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Abstract

Background: Log-linear and multinomial modeling offer a flexible framework for genetic association analyses of
offspring (child), parent-of-origin and maternal effects, based on genotype data from a variety of child-parent
configurations. Although the calculation of statistical power or sample size is an important first step in the planning of
any scientific study, there is currently a lack of software for genetic power calculations in family-based study designs.
Here, we address this shortcoming through new implementations of power calculations in the R package Haplin,
which is a flexible and robust software for genetic epidemiological analyses. Power calculations in Haplin can be
performed analytically using the asymptotic variance-covariance structure of the parameter estimator, or else by a
straightforward simulation approach. Haplin performs power calculations for child, parent-of-origin and maternal
effects, as well as for gene-environment interactions. The power can be calculated for both single SNPs and
haplotypes, either autosomal or X-linked. Moreover, Haplin enables power calculations for different child-parent
configurations, including (but not limited to) case-parent triads, case-mother dyads, and case-parent triads in
combination with unrelated control-parent triads.

Results: We compared the asymptotic power approximations to the power of analysis attained with Haplin. For
external validation, the results were further compared to the power of analysis attained by the EMIM software using
data simulations from Haplin. Consistency observed between Haplin and EMIM across various genetic scenarios
confirms the computational accuracy of the inference methods used in both programs. The results also demonstrate
that power calculations in Haplin are applicable to genetic association studies using either log-linear or multinomial
modeling approaches.

Conclusions: Haplin provides a robust and reliable framework for power calculations in genetic association analyses
for a wide range of genetic effects and etiologic scenarios, based on genotype data from a variety of child-parent
configurations.

Keywords: Log-linear and multinomial models, Genome-wide association studies (GWAS), Statistical power
estimation, Sample size estimation, Haplin, EMIM

*Correspondence: miriam.gjerdevik@uib.no
1Department of Global Public Health and Primary Care, University of Bergen,
Bergen, Norway
2Department of Genetics and Bioinformatics, Norwegian Institute of Public
Health, Oslo, Norway
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2727-3&domain=pdf
http://orcid.org/0000-0002-2604-2132
mailto: miriam.gjerdevik@uib.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Gjerdevik et al. BMC Bioinformatics          (2019) 20:165 Page 2 of 11

Background
Statistical power or sample size analysis is an essential first
step in the planning of any scientific study. Such analy-
ses ensure that a study is capable of answering its stated
research questions and are a prerequisite for optimal study
design [1]. Furthermore, a power analysis is required in
most research proposals. Statistical power calculations are
particularly important in genome-wide association stud-
ies (GWAS) in order to maximize the scientific gains
from the typically high genotyping and assay costs. More-
over, GWAS are often underpowered due to the large
number of single-nucleotide polymorphisms (SNPs) being
assessed, leading to issues of multiple testing. Most effect
sizes reported from genetic association studies of com-
plex traits are small [2–4], which further limits the power.
The statistical power of a study affects the interpretation
of the results. Low power may result in a high number
of false negatives, and a power analysis might elucidate
whether negative findings were the result of the study
being underpowered.
Log-linear andmultinomial modeling are closely related

approaches that offer a flexible framework for genetic
association analysis. Both approaches enable the estima-
tion of genetic effects in addition to hypothesis testing.
Beyond the standard case-control design, they are capa-
ble of incorporating child, parent-of-origin (PoO) and
maternal effects based on genotype data from case-parent
triads, as well as a range of other child-parent configura-
tions. They can also handle incomplete triad data as well
as independent controls. Moreover, the models are read-
ily extended to haplotype analysis. Due to these appealing
features, there has been much interest in the application
of log-linear or multinomial models in genetic associa-
tion studies [5–12], and the models are implemented in
well-established software packages such as Haplin [10, 13]
and EMIM (Estimation of Maternal, Imprinting and inter-
action effects using Multinomial modelling) [11, 12].
General-purpose software tools for statistical power and

