
Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138
https://doi.org/10.1186/s12859-019-2694-8

RESEARCH Open Access

Analyzing big datasets of genomic
sequences: fast and scalable collection of
k-mer statistics
Umberto Ferraro Petrillo1†, Mara Sorella2†, Giuseppe Cattaneo3, Raffaele Giancarlo4* and Simona E. Rombo4

From The 2017 Network Tools and Applications in Biology (NETTAB) Workshop
Palermo, Italy. 16-18 October 2017

Abstract

Background: Distributed approaches based on the MapReduce programming paradigm have started to be
proposed in the Bioinformatics domain, due to the large amount of data produced by the next-generation
sequencing techniques. However, the use of MapReduce and related Big Data technologies and frameworks (e.g.,
Apache Hadoop and Spark) does not necessarily produce satisfactory results, in terms of both efficiency and
effectiveness. We discuss how the development of distributed and Big Data management technologies has affected
the analysis of large datasets of biological sequences. Moreover, we show how the choice of different parameter
configurations and the careful engineering of the software with respect to the specific framework under
consideration may be crucial in order to achieve good performance, especially on very large amounts of data. We
choose k-mers counting as a case study for our analysis, and Spark as the framework to implement FastKmer, a novel
approach for the extraction of k-mer statistics from large collection of biological sequences, with arbitrary values of k.

Results: One of the most relevant contributions of FastKmer is the introduction of a module for balancing the
statistics aggregation workload over the nodes of a computing cluster, in order to overcome data skew while allowing
for a full exploitation of the underlying distributed architecture. We also present the results of a comparative
experimental analysis showing that our approach is currently the fastest among the ones based on Big Data
technologies, while exhibiting a very good scalability.

Conclusions: We provide evidence that the usage of technologies such as Hadoop or Spark for the analysis of big
datasets of biological sequences is productive only if the architectural details and the peculiar aspects of the
considered framework are carefully taken into account for the algorithm design and implementation.

Keywords: Distributed computing, Apache Spark, k-mer counting, Performance evaluation

Background
With the rapid growth of biological sequence datasets and
the evolution of the sequencing technologies, many algo-
rithms and software systems commonly used for the anal-
ysis of biological sequences are becoming obsolete. For
this reason, computational approaches based on frame-
works for big data processing started to be proposed
in order to deal with problems involving large amounts

*Correspondence: raffaele.giancarlo@unipa.it
†Umberto Ferraro Petrillo and Mara Sorella contributed equally to this work.
4Dipartimento di Matematica ed Informatica, Università di Palermo, Palermo
90133, Italy
Full list of author information is available at the end of the article

of biological data [1–5]. Unfortunately, the fundamen-
tal domain of alignment-free linguistic and informa-
tional analysis of genomic and proteomic sequences, e.g.,
[6–14], has received yet little attention in this context. In
this respect, an important task that is at the hearth of this
domain is the collection of k-mer statistics, i.e., how many
times each sequence of length k over a finite alphabet
appears in a set of biological sequences, at a genomic scale.
Once that such information is available, one can use it to
compute many informational and linguistic indices [7, 15],
as well as de Bruijn graph assemblers, and error/repeat
detection systems.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2694-8&domain=pdf
mailto: raffaele.giancarlo@unipa.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 2 of 14

Recently, the software tool KCH [16] has been proposed
for the linguistic and informational analysis of biolog-
ical sequences based on Hadoop [17] and MapReduce
[18]. It allows for an efficient collection and analysis of k-
mers from a collection of genomic sequences. KCH has
been the first tool showing that big data technologies can
be superior to highly-optimized shared memory multi-
processor approaches, even when considering mid-size
problem instances. This latter methodological contribu-
tion, combined with results in [19], gives experimental
evidence that big data technologies can be extremely
pervasive for an effective solution of a broad spectrum
of computational problems in the Life Sciences, going
from basic primitives to full-fledged analysis and storage
pipelines. However, in quantitative terms, that is only a
first step towards the acquisition of full knowledge of how
big data technologies can affect Computational Biology
and Bioinformatics.

In this manuscript, we consider the problem of k-mer
counting as a case study, and in particular we present a
distributed approach for k-mer counting that extends the
capabilities of KCH and shows better performances. The
system is called FastKmer, and has been carefully engi-
neered in order to maximize the potential of Apache Spark
[20], the big data framework on which it is based. The
result is that, to the best of our knowledge, FastKmer is
the fastest distributed system available so far for extracting
k-mer statistics from large genomic and meta-genomic
sequences using arbitrary values of k. The approach,
devotes particular attention to enforcing a balanced dis-
tribution of the workload of k-mer statistics aggrega-
tion tasks over the nodes of a computing cluster. This
same approach may be useful in other scenarios involv-
ing notions that are more general than k-mers, like spaced
words and seeds (see [21, 22] and references therein). The
performance of FastKmer has been evaluated by conduct-
ing a comparative experimental analysis with other k-mer
statistics systems over real-world datasets.

The rest of the manuscript is organized as follows. In
the following part of this section, some background for
our work is provided. In the Methods section, the algo-
rithm FastKmer is described along with some implemen-
tation details. The results of an experimental evaluation
of FastKmer, and an improved version of it, are presented
in the Results and Discussion section, as well as an exper-
imental comparison with other systems for the collection
of k-mer statistics. Finally, some conclusions and future
directions for our work are outlined in the Conclusions
section.

MapReduce
MapReduce [23] is a paradigm for the processing of large
amounts of data on a distributed computing infrastruc-
ture. Assuming that the input data is organized as a

set of 〈key, value〉 pairs, the paradigm is based on the
definition of two functions, map and reduce, respec-
tively. Map processes an input 〈key, value〉 pair and
returns a (possibly empty) intermediate set of 〈key, value〉
pairs. Reduce merges all the intermediate values shar-
ing the same key, in order to form a (possibly smaller)
set of values. These functions are run, as tasks, on
the nodes of a distributed computing cluster. All the
activities related to the management of the lifecycle
of these tasks, as well as the collection of the map
results and their transmission to the reduce functions,
are transparently handled by the underlying framework
(implicit parallelism), with no burden on the programmer
side.

Apache Hadoop is the most popular framework sup-
porting the MapReduce paradigm. It allows for the
execution of distributed computations, based on the
interplay of two architectural components: YARN (Yet
Another Resource Negotiator) [24] and HDFS (Hadoop
Distributed File System) [25]. YARN manages the lifecy-
cle of a distributed application by keeping track of the
resources available on a computing cluster, and allocat-
ing them for the execution of application tasks modeled
after one of the supported computing paradigms. HDFS
is a distributed and block-structured file system designed
to run on commodity hardware and able to provide fault
tolerance through data replication.

