent

Namespaces:
dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
pgxlod: http://pgxlod.loria.fr/resource/   (default)
pgxo: http://pgxo.loria.fr/
prov: http://www.w3.org/ns/prov#
skos: http://www.w3.org/2004/02/skos/core#

Fig. 5 A PGx relationship discovered from EHRs [48] and represented with PGxO. The initial association discovered from EHRs is standing between a
drug response and the TPMT activity, i.e. a phenotype. The later is considered a proxy to the genotype of the TPMT gene, as stated by the CPIC
guidelines. For readability purposes, in some cases labels are used instead of URIs

CPIC guidelines. In this particular case, no genetic
data was provided in the study, but an enzyme activity.
Indeed the TPMT enzyme activity may be considered as
a proxy for the genotype of the TPMT gene, as stated in
the thiopurine-related CPIC guidelines [61]. We added
a RDF triple stating that the TPMT activity depends
on the TPMT haplotype (with the ro:dependsOn
relation type), and documented the provenance of this

assertion (with the pgxo:qualifiedProxy and
pgxo:qualifiedVariation relation types and
PROV-O concepts and relation types). This represen-
tation is possible because our axioms defining a PGx
relationship allow using a phenotype as a proxy for a
genetic factor instead of a genetic factor itself. We expect
this to facilitate later comparison of the results of studies
without genetic data, to the state of the art.
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Reconciliation rules
Definition and implementation of the reconciliation rules
We defined five rules for simple pair-wise comparison of
PGx relationships. These rules are able to identify when
two PGx relationships with distinct provenances are in
fact referring to the same knowledge unit, to a more spe-
cific knowledge unit, or to related knowledge units (to
some extent). Indeed, among the five rules, Rule 1 is ded-
icated to identifying identical relationships, Rules 2, 3,
and 4 to identifying broader/narrower ones and Rule 5
to identifying PGx relationships related by some of their
components. All five rules are provided in Additional file 1
as well as examples of their application on RDF graphs. In
the next paragraphs, as an example, the simpler rule, Rule
1, identifying when two PGx relationships are referring
to the same knowledge unit is presented and illustrated.
Other rules are a bit more complex, but follow the same
principles.

Rules compare PGx relationships on the basis of their
components, i.e. sets of drugs, genetic factors and phe-
notypes. Accordingly, considering r, an instance of the
PharmacogenomicRelationship concept from a
knowledge base KB, the following sets are defined.

Notation 1 We denote D, the set of instances
of Drug that cause r, defined as D =
{d | KB |= Drug(d) and KB |= causes(d,r)}

Notation 2 We denote G, the set of instances of
GeneticFactor that cause r, defined as G =
{g|KB |=GeneticFactor(g) and KB|=causes(g,r)}

Notation 3 We denote P, the set of instances
of Phenotype caused by r, defined as P =
{p | KB |= Phenotype(p) and KB |= causes(r,p)}

Therefore, when comparing two PGx relationships
denoted by r1 and r2, the sets of their components will be
denoted D1, G1, P1 and D2, G2, P2. The first reconciliation

rule identifies when two PGx relationships are referring to
the same knowledge unit; it is defined as follows:

Rule 1 D1 = D2 AND G1 = G2 AND P1 = P2 ⇒
owl:sameAs(r1,r2)

This rule states that when two relationships involve the
same sets of drugs, of genetic factors and of phenotypes,
they refer to the same knowledge unit. Therefore, the link
owl:sameAs(r1,r2) should be added to the knowledge
base. For example, consider the RDF graph presented in
Fig. 6. We have:

• D1 = D2 = {warfarin}
• G1 = G2 = {CYP2C9}
• P1 = P2 =

{cardiovascular_diseases_inst1}
Therefore, the left part of Rule 1 is true, and the link

owl:sameAs(r1,r2) should be added to the knowledge
base.

Other rules, details and examples are available in
Additional file 1. Rules 2, 3 and 4 conclude in indicat-
ing that a relationship is more specific than the other
by adding the link skos:broadMatch(r1,r2) to the
knowledge base. Rule 5 concludes that they are related by
adding the link skos:relatedMatch(r1,r2).

Execution of the reconciliation rules on PGxLOD
We executed our reconciliation rules on PGxLOD v2
(Table 5). As each relationship is compared to all the
others, this led to 68, 430 × 68, 431 = 4, 682, 733, 330
comparisons performed.

This execution generated owl:sameAs links (Table 9),
skos:broadMatch links (Table 10) and skos:
relatedMatch links between the PGx relationships in
PGxLOD. We observed skos:relatedMatch (37,758)
only between pairs of relationships extracted from the

pgxo:Phenotypepgxo:Drug pgxo:PharmacogenomicRelationshippgxo:Gene

r1warfarin cardiovascular_diseases_inst1CYP2C9

a aaa

pgxo:causes

pgxo:causes

r2

pgxo:causes
a

pgxo:causes

pgxo:causes
pgxo:causes

owl:sameAs

Fig. 6 Example of a RDF graph on which a reconciliation rule identifies that two PGx relationships are identical. The owl:sameAs links result of the
application of the rule
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Table 9 Number of owl:sameAs links between PGx
relationships from each source

EHRs Literature PharmGKB

EHRs 0 0 0

Literature 0 109,078 0

PharmGKB 0 0 132

literature. Interestingly, for 132 PGx relationships from
PharmGKB an identical relationship was found (generat-
ing 132 owl:sameAs links). Additionally, 14 sentences
from the biomedical literature are identified as more
generic than what is stated in the EHR+biobank studies.