sample size analysis are not set up to handle the genetic
study designs and effect estimates available from case-
parent triads with unrelated controls. Although there are
tools that offer power calculations for some genetic asso-
ciation studies, e.g., Quanto [14–16] and Genetic Power
Calculator (GPC) [17], a comprehensive framework for
power analysis based on the full triad design is lacking.
We propose a complete setup for power calculations tai-

lored to binary disease traits, which we have implemented
as a new module in the R package Haplin [10, 13].
In the new implementations, a power analysis can be
performed based on the asymptotic variance-covariance
structure of the parameter estimator or by a simulation
procedure. The power for child, PoO, maternal, and gene-
environment (GxE) effects are easily estimated. Haplin
also enables power analyses for haplotypes, taking into

account unknown SNP phase. The calculations can be
performed for both autososomal and X-linked markers,
and a variety of study designs can be accommodated.
Our paper is structured as follows. In the “Implementation”

section, we first introduce the Haplin software and briefly
present our new power calculation approaches. We then
provide a short tutorial on power calculations for child,
PoO and maternal effects, focusing on the use of asymp-
totic approximations. In the “Results” section, we illus-
trate our power calculations for a wide range of scenarios.
We also compare our asymptotic power approximations
to the powers attained by Haplin and EMIM in simula-
tions, thus confirming the equivalent inference provided
by log-linear and multinomial modeling. In Additional
file 1, we derive the variance-covariance matrix under-
lying the asymptotic power calculations. Furthermore,
because the Haplin framework includes numerous fea-
tures for power analysis, we provide a more detailed
and extensive tutorial, including power analysis for GxE
interactions, in Additional file 2. In addition, we outline
some of the possibilities for power calculations under dif-
ferent X-chromosome models, and we also show how
the power calculations can be extended to haplotype
analysis. Finally, we show the flexibility of our simula-
tion approach, demonstrating different parameterization
models and study designs.

Implementation
Our power calculation tool has been added to the R pack-
age Haplin, which provides an extensive framework for
genetic epidemiological analyses of binary traits. The new
power calculation module has been integrated into the
original setup for genetic association analysis in Hap-
lin and is based on log-linear modeling, as previously
described by Gjessing and Lie [10]. Haplin implements a
full maximum-likelihood model for estimation and com-
putes explicit estimates of relative risks with asymptotic
standard errors and confidence intervals. It enables the
estimation of child, PoO and maternal effects, as well
as interactions between these genetic effects and cate-
gorical or ordinal exposure variables (i.e., GxE) [18, 19].
Haplin also incorporates analyses of X-linked markers in
a straightforward manner, and different X-chromosome
models may be fitted depending on the desired underlying
assumptions [20–22]. In Haplin, the main unit of study is
the case-parent triad, in which affected children and both
of their biological parents are genotyped. However, the
log-linear model can be extended to include independent
control children or control triads in a hybrid design, under
the “rare disease” assumption [23]. Note that unrelated
controls are optional but not required, because “pseudo-
controls” can be constructed from the non-transmitted
parental alleles in case-parent triads [24–27]. The expec-
tation maximization (EM) algorithm [28] is implemented
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in Haplin to account for unknown parental origin in
ambiguous (uninformative) triads. Additionally, the EM
algorithm accounts for missing information on certain
individuals, such as when some triads are reduced to
child-mother dyads due to missing data on the father.
Although the fundamental model in Haplin relates to a
single multi-allelic marker, it extends directly to haplo-
types over multiple markers by statistically reconstructing
haplotypes of unknown phase [10]. Furthermore, because
the calculations can be performed in parallel, genome-
wide association analyses are readily accommodated.
The log-linear model in Haplin assumes Hardy-Weinberg
equilibrium (HWE), Mendelian transmission and ran-
dom mating. A detailed description of the underlying
model is provided in several of our previous publications
[10, 18, 29].