Since their introduction, both MapReduce and Hadoop
have become a cornerstone of big data processing. The
key for their success is that the MapReduce-based pro-
gramming interface supported by Hadoop provides devel-
opers with a quite convenient environment to code
effective applications, allowing them to focus more
on the specific task at hand, rather than on other
issues such as synchronization and process-to-process
communication, as opposed to what traditional, low-
level primitives such that provided by MPI Standard
(Message Passing Interface [26]) or its ancestor, PVM
(Parallel Virtual Machine [27]), allowed for. Indeed, within
such programming environments, concurrency must be
explicitly handled by the programmer and the run-
ning program strongly depends on the physical network
topology. In the realm of Bioinformatics, this point is
well illustrated in the Magellan Final Report [28] regard-
ing the collection of k-mer statistics in large meta-
genomic datasets: MPI solutions would work, but it is
much more convenient to use Hadoop and MapReduce,
also considering the availability of higher level tools like
Pig [29, 30].

In the remaining part of this section, first we recall some
basic notions on Apache Spark, which is central for the
approach presented here. Then, we provide a summary
of the main approaches for k-mers counting based on big
data technologies.

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 3 of 14

Apache Spark
Spark is a fast and general distributed system for cluster
computing on big data. It consists of two main blocks:
a programming model that creates a dependency graph,
and an optimized runtime system which uses this graph to
schedule work units on a cluster, and also transports code
and data to the worker nodes of this cluster where they will
be processed by executor processes.

Resilient Distributed Datasets At the core of the Spark
programming model is the Resilient Distributed Dataset
(RDD) abstraction, a fault-tolerant, distributed data struc-
ture that can be created and manipulated using a rich
set of operators. Programmers start by defining one or
more RDDs through transformations of data that origi-
nally resides on stable storage or other RDDs (e.g., map,
filter or reduce).

Apart from the internal cluster manager, Spark appli-
cations can be run also on external cluster managers like
Hadoop YARN [24] or Mesos [31]. Moreover, a Spark
application can be run over a distributed file system, e.g.,
HDFS [25]. This allows each worker node of a cluster to
read input data and to write output data using a local disk
rather than a remote file server.

Partitions, parallelism, and shuffling By default, Spark
tries to read data into an RDD from the nodes that are
close to it. Since Spark typically accesses distributed data,
to optimize transformation operations, it creates parti-
tions to hold the data chunks. The number of partitions
of an RDD reflects the degree of parallelism (number of
tasks) employed by Spark while processing it. When an
RDD is created by loading files from HDFS, its number of
partitions is equal to the number of input splits of the orig-
inal file on HDFS. The size of an input split depends on
the block size, a configurable parameter of the MapReduce
ecosystem.

The Spark mechanism for redistributing data across
partitions is called shuffling. It occurs when certain trans-
formations, such as groupByKey or reduceByKey, are
issued on an RDD and cause moving data across differ-
ent processes or over the wire (between executors on
separate nodes). An RDD that is obtained via a shuffle
transformation of another RDD will inherit its number
of partitions. However, as far as choosing a “good” num-
ber of partitions is of concern, what is typically desired
is to have at least as many partitions as the number of
cores. A way to influence this choice is by specifying a
custom value for the spark.default.parallelism
property. Another option, consists of introducing a cus-
tom partitioner. Partitioners are objects that define how
elements of a key-value RDD are partitioned by key.
The Spark default partitioner (i.e., HashPartitioner)
chooses the partition where to map an element as the

Java’s Object.hashCode value of its key (modulo num-
ber of partitions), or 0 for negative hashes. It is also
possible to implement a custom partitioner class defin-
ing a custom method for assigning keys to partitions. This
feature is useful when, for some reason, the default parti-
tioner causes RDD data to be unevenly distributed across
partitions.

Big Data based approaches for the analysis of biological
sequence datasets: the special case of k-mers counting
The modern high-throughput technologies produce large
amounts of sequence collections of data, and several
methodologies have been proposed for their efficient stor-
age and analysis [15, 32]. Recently, approaches based on
MapReduce and big data technologies have been pro-
posed (see, e.g., [2], and [3] for a complete review on this
topic). An important issue in this context is the compu-
tation of k-mer statistics, that becomes challenging when
sets of sequences at a genomic scale are involved. Due to
the importance of this task in several applications (e.g.,
genome assembly [33] and alignment-free sequence analy-
sis [15, 32]) many methods that use shared-memory multi
processor architectures or distributed computing have
been proposed.

The basic pattern followed by most of these methods
is to maintain a shared data structure (typically, a hash
table) to be updated according to the k-mers extracted
from a collection of input files by one or more concurrent
tasks. When memory is not enough to maintain all the
extracted k-mers, these can be organized in disjoint par-
titions and temporarily saved on file without aggregation.
Then, they will be loaded in memory one partition at time
and summed to return the definitive k-mer statistics.

Here, we provide a summary of the main techniques
proposed for k-mers counting in the Bioinformatics sce-
nario, organized in two main categories: those designed
to work on shared memory and/or multi-processor sys-
tems, and those implemented for distributed systems (the
interested reader can refer to an extensive survey in [16]).

Shared memory, multi-processor systems. MSPKmer-
Counter [34] introduces a disk-based approach where
consecutive k-mers are not saved individually but first
compressed to a single superkmer. This solution leads to
a significant reduction in the amount of data to be tem-
porarily saved on disk and, then, recovered to memory,
thus allowing for a significant performance boost with
respect to other algorithms. The notion of minimizer
has been refined in KMC2 [35] and, later, in KMC3 [36]
with the introduction of k-mer signatures. These are a
specialization of minimizers and are built with the idea
of discouraging an extremely imbalanced partitioning of
superkmers among the different bins while keeping the

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 4 of 14

overall bins size as small as possible. An additional contri-
bution provided by these systems is in the counting phase.
Input superkmers are broken into (k, x)-mers, a compact
representation of a sequence of k-mers whose length is
≤ (k + x), and sorted efficiently using a parallel version of
radix sort [37].

Distributed systems. The applicability and scalability of
multi-processor shared-memory architectures is inher-
ently constrained by architectural factors, such as the
maximum number of processing cores on a processor,
and the maximum amount of memory on a single host-
ing machine. Distributed systems allow to overcome these
limitations. Indeed, the availability of an arbitrary num-
ber of independent computation nodes makes it possible
to virtually extend to any size the data structure used to
keep the k-mer statistics in memory, while using the net-
work as a temporary buffer between the extraction phase
and the aggregation phase.

This is the approach followed by Kmernator [38] and
Kmerind [39]. Both these tools are developed as MPI-
based parallel applications and are able to handle data
sets whose size is proportional to the overall memory
of the MPI-based system where they are run. However,
the development and management of an in-house MPI-
based supercomputing facility is usually very complex and
expensive.