We can notice that skos:broadMatch links exist
between different sources while owl:sameAs and
skos:relatedMatch links only refer to PGx relation-
ships from the same sources. Some possible explanations
reside in a lack of mappings between entities in differ-
ent vocabularies and the use of broad phenotypes for
PGx relationships from PharmGKB (i.e. Toxicity/ADR,
Efficacy) that are distinct from more specific phenotypes
elsewhere stated such as, for example, cardiovascular
diseases.

Discussion
Instantiating PGxO with knowledge extracted from vari-
ous sources allows to answer the defined competency ques-
tions: we are able to represent PGx relationships extracted
either from the state of the art (reference databases or the
literature) as well as from EHR+biobank studies. The use
of heterogeneous sources for instantiating our ontology
improved in several ways the modeling of PGx relation-
ships previously drafted in [16]. Among other things,
we enabled the representation of phenotypes as proxies
for a specific genotype, such as an enzyme activity. The
encoding of metadata has also been enriched to enable
the encoding of the various metrics associated with the
different kinds of knowledge extractions.

By using Semantic Web technologies, our global frame-
work for knowledge comparison in PGx can easily lever-
age knowledge defined elsewhere such as ontologies or
other available LOD sets. This is of particular importance

Table 10 Number of skos:broadMatch links between PGx
relationships from each source

EHRs Literature PharmGKB

EHRs 0 14 0

Literature 0 133,966 0

PharmGKB 0 865 98

Rows represent origins of the links and columns represent destinations

as the reconciliation rules depend on existing map-
pings and subsumption relations. Moreover, the proposed
encoding can easily evolve depending on one’s needs.
However, in a data warehousing perspective, Semantic
Web technologies require high data maintenance to fol-
low the evolution of associated databases, LOD sets and
ontologies. Therefore, one challenge is to keep PGxLOD
up-to-date with respect to the associated data sources.

Several directions are considered to continue this work.
Regarding the extraction from PharmGKB, more detailed
drug response phenotypes could be extracted from the
plain-text sentences describing the clinical annotations in
the database. This would require text mining similar to
what we have done for processing literature but this would
enable a more accurate comparison between the content
of PharmGKB and other sources.

Our prototype for knowledge extraction from the lit-
erature constitutes solely a baseline. It faces limitations
relatively easy to improve. First, the NER model, in its cur-
rent form, does not detect discontinuous entities that may
appear in the literature (such as “the response of the selec-
tive serotonin reuptake inhibitors paroxetine” where the
entity “response of paroxetine” is discontinuous). This is
a limitation since missed entities lead to missed relation-
ships. In addition, the two steps NER procedure can only
detect fairly simple included entities. In practice, multi-
ple levels of inclusion can be observed in the literature
and cannot be captured by our system. Finally, a larger
training corpus would improve the performance of the
learned models, since deep learning architectures usu-
ally require large annotated corpora in order to achieve
reasonable performances. In addition, the normalization
process, which results are reported in Table 8, is naive
and may be improved using lexical resources and ontol-
ogy repositories. Those list term synonyms, variants and
bridges between these resources.

The manual instantiation of PGxO with knowledge
extracted from EHRs constitutes only a proof of concept.
One notable drawback is that gene variants and precise
drug response phenotypes are not available in most cases.
Thus, the knowledge discovery process needs to rely on
proxies such as a phenotype being a marker of the patient
genotype or a stable dose requirement being a marker of
the patient sensitivity to the considered drug. Therefore,
a PGx relationship discovery from EHRs would benefit
from a more complete list of proxies. To our knowledge,
no such list is available. In addition, more contextual infor-
mation about knowledge discovered from patient data
would be of interest. For example, the ethnicity of patients
[53] or the indications for which patients are treated [9]
may be necessary to properly document some PGx rela-
tionships. Considering these challenges, one perspective
of the current work relies in automatically instantiating
PGxO with knowledge extracted by mining EHRs.
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The proposed reconciliation rules were executed on
PGxLOD, providing first results of reconciliation. How-
ever, to compare PGx relationships involving entities from
different vocabularies, the rules rely on the existence of
equivalence or subsumption relationships between the
URIs of these entities. Therefore, a major task and per-
spective resides in completing the mappings between
entities of various provenances. Using both concept hier-
archies and ontology-to-ontology mappings defined in the
UMLS [62] or the NCBO Bioportal [63] may improve
knowledge comparison. Especially, this may be particu-
larly useful when considering knowledge extracted from
EHRs, which are expressed with concepts of ontologies
used in the encoding of clinical practice such as ICD or
RxNorm. Finally, the reconciliation rules strictly compare
the components of a PGx relationships: drugs, genetic fac-
tors, and phenotypes. However, other features could be
considered, such as the specific chemicals of a drug. Such
features could be involved in a fuzzy comparison high-
lighting similar but not strictly equivalent relationships.

Conclusions
In this article, we presented a simple ontology called
PGxO to represent pharmacogenomic knowledge and its
provenance. With the combined use of PROV-O and
DUL, we demonstrated that PGxO can structure knowl-
edge extracted from various sources such as reference
databases (i.e. PharmGKB), the literature, clinical guide-
lines or EHR+biobank studies. We also defined and imple-
mented a set of rules allowing to compare and reconcile
PGx knowledge units from different sources. PGxO and
the reconciliation rules constitute a first step to a semantic
framework able to represent, trace, confront and reconcile
PGx relationships from various origins. A first experiment
with these rules highlights equivalent and comparable
pieces of knowledge across various data sources, opening
perspectives for fine grained comparison and interpreta-
tion of the content of PGx sources. Finally, we think that
the resulting and integrated data set called PGxLOD con-
stitutes by itself a valuable resource for PGx research. This
data set is made available to the community and will be
improved with additional knowledge from the state of the
art and from EHR mining.

Additional file

Additional file 1: PGxO reconciliation rules. This PDF file provides the
definition of the five reconciliation rules and illustrates their behavior with
concrete examples. (PDF 337 kb)
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