Genetic effects and study designs
Within the Haplin framework, based on the log-linear
modeling approach, we have developed a new and com-
plete module for performing power calculations. The
basic calculations relate to child, PoO and maternal
effects, and our definitions of these genetic effects are
provided in Table 1. The power depends on the under-
lying penetrance models, i.e., the probability of a child
exhibiting the disease conditional on a particular genetic
composition, which we define in Table 2. A variety of
child-parent configurations are available for power anal-
ysis in Haplin, and a small selection of the possible study
designs is shown in Fig. 1. We use the following abbrevi-
ations to describe the family designs. We let the letters c,
m and f denote a child, mother and a father, respectively.
Thus, mfc denotes a case-parent triad, and mc denotes
a case-mother dyad. Moreover, mfc-mfc denotes the full
hybrid design, whereas mc-mc denotes the hybrid design
consisting of case-mother and unrelated control-mother
dyads. The possible configurations in Haplin also include

designs such as c-c (the standard case-control design), fc
(case-father dyad), mfc-mc (case-parent triad with unre-
lated control-mother dyad) and mfc-mf (case-parent triad
with unrelated control parents). The full list of supported
study designs are provided on the Haplin website [13].

Power calculations in Haplin
In this section, we demonstrate how to perform basic
power calculations in Haplin, implemented in the func-
tion hapPowerAsymp. The power is computed analyt-
ically through asymptotic approximations, scaled to the
appropriate sample size. We apply the asymptotic normal
distribution of the log-scale parameter and use the chi-
squared non-centrality parameter of the Wald test. The
variance-covariance matrix is computed from a log-linear
model which accounts for transmission ambiguities and
missing data; its derivation is provided in Additional file 1.
The theory underlying our asymptotic power calculations
is outlined in more detail elsewhere [29].
In Haplin, the asymptotic power calculations are easy

to perform. In general, one only needs to specify the
study design and its sample size, the allele frequen-
cies, and the type of genetic effect and its magnitude.
Table 3 shows example Haplin commands for estimat-
ing the power for child, PoO and maternal effects. In
all examples, we calculate the power for a diallelic SNP,
using 500 case-parent triads. The study design is spec-
ified by the arguments cases and controls, using
the notation from Fig. 1. Thus, 500 case-parent triads
are specified by the argument cases=c(mfc=500),
whereas 500 case-mother dyads would be specified by
cases=c(mc=500). A hybrid design consisting of 200
case-mothers dyads and 500 control-parent triads would
be expressed by the combination cases=c(mc=200)
and controls=c(mfc=500).
The genetic effects are determined by the choice of

relative risk parameter(s), which also specifies the effect

Table 1 Genetic effects

Effects Description

Child A variant allele may increase the risk of a disease only when carried by an individual himself/herself. We refer to this as a “child
effect” since it is frequently estimated from the offspring in a case-parent triad. However, the individual referred to as a child
might be of any age, depending on the phenotype of interest, and the same effect can also be estimated in case-control
studies.

Parent-of-origin (PoO) A PoO effect occurs if the effect of a variant allele in the child depends on whether it is inherited from themother or the father.
In statistical terms, we define a PoO effect as the interaction effect RRR = RRM,j/RRF,j , which is a measure of the risk increase
(or decrease) associated with allele Aj , when derived from themother as opposed to the father. In contrast, regular child-effect
analyses assume that the effect of an allele in the child is independent of parental origin. Note that genomic imprinting (an
epigenetic phenomenon where one of the inherited parental alleles is expressed whereas the other is silenced) may cause
PoO effects [32].

Maternal A mother’s genotype may influence fetal development directly, for example through maternal metabolic factors operating
in utero [33], and may affect health throughout life [34]. A maternal effect occurs when a variant allele carried by the mother
increases the risk of disease in her child, regardless of whether or not the allele has been transferred to the child [35]. This is
distinct from child and PoO effects, in which wemeasure the effect of alleles in the child himself/herself. Because these under-
lying genetic mechanisms lead to entirely different biological interpretations, distinguishing between the genetic effects is
particularly important in advancing the understanding of the etiology underlying a complex disease [11, 36, 37].
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Table 2 Parameterization of penetrances

Effects Parameterization of penetrances

Child B · RRjRRlRR∗
jl (1)