BioPig [40] is an Hadoop-based analytic toolkit for the
processing of genomic data. It has been developed as an
extension of the Pig language that, in turn, offers a set
of data querying and transformation primitives that are
translated into MapReduce jobs. BioPig includes a mod-
ule, called pigKmer, that allows to extract and count the
k-mers existing in a set of sequences. Each sequence is
split into several blocks saved on the different nodes of a
distributed system, with each block being processed by a
distinct task. The k-mers extracted in this way are then
aggregated, using a reduce operation, and finally counted.
An alternative distributed k-mers counter is the one pro-
vided by ADAM [41], a Spark-based toolkit for exploring
genomic data, which follows the same application pattern
of BioPig. The algorithmic approach of these two systems
is somewhat simplistic, so they are able to process very
large genomic sequences but at the expense of very poor
resource utilization.

The first and, to date, the only distributed system able
to extract efficiently k-mer statistics from large collections
of genomic sequences, with k ≤ 31, is KCH [16]. It is
a distributed system, based on MapReduce and Hadoop,
which follows a two-level aggregation strategy. In particu-
lar, it first partitions the universe of possible k-mers into a
fixed number of bins (291, by default) and, then, it extracts
the k-mers counts from a collection of input sequences
in two stages of alternate map and reduce tasks. In the

first stage, each map task creates a distinct hash table for
each bin and updates them with the statistics of the k-
mers extracted from a chunk of the input sequences. At
the end of this stage, each map task returns its collection
of hash tables holding the partial k-mer counts. During
the second stage, all the hash tables corresponding to the
same bin are aggregated by a reduce task and the result is
saved on file. This strategy is able to significantly reduce
the communication overhead between the different nodes
of the system, thus allowing for execution times that are
up to 100× faster than those of BioPig, when run on fairly
large sequences.

Methods
In this section we describe the core concepts and the main
design aspects behind our algorithm, FastKmer.

Basics
Let � be an alphabet and S be a finite set of collections
of sequences over �. A cumulative statistics collects how
many times each of the k-mers in �k appears in the col-
lections of sequences in S. Here � = {A, C, G, T} and S is
a collection of genomes or meta-genomes.

Algorithms that compute k-mer statistics usually have
a common structure: they first process the sequences
in S from left to right in order to extract all k-mers
and, then, they perform aggregation and evaluation. A
naive implementation, such that all single k-mers are
extracted in a sliding window fashion, is highly redun-
dant in space. Indeed, for an input length of n characters,
generating all k-mers determines an unfolded sequence
of (n − k + 1) · k symbols. Since, by definition, consec-
utive k-mers along a sequence share k − 1 symbols, it
would be beneficial to have a compressed representation
of them, where all contiguous k-mers are stored in a com-
pact sequence. Yet unfortunately, to be able to collect the
statistics, especially in a distributed setting where differ-
ent portions of the input data are processed by physically
separated machines, we need a way to keep together all
instances of each unique k-mer for the evaluation phase.
A clever solution to this problem is based on the notion of
minimizers [34, 42, 43].

Minimizers Given a k-mer s, a minimizer of s is a word
of length m (with m fixed a priori) occurring in s. Usu-
ally many consecutive k-mers have the same minimizer
and, therefore, can be compressed into a sequence of more
than k symbols, a superkmer, significantly reducing the
redundancy.

Minimizers may be used to partition k-mers into mul-
tiple disjoint sets, as well as retaining adjacent k-mers in
the same partition: superkmers can be distributed into dif-
ferent bins according to their related minimizer ensuring

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 5 of 14

that all the corresponding instances of a k-mer will appear
in the same bin.

k-mer statistics collection on Spark: the FastKmer algorithm
Here FastKmer is described, focusing also on the engi-
neering aspects which make it more efficient with respect
to its competitors (e.g., KCH).

Design overview
The FastKmer algorithm is implemented on the Spark
pipeline described in Fig. 1. The core of the pipeline
consists of two main stages, as well as a preliminary
stage responsible of fetching the input dataset, that is
a FASTA/FASTQ file [44, 45], from HDFS storage, and
delivering all of its blocks to the first stage of the pipeline
(leftmost portion of Fig. 1). The first stage performs the
extraction of superkmers. The second stage computes and
collects the k-mer statistics. Both stages are described in
detail in the following.

First stage: extracting superkmers
To address the problem of redundancy, the first stage of
our approach processes all input sequences in a way to
guarantee a degree of compression: sequences are broken
into superkmers using their corresponding minimizers
which are in turn used to implement a binning mecha-
nism. In particular, FastKmer adopts a slightly different
notion that is the one of signatures [35], i.e., canonical
minimizers of length m (a tunable parameter) that do
not start with AAA nor ACA, neither contain AA any-
where except at their beginning. A toy example of splitting
a sequence into superkmers using signatures is depicted
in Fig. 2. This is a variant of the Minimum Substring
Partitioning (MSP) technique [46, 47].

From signatures to bins Superkmers having a given sig-
nature s are then mapped to one of a set of B bins
(a parameter) using a shift-based integer hash function,
thus aiming at a uniform distribution of superkmers in
processing units for the subsequent phase.

The output of the first stage is therefore a sequence of
bins, where each bin is described by an integer key in
the range {1, . . . , B} and holds a sequence of superkmers.
Then, bins originating from different distributed work-
ers are automatically aggregated by Spark based on their
key in an intermediate phase before the next stage (red
shuffling phase in Fig. 1).

Second stage: partitioned counting
The second stage is responsible of the counting phase:
due to the signature-based binning process, all instances
of a given k-mer are guaranteed to reside in the same bin.
Therefore, each bin is processed independently and all
the k-mers contained therein are inserted in a hash table,
that also maintains their relative counts. After process-
ing each bin, the table is traversed, and counts are saved
on HDFS.

Implementation details
FastKmer has been implemented as a Spark application
using Scala [48]. a programming language that combines
the object-oriented paradigm of Java with aspects from
functional programming such as local type inference,
functional combinators and immutable data structures.
This choice allows for a concise and efficient imple-
mentation of the FastKmer algorithm while ensuring the
best interoperation possible with Spark (which is natively
implemented in Scala as well).

Input sequences are read by FastKmer using FASTdoop [49].

Fig. 1 Stages of the pipeline implementing FastKmer

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 6 of 14

Fig. 2 Extraction of superkmers from input sequences, using signatures (k = 10, m = 3)

Compressed k-mer encoding FastKmer represents k-
mers (and likewise, superkmers) of arbitrary length using
an Array[Long], where information is encoded by
a binary representation. Therefore, since the alphabet
of valid nucleotides consists of four items, as � =
{A, C, G, T}, a string over �k can be encoded using only
two bits per symbol. Representing the original sequence
using a concatenation of 2-bit numbers, by means of
binary operations, allows for a space compression of about
75%, since each character of a k-mer needs two bits rather
than eight (corresponding to the Java String implemen-
tation, and ignoring its additional overhead). The impact
of this choice is is particularly relevant when consider-
ing the network traffic involved in the shuffling stage of
Fig. 1. Since the Long type uses 64 bits, each item in
the array can store up to 31 symbols (as opposed to 32,
since the most significant bit is reserved for sign); the last
item of the array is padded with leading zeros (and this
information is kept together with the encoded k-mer).

Results and discussion
Here we describe the results of an experimental analy-
sis that shows how different choices of the parameters,
and Spark-related configurations may result in different
performances of FastKmer.

Setup
Testing platform The experiments have been per-
formed on the Microsoft Azure Cloud infrastructure. In

particular, a 8-node Spark 2.1.0 cluster has been deployed
into HDInsight, Microsoft’s cloud distribution of the
Hadoop ecosystem (Hadoop 2.7.3), based on the Horton-
works Data Platform. Two cluster nodes act as head nodes,
and are equipped with an 8-core 2.4 GHz Intel Xeon E5-
2673 v3 processor and 28GB of RAM each. Furthermore,
the cluster has other six worker nodes, each with two 8-
core 4.78 GHz Intel Xeon E5-2673 v3 processors for a total
of 16 cores, 112GB of RAM and a 800GB local SSD disk,
and an overall disk capacity of 4.8TB.

All Spark jobs have been configured to use 2 cores
per executor, the number of executors, instead, varies
according to the specific experiment performed.

Datasets For the experimental validation, we have used
the metagenomic dataset described in [50]. In particular,
the SRR094926 run of the SRP004875 SRA study (avail-
able on the NCBI short read archive) has been considered,
for a total space occupation of about 125GB (FASTA for-
mat). Furthermore, another dataset containing only the
first 32GB of this run has also been considered. See Table 1
for summary information.

Table 1 Number of distinct and total k-mers for our datasets

k = 28 k = 55

kmers 32GB 125GB 32GB 125GB

Distinct 12,551,234 K 37,337,258 K 14,203,028 K 47,830,662 K

Total 22,173,612 K 86,674,803 K 18,722,642 K 73,209,044 K

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 7 of 14

Experimental evaluation
This section presents an experimental study of different
configurations and parameters, as well as of their main
implications on the performances of FastKmer.

Values of k. For all experiments, we examine the running
time performance of the k-mer statistics collection task
on our datasets for two different reference values of k: 28
and 55. Following the choice of [35], these two values have
been chosen as examples that reflect both the case where
each k-mer can be stored using a single Long variable, as
well as the case where it requires more variables.

Signature length. Preliminary experiments have been
performed in order to tune the signature length param-
eter m (data not shown but available upon request). The
result is that small values of m increase the probability
that consecutive k-mers share the same minimizer and
thus reduces the I/O cost at the end of the first stage.
However, if too small, it might render the distribution of
partition sizes skewed and the largest partition might not
fit in memory. On the other hand, a large value of m will
make the distribution of partition sizes more balanced at
the cost of a higher redundancy (with no compression for
m → k).

The assignment which empirically yields, on average,
the best performance on the considered datasets is m =
10. This is in line with the results in [35, 46] on datasets of
comparable characteristics.

Number of bins. The number of bins B used for the
signatures binning scheme is considered. At the starting
of the second stage, each partition contains a number
of bins to be processed. Having few bins decreases the
overall memory management overhead to be paid at the
beginning and at the end of the processing of each bin.
As a downside, having few, very large bins might require
an amount of memory exceeding the one available to a
worker process. On the other hand, a larger number of
bins allows for a better granularity of the distributed exe-
cution and reduce memory requirements for each worker
process, as each bin can be processed independently.
However, in such a case, there is an increased memory
management overhead for each worker process.

Spark parallelism. A Spark-specific parameter which
may have an impact on the running time and cluster usage,
is the Spark parallelism level (p). This parameter corre-
sponds to the number of tasks that are spawned by Spark
(as well as the number of partitions). Its choice has a side
effect on the number of bins mapped to partitions: if bin
numbers are uniformly spread, each task will receive a
number of bins that tends to B/p.

On large bins. As previously stated, when using the
minimizer-based approach, the distribution of superk-
mers associated to signatures can be very uneven, with
particularly frequent signatures tending to have a very
large fraction of superkmers. This is mainly driven by the
minimizer-based scheme: the distribution of superkmers
associated to signatures can be very uneven, with low
lexicographic signatures, tending to have a very large frac-
tion of superkmers, compared to the rest. This is partly
mitigated by the choice of signatures within a suitably
filtered sets of canonical minimizers that do not start
with common prefixes, and by the hash-based mapping
of signatures to bins. Nevertheless, since the scheme is
data-oblivious, it might still produce large bins. In our
distributed setting, this is particularly relevant because
they can introduce bottlenecks where the running time is
impacted by a few number of workers that take more time
than the others, thus leading to a non-optimal utilization
of the cluster.

Experimental results. Figure 3 shows the running time
of FastKmer when run with 16 executors, (for a total of
32 workers), using various values of B corresponding to
powers of two between 512 and 16.384, and a parallelism
levels ranging from 32 to 512 (corresponding, respectively,
to 1 and 16 average tasks per core). As per the number
of bins, performances improve consistently for values of
B up to 8192, after which we have no improvement (also
for higher values of B, not plotted for legibility). The x-
axis shows the parallelism p: again, for both values of k,
we see a performance increase when we raise p up to 320
tasks. No improvement, if not a slight deterioration, is
noticeable for higher values of p. This is expected: while
higher parallelism tends to better spread large bins across
many partitions, conversely, more tasks determine more
scheduling overhead for their start and finalization. Spark
tuning guidelines, [51], suggest setting a parallelism level
that is in the range of 2 − 3 tasks per core: this choice of p
leads to 10 tasks per core in our test instance (32 workers),
suggesting a possible heavy scheduling-related overhead.

Intuitively, increasing both values of B and p mitigates
the big bins problem, since: (i) mapping signatures to more
bins means potentially big signatures to be spread over a
larger number of bins, (ii) increasing parallelism allows to
split big bins as they are more granular and distributed
across more tasks. This does not fully remedy the fact that
bins can have very different sizes.

A further inspection of the distribution of the single task
running times for low values of B and p shows that some
tasks take much longer than others (peaking at as much as
50% of cluster underutilization, for some configurations).
With larger values of B and p, and in particular for the
best configuration B = 8192 and p = 320, the problem is

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 8 of 14

Fig. 3 Algorithm execution times on the 32GB dataset with k = 28, 55 and an increasing number of bins (B) and parallelism level. Best combination
shown in bold

indeed mitigated, yet still we have a single task running at
the end of the job for about 5% of the running time.

Another problem is related to the fact that the opti-
mal values of B and p ultimately depend on the dataset.
We wish to have a solution that allows for a degree of
adaptability of the algorithm to dataset variability, and,
more generally, exhibiting better load balancing guaran-
tees. In the next section, we explore a promising direction
of improvement to address these issues.

Coping with data skew: a multiprocessor scheduling inspired
partitioner
As previously stated, the unbalanced partitioning of bins
resulting from our experiments is mainly driven by the
minimizer-based scheme. Bins exacerbate this fact even
more, as they contain multiple signatures, (and possibly
many of such “big” ones), with the consequence that few
larger bins lead some workers to have a much longer
running time than the others. The standard partitioner
of Spark does not come into rescue, as it maps bin ids

to partitions following their hashCode, and therefore
cannot take into consideration their size.

The necessity of achieving a balanced distribution of
the workload induced by bins while taking into account
the actual number of available processing units can be
framed as an instance of the more general Multi-Processor
Scheduling (MPS) problem [52]. In this problem, the
input consists of t identical machines and n jobs, where
each job has a processing time greater than zero. The
goal is to assign jobs to machines so as to minimize
the maximum load of a machine (i.e., the sum of the
processing time of its jobs) which, as all the machines
operate in parallel, can be seen as the actual schedule
time. Computationally, MPS is NP-Hard, therefore FastK-
mer resorts to a simple heuristic: the Longest Processing
Time (LPT) algorithm. LPT proceeds by first sorting jobs
by processing time and then by assigning each of them
to the machine with the earliest end time (i.e., lowest
load) so far. This algorithm achieves an upper bound of(4

3 − 1
3t

)
OPT [53].

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 9 of 14

In this setting, jobs correspond to bins, and their pro-
cessing time is estimated as the number of k-mers con-
tained in the corresponding bin (later, referred to as bin
size), and the number of machines is assumed to be the
number of partitions. From the FastKmer viewpoint, the
integration of this scheduling algorithm requires two main
modifications to the original pipeline. At the beginning of
the computation, a new preliminary stage is run to derive
an estimation of bin sizes by examining a sample of the
input data (whose size can be specified, defaulting to 1%).
This estimation is then used to compute a schedule using
LPT. In turn, the resulting schedule is used by a custom
partitioner replacing the original one available with Spark
for mapping bins to partitions at the end of the first stage.

Granularity of working units. In order to further miti-
gate the “big bins problem”, we also take into consideration
a variant of the partitioning scheme, that instead of bins,
uses the signature value itself to implement the binning
process. In our multiprocessor scheduling analogy, the set
of superkmers belonging to a signature represents a job.
This choice achieves two major benefits: (i) it allows the
removal of a parameter (B) which should be, otherwise,
optimized, (ii) it allows for the finest granularity of work
units for the second phase of the task, that will prove to be
particularly convenient for our custom-partitioner based

implementation, as shown in the following experimental
section.

Custom partitioning results. Figure 4 reports a run-
ning time comparison between an implementation of
FastKmer using the default Spark partitioner (left), and
another one implementing our custom multiprocessor
scheduling-based partitioning scheme (right) run on our
32GB dataset. As for our custom partitioner, it further
compares two different granularities for the work units:
bins and signatures (solid vs dashed lines). For the bins
granularity (B = 8192, resulting from the previous anal-
ysis), the impact of the custom partitioner is moderate.
For the signatures choice, instead, the improvement of
the custom partitioner has a consistently higher margin,
suggesting an important impact of the imbalanced signa-
tures distribution. On a related note, it can be noticed that
the improvement is starting at the lowest level of paral-
lelism (1 task per CPU core), and increases up to 128 total
tasks (4 tasks per CPU core). After 128 tasks we see no
improvement: this is also expected as the goodness of a
LPT schedule decreases with higher number of machines
with respect to the optimal solution (in accordance to
LPT bounds with respect to the optimum solution). Based
on these results, our default implementation makes use
of our custom partitioning scheme, with signature-based
binning.

Fig. 4 Comparison of execution times of FastKmer on the 32GB for k ∈ {28, 55}, using default (left) or custom (right) MPS-based partitioning
method, for an increasing parallelism level. The number of bins is set to 8192. For the custom partitioning scheme the performance of the signature
granularity is also shown, marked with a dashed line

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 10 of 14

Comparative experimental analysis
Here an experimental comparison of FastKmer against
other big data systems for the extraction of k-mer statistics
is presented. For each system described in the Background
Section, the runtime configuration suggested by their
respective authors has been adapted to the considered
testing platforms.

First, we have performed a comparison between our
system and other distributed k-mer counting processing
frameworks reported in the Background Section, on our
experimental platform, considering both the 125GB and
32GB datasets while using k = 28 and k = 55 and 32 total
workers. The corresponding results are shown in Table 2.
We have not been able to run ADAM on our testing
platform because of memory issues. A further investiga-
tion revealed that this system extracts k-mers from an
input FASTA file by first converting it into another for-
mat through an operation that requires the whole file to
be loaded in the main memory of the driver process. This
approach, apart from being extremely inefficient, pre-
vents the system to work when the driver process has not
enough memory to fulfill this operation (like in our case).

As expected, the performances of BioPig are consider-
ably lower than those of FastKmer and KCH, taking more
than 10 hours to complete, on the 125GB dataset. Indeed,
the lack of any aggregation strategy during the k-mers
extraction phase and the choice of a standard character-
based encoding for the extracted k-mers increases signifi-
cantly the amount of data to be moved from the extraction
phase to the evaluation phase, thus putting a heavy burden
on the overall execution time of this system.

We now turn to the case of KCH. We recall that this
system has been developed to only support values of k
smaller than 32. As for the case of k = 28, we notice that
FastKmer is about 20% faster than KCH when process-
ing the 32GB dataset. This difference becomes even more
significant when considering the 125GB dataset. Here,
FastKmer is about two times faster than KCH. To explain
this, consider that KCH aggregates k-mers in bins at a
much coarser level and that it lacks a scheduling strategy
able to ensure an even distribution of the workload among
the nodes of the underlying distributed system.

Table 2 Running time (minutes) for various distributed k-mer
counting algorithms, with a time limit of 10 hours

k = 28 k = 55

Algorithm 32GB 125GB 32GB 125GB

FK 23 82 38 119

KCH 28 196 – –

BioPig 122 Out of time 450 Out of time

ADAM Out of mem Out of mem Out of mem Out of mem

Dash symbols represent combinations where the value of k is not supported by the
algorithm

Scalability analysis
In this section, we present a scalability analysis, with
respect to cluster scale and dataset sizes. After the pre-
liminary analysis among the distributed framework, per-
formed in the previous sections, we selected the best
performing ones: FastKmer and KCH.

Figure 5 shows the running time comparison of the two
systems for various values of k (except for KCH, that sup-
ports only values up to k = 31). From Fig. 5 we see that
FastKmer outperforms KCH in terms of running time, for
all number of workers.

For completeness, we also compared the performance of
FastKmer and KCH to those of the fastest multi-threaded
k-mers counting system, KMC3 [54], by running the latter
on a single node using an increasing number of process-
ing cores (up to 16 cores, the maximum available on a
single nodes). From the results depicted in Fig. 5, KMC3
is the fastest system when using a small number of cores,
whereas its execution time remains approximately the
same for increasing number of workers. This is in line with
the literature, as it has already been observed [16] that
the performance of this system does not improve when
considering a large number of cores.

Overall, FastKmer outperforms previous approaches in
terms of running time, showing to scale better for an
increasing number of workers on both datasets and values
of k.

Profiling Spark
To conclude, we deepen the analysis on Spark perfor-
mance overheads, reporting a breakdown of the execu-
tion times of FastKmer when run on the 32GB dataset
using an increasing number of workers. The execution
time of a Spark task can be broken down into Scheduler
Delay, Deserialization Time, Shuffle Read Time (optional),
Executor Runtime, Shuffle Write Time (optional), Result
Serialization Time and Getting Result Time [55]. This
information has been collected out of FastKmer runs by
collecting the performance metrics readable from Spark
Event Logs (except for the Scheduler Delay, which has
been calculated from other available metrics, following
Spark UI code)

Tables 3 and 4 contain task performance metrics for
the two main stages of FastKmer (Fig. 1): the k-mers
extraction phase (Stage 1) and the k-mer counting phase
(Stage 2). The preliminary stages that implement the mul-
tiprocessor scheduling partitioning schemes have been
omitted, as their compute time is negligible with respect
to the overall processing, accounting only for a few
seconds.

The metrics report, for each stage, the sum of aver-
age values for all tasks in groups of (#executors ×
#executor cores), over each round, up to the paral-
lelism level.

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 11 of 14

Fig. 5 Running time comparison of FK and other k-mer counting algorithms for various values of k and an increasing number of workers

Table 3 Running time breakdown, in seconds, of the two FastKmer stages on the 32GB dataset with k fixed to 28 and a decreasing
number of executors

64 Workers 32 Workers 16 Workers 8 Workers

Stage 1

Scheduler Delay time 0.07 0.08 0.1 0.26

Executor Deserialization time 0.93 1.01 2.15 3.98

Executor Compute time 351.4 580.9 1112.51 2655.48

Shuffle Read time 0 0 0 0

Shuffle Write time 1.22 2.33 4.59 10.42

Shuffle Read local (MB) 0 0 0 0

Shuffle Read remote (MB) 0 0 0 0

Shuffle Write (MB) 504.7 1009.5 2018.7 4542

Stage 2

Scheduler Delay time 0.08 0.14 0.07 0.11

Executor Deserialization time 0.19 0.44 1.05 1.82

Executor Compute time 773.52 868.59 1648.76 3859.24

Shuffle Read time 0.06 0 0 0.01

Shuffle Write time 0 0 0 0

Shuffle Read local (MB) 15.6 62.5 250.6 1125.9

Shuffle Read remote (MB) 484.4 937.9 1749.9 3375.3

Shuffle Write (MB) 0 0 0 0

The table reports also the size, in megabytes, of the corresponding read and write shuffles

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 12 of 14

Table 4 Running time breakdown, in seconds, of the two FastKmer stages on the 32GB dataset with k fixed to 55 and a decreasing
number of executors

64 Workers 32 Workers 16 Workers 8 Workers

Stage 1

Scheduler Delay time 0 0.1 0.1 0.2

Executor Deserialization time 0 0.4 0.8 2.7

Executor Compute time 293.4 569.7 1152.8 2575.2

Shuffle Read time 0 0 0 0

Shuffle Write time 0.8 1.7 3.3 7.4

Shuffle Read local (MB) 0 0 0 0

Shuffle Read remote (MB) 0 0 0 0

Shuffle Write (MB) 504.7 1009.5 2018.7 4542

Stage 2

Scheduler Delay time 0 0 0.1 0.1

Executor Deserialization time 0.2 0.44 0.4 1.4

Executor Compute time 1083 1171.2 2060.2 4556.4

Shuffle Read time 0 2.3 0 0

Shuffle Write time 0 0 0 0

Shuffle Read local (MB) 15.6 62.5 250.6 1125.9

Shuffle Read remote (MB) 484.4 937.9 1749.9 3375.3

Shuffle Write (MB) 0 0 0 0

The table reports also the size, in megabytes, of the corresponding read and write shuffles

Unfortunately, the Shuffle Read Time obtainable by the
performance metrics is actually only the blocking time
during the shuffle reads (also called Fetch Wait Time),
i.e., the time a thread has to wait for another read to fin-
ish to acquire the lock on a shuffled block. The time to
actually fetch the block from the shuffle source execu-
tor is included in the Executor Compute Time (which
may be from disk, if the shuffle block cache spilled). No
metric exists for the read time of a remote block dur-
ing a shuffle read. For this reason, to give a sense of the
Shuffle Read overhead, we have also reported the local
and remote Shuffle Read size (in MB). For completeness,
we have included the Shuffle Write size as well. As can
be clearly seen by the two tables, the performance metrics
scale linearly with the number of workers.

Conclusions
It is worth to remark that the advantages of technologies
like Hadoop or Spark for the analysis of big data come at
a cost. A naive usage of these technologies may bring to
solutions that, although being able to run on big data, are
inefficient.

In this paper, we have presented FastKmer, an effi-
cient system for the extraction of k-mer statistics from
large collection of genomic and meta-genomic sequences
using arbitrary values of k. FastKmer succeeds in being,
to the best of our knowledge, the fastest k-mer statistic

distributed system to date, not only because it implements
a clever algorithm for the extraction and the aggrega-
tion of k-mers, but even because it has been purposely
engineered and tuned so to extract the most from the
underlying Spark framework. This is especially the case
of the different strategies that we developed for the distri-
bution of the k-mers aggregation workload over a Spark
cluster, and that can be used as well in more general
Bioinformatics application scenarios.

As a future direction, we observe that the internal archi-
tecture of FastKmer has been conceived so as to make
it easy to integrate its workflow in more complex data
processing pipelines. For instances, we cite the case of
distributed alignment-free algorithms. These could use
FastKmer as a sub-pipeline to extract the k-mers from
each sequence of a collection for later comparison.

Abbreviations
HDFS: Hadoop distributed file system; LPS: Longest processing time; MPI:
Message-passing interface; MPS: Multi-processor scheduling; MSP: Minimum
substring partitioning; PVM: Parallel virtual machine; RDD: Resilient distributed
dataset; YARN: Yet another resource negotiator

Acknowledgements
Not applicable.

Funding
INdAM - GNCS Project 2017 “Algoritmi e tecniche efficienti per l’organizzazione,
la gestione e l’analisi di Big Data in ambito biologico” and INdAM-GNCS Project
2018 “Elaborazione ed analisi di Big Data modellati come grafi in vari contesti
applicativi” to G. Cattaneo, U. Ferraro Petrillo, R. Giancarlo and S. E. Rombo.

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 13 of 14

Specifically, publication costs are covered by MIUR FIRB Project “Algoritmi per
la Scoperta e Ritrovamento di Patterns in Strutture Discrete, con Applicazioni
alla Bioinformatica” awarded to R. Giancarlo.
Cloud computing resources used for the experiments described in this paper
were provided by a Microsoft Azure Research award.

Availability of data and materials
The datasets used during the current study are available at https://goo.gl/
nDtDXH.
A copy of FastKmer is available at https://bitbucket.org/maruscia/
kmercounting.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 4, 2019: Methods, tools and platforms for Personalized Medicine in the
Big Data Era (NETTAB 2017). The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-20-supplement-4.

Authors’ contributions
All authors contributed to design the research contained in this paper. In
particular, MS and UFP designed the algorithms and performed the
experimentation. All authors contributed to the writing of the paper. All
authors have read and approved the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Dipartimento di Scienze Statistiche, Università di Roma - La Sapienza, Rome
00185, Italy. 2Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Università di Roma - La Sapienza, Rome 00185, Italy. 3Dipartimento di
Informatica, Università di Salerno, Fisciano (SA) 84084, Italy. 4Dipartimento di
Matematica ed Informatica, Università di Palermo, Palermo 90133, Italy.

Published: 18 April 2019

References
1. Ferraro Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. FASTdoop: a

versatile and efficient library for the input of FASTA and FASTQ files for
MapReduce Hadoop bioinformatics applications. Bioinformatics (Oxford,
England). 2017;33(10):1575–7.

2. Cattaneo G, Ferraro Petrillo U, Giancarlo R, Roscigno G. An effective
extension of the applicability of alignment-free biological sequence
comparison algorithms with Hadoop. J Supercomputing. 2017;73(4):
1467–83.

3. Cattaneo G, Giancarlo R, Piotto S, Ferraro Petrillo U, Roscigno G, Di Biasi
L. MapReduce in Computational Biology - A Synopsis. In: Rossi F, Piotto S,
Concilio S, editors. Advances in Artificial Life, Evolutionary Computation,
and Systems Chemistry: 11th Italian Workshop, WIVACE 2016, Fisciano,
Italy, October 4-6, 2016, Revised Selected Papers. vol. 708. Berlin: Springer
International Publishing; 2017. p. 53–64.

4. Ferraro Petrillo U, Guerra C, Pizzi C. A new distributed alignment-free
approach to compare whole proteomes. Theor Comput Sci. 2017;698:
100–12.

5. Zhou W, Li R, Yuan S, Liu C, Yao S, Luo J, et al. MetaSpark: a spark-based
distributed processing tool to recruit metagenomic reads to reference
genomes. Bioinformatics. 2017;33(7):1090–2.

6. Benoit G, Peterlongo P, Mariadassou M, Drezen E, Schbath S, Lavenier D,
et al. Multiple comparative metagenomics using multiset k-mer counting.
PeerJ Comput Sci. 2016;2:1.

7. Giancarlo R, Scaturro D, Utro F. Textual data compression in
computational biology: a synopsis. Bioinformatics. 2009;25:1575–86.

8. Giancarlo R, Rombo SE, Utro F. Epigenomic k-mer dictionaries: Shedding
light on how sequence composition influences nucleosome positioning
in vivo. Bioinformatics. 2015;31:2939–46.

9. Lo Bosco G. Alignment Free Dissimilarities for Nucleosome Classification.
In: Angelini C, Rancoita PM, Rovetta S, editors. Computational
Intelligence Methods for Bioinformatics and Biostatistics. Cham: Springer
International Publishing; 2016. p. 114–28.

10. Nordstrom KJV, Albani MC, James GV, Gutjahr C, Gutjahr C, Turck F, et al.
Mutation identification by direct comparison of whole-genome
sequencing data from mutant and wild-type individuals using k-mers.
Nat Biotech. 2013;31:325–30.

11. Pinello L, Lo Bosco G, Hanlon B, Yuan GC. A motif-independent metric
for DNA sequence specificity. BMC Bioinformatics. 2011;12:1–9.

12. Utro F, Di Benedetto V, Corona DFV, Giancarlo R. The intrinsic
combinatorial organization and information theoretic content of a
sequence are correlated to the DNA encoded nucleosome organization
of eukaryotic genomes. Bioinformatics. 2016;32(6):835–42.

13. Giancarlo R, Rombo SE, Utro F. In vitro versus in vivo compositional
landscapes of histone sequence preferences in eucaryotic genomes.
Bioinformatics. 2018;34(20):3454–60.

14. Giancarlo R, Rombo SE, Utro F. DNA combinatorial messages and
Epigenomics: The case of chromatin organization and nucleosome
occupancy in eukaryotic genomes. Theor Comput Sci. 2016;32(6):
835–842.

15. Giancarlo R, Rombo SE, Utro F. Compressive biological sequence analysis
and archival in the era of high-throughput sequencing technologies. Brief
Bioinform. 2014;15(3):390–406.

16. Ferraro Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. Informational and
Linguistic Analysis of Large Genomic Sequence Collections via Efficient
Hadoop Cluster Algorithms. Bioinformatics. 2018;34(11):1826–1833.

17. White T. Hadoop - The Definitive Guide: Storage and Analysis at Internet
Scale. 3. Ed.O’Reilly; 2012. http://www.oreilly.de/catalog/9781449311520/
index.html.

18. Dean J, Ghemawat S. MapReduce: Simplified data processing on large
clusters. Commun ACM. 2008;51(1):107–13.

19. Siretskiy A, Sundqvist T, Voznesenskiy M, Spjuth O. A quantitative
assessment of the Hadoop framework for analyzing massively parallel
DNA sequencing data. GigaScience. 2015;4:26.

20. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster
computing with working sets. HotCloud. 2010;10(10-10):95.

21. Horwege S, Lindner S, Boden M, Hatje K, Kollmar M, Leimeister CA, et al.
Spaced words and kmacs: fast alignment-free sequence comparison
based on inexact word matches. Nucleic Acids Res. 2014;42(W1):W7–W11.

22. Leimeister CA, Boden M, Horwege S, Lindner S, Morgenstern B. Fast
alignment-free sequence comparison using spaced-word frequencies.
Bioinformatics. 2014;30(14):1991–1999.

23. Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. Commun ACM. 2008;51:107–113.

24. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al.
Apache Hadoop YARN: Yet another resource negotiator. In: Proceedings
of the 4th annual Symposium on Cloud Computing. New York: ACM;
2013. p. 5.

25. Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop Distributed File
System. In: Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST). MSST ’10. Washington, DC:
IEEE Computer Society; 2010. p. 1–10.

26. Gropp W, Lusk E, Skjellum A. Using MPI: portable parallel programming
with the message-passing interface. vol. 1. Cambridge: MIT press; 1999.

27. Geist A. PVM: Parallel virtual machine: a users’ guide and tutorial for
networked parallel computing. Cambridge, MA: MIT press; 1994.

28. Coghlan S, Yelick K. The Magellan Final Report on Cloud Computing.
Berkeley: Ernest Orlando Lawrence Berkeley National Laboratory; 2011.

29. JGI-Bioinformatics. BioPig. 2015. https://github.com/JGI-Bioinformatics/
biopig. Accessed 28 Nov 2018.

30. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig latin: a
not-so-foreign language for data processing. In: Proceedings of the 2008
ACM SIGMOD international conference on Management of data. New
York: ACM; 2008. p. 1099–110. https://doi.org/10.1145/1376616.1376726.

https://goo.gl/nDtDXH
https://goo.gl/nDtDXH
https://bitbucket.org/maruscia/kmercounting
https://bitbucket.org/maruscia/kmercounting
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4
http://www.oreilly.de/catalog/9781449311520/index.html
http://www.oreilly.de/catalog/9781449311520/index.html
https://github.com/JGI-Bioinformatics/biopig
https://github.com/JGI-Bioinformatics/biopig
https://doi.org/10.1145/1376616.1376726

Ferraro Petrillo et al. BMC Bioinformatics 2019, 20(Suppl 4):138 Page 14 of 14

31. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH, et al.
Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.
In: NSDI. vol. 11. Berkeley: USENIX Association; 2011. p. 22.

32. Vinga S. Editorial: Alignment-free methods in computational biology. Brief
Bioinform. 2014;15(3):341–2.

33. Compeau PEC, Pevzner P, Tesler G. How to apply de Bruijn graphs to
genome assembly. Nat Biotechnol. 2011;29:987–91.

34. Li Y, Yan X. MSPKmerCounter: A fast and memory efficient approach for
k-mer counting. 2014. Preprint at http://csucsbedu/yangli/papers/
MSPKmerCounterpdf. Accessed 28 Nov 2018.

35. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics. 2015;31(10):1569–76.

36. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating
k-mer statistics. Bioinformatics. 2017;33(17):2759–61.

37. Cormen TH, Stein C, Rivest RL, Leiserson CE. Introduction to Algorithms.
2nd ed. 2001.

38. Laboratory LBN. kmernator. 2012. https://github.com/JGI-Bioinformatics/
Kmernator. Accessed 28 Nov 2018.

39. Pan T, Flick P, Jain C, Liu Y, Aluru S. Kmerind: A Flexible Parallel Library
for K-mer Indexing of Biological Sequences on Distributed Memory
Systems. New York: ACM; 2016. p. 422–33.

40. Nordberg H, Bhatia K, Wang K, Wang Z. BioPig: a Hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics. 2013;29:3014–9.

41. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al.
ADAM: Genomics Formats and Processing Patterns for Cloud Scale
Computing. EECS Department, University of California, Berkeley. 2013.
UCB/EECS-2013-207.

42. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage
requirements for biological sequence comparison. Bioinformatics.
2004;20(18):3363–9.

43. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics. 2015;31(10):1569–1576.

44. Zhanglab. What is FASTA format?. 2016. http://zhanglab.ccmb.med.
umich.edu/FASTA/. Accessed 28 Nov 2018.

45. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res. 2010;38(6):1767–71.

46. Li Y, Kamousi P, Han F, Yang S, Yan X, Suri S. Memory efficient minimum
substring partitioning. In: Proceedings of the VLDB Endowment. vol. 6.
Saratoga: VLDB Endowment; 2013. p. 169–80.

47. Li Y, et al. MSPKmerCounter: a fast and memory efficient approach for
k-mer counting. arXiv preprint arXiv:150X00000. 2015;31(10):1569–1576.

48. Odersky M, Altherr P, Cremet V, Emir B, Micheloud S, Mihaylov N, et al.
The Scala language specification. 2004.

49. Ferraro Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. FASTdoop: a
versatile and efficient library for the input of FASTA and FASTQ files for
MapReduce Hadoop bioinformatics applications. Bioinformatics.
2017;33(10):1575–7.

50. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al.
Metagenomic discovery of biomass-degrading genes and genomes from
cow rumen. Science. 2011;331(6016):463–7.

51. Spark A. Tuning Spark. 2018. http://spark.apache.org/docs/latest/tuning.
html. Accessed 28 Nov 2018.

52. Johnson DS. The NP-completeness column: an ongoing guide. J
Algoritm. 1985;6(3):434–51.

53. Graham RL. Bounds on multiprocessing timing anomalies. SIAM J Appl
Math. 1969;17(2):416–29.

54. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating
k-mer statistics. Phys Biol. 2017;33:2759–61.

55. Ousterhout K, Rasti R, Ratnasamy S, Shenker S, Chun BG, ICSI V. Making
Sense of Performance in Data Analytics Frameworks. In: NSDI. vol. 15.
Berkeley: USENIX Association; 2015. p. 293–307.

http://csucsbedu/ yangli/papers/MSPKmerCounterpdf
http://csucsbedu/ yangli/papers/MSPKmerCounterpdf
https://github.com/JGI-Bioinformatics/Kmernator
https://github.com/JGI-Bioinformatics/Kmernator
http://zhanglab.ccmb.med.umich.edu/FASTA/
http://zhanglab.ccmb.med.umich.edu/FASTA/
http://spark.apache.org/docs/latest/tuning.html
http://spark.apache.org/docs/latest/tuning.html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	MapReduce
	Apache Spark
	Resilient Distributed Datasets
	Partitions, parallelism, and shuffling

	Big Data based approaches for the analysis of biological sequence datasets: the special case of k-mers counting
	Shared memory, multi-processor systems.
	Distributed systems.

	Methods
	Basics
	Minimizers

	k-mer statistics collection on Spark: the FastKmer algorithm
	Design overview
	First stage: extracting superkmers
	From signatures to bins

	Second stage: partitioned counting
	Implementation details
	Compressed k-mer encoding

	Results and discussion
	Setup
	Testing platform
	Datasets

	Experimental evaluation
	Values of k.
	Signature length.
	Number of bins.
	Spark parallelism.
	On large bins.
	Experimental results.

	Coping with data skew: a multiprocessor scheduling inspired partitioner
	Granularity of working units.
	Custom partitioning results.

	Comparative experimental analysis
	Scalability analysis
	Profiling Spark

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