Parent-of-origin (PoO) B · RRM,jRRF,lRR∗
jl (2)

Child and maternal B · RRjRRlRR∗
jl · RR(M)

i RR(M)
j RR(M)∗

ij (3)

PoO and maternal B · RRM,jRRF,lRR∗
jl · RR(M)

i RR(M)
j RR(M)∗

ij (4)

B is the baseline risk level, typically associated with the (more common) reference allele; RRj is the risk increase associated with allele Aj , relative to B; RRM,j and RRF,j are the
relative risks associated with allele Aj , depending on whether the allele is transmitted from the mother or the father; the double-dose parameter RR∗

jl measures the deviation

from what would be expected in a multiplicative dose-response relationship, i.e., RR∗
jl = RR∗

j when j = l and RR∗
jl = 1 when j �= l; RR(M)

i is the relative risk associated with allele

Ai carried by the mother, and RR(M)∗
ij is the maternal double-dose parameter, interpreted analogously to RR∗

ij . To ensure that the model is not overparameterized, we set
RR = 1 for the reference allele

sizes. Corresponding to the parameterization model in
Eq. (1) (defined in Table 2), a child effect is specified
by the relative risk argument RR (Table 3a). Allele fre-
quencies are specified by the argument haplo.freq.
Note that the order and length of the specified rel-
ative risk parameter vectors should always match the
corresponding allele frequencies. All examples assume a
minor allele frequency (MAF) of 0.2. Thus, from Table 3a
we see that the power is 88% when the less frequent
allele at a diallelic marker is associated with a rela-
tive risk of 1.4, as expressed by the combination of
allele frequencies haplo.freq=c(0.8,0.2) and rela-
tive risks RR=c(1,1.4). By default, the more frequent
allele is chosen as reference (Table 3a, first row of the
Haplin output).
As illustrated in Table 3b, the power to detect a PoO

effect is computed by replacing the argument RR by
the two relative risk arguments RRcm and RRcf, denot-
ing parental origin m (mother) and f (father). Both
RRM and RRF are estimated freely, and individual tests
for the null hypotheses RRM = 1 and RRF = 1
are constructed. The corresponding power estimates are

denoted by RRcm.power and RRcf.power, respec-
tively. In addition, we are interested in testing the actual
PoO effect, estimated by comparing the maternally and
paternally derived effects by the ratio RRR = RRM/RRF .
The null hypothesis of RRR = RRM/RRF = 1 means no
PoO effect, and the power to detect the PoO effect is out-
put as RRcm_cf.power, here estimated to be 48% when
RRcm = c(1,2) and RRcf = c(1,1.5). For more
details on PoO testing and its relationship to imprinting,
see Gjerdevik et al. [29].
Since children and their mothers have an allele in com-

mon, a maternal effect might be statistically confounded
with a child or a PoO effect. Corresponding to the param-
eterization models in Eq. (3) and (4) (Table 2), the power
of a maternal effect can be analyzed jointly with that
of a child effect or a PoO effect by adding the rela-
tive risk argument RR.mat to the original child or PoO
model (Table 3c and d). The resulting power estimates
control for the possible confounding of these effects with
one another. When adjusting for the maternal effect in
Table 3c, the power to detect the child effect is 90%. Con-
versely, when adjusting for the child effect, the power to

Fig. 1 A selection of designs for genetic association studies: a Case-parent triad (mfc); b Case-parent triad with independent control-parent triad
(mfc-mfc); c Case-mother dyad (mc); d Case-mother dyad with independent control-mother dyad (mc-mc)
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detect thematernal effect is 42%. The example in Table 3d,
involving joint PoO and maternal effects, has a similar
interpretation.
In Table 3, the nominal significance level defaults

to 5%. However, other values can be specified by
using the argument alpha. The current implementa-
tion of hapPowerAsymp does not allow deviations from
the multiplicative dose-response assumption. Thus, the
double-dose parameters RR∗ and RR(M)∗ (Eq. 1-4 in
Table 2) are equal to 1 and do not need to be specified
in the Haplin command. However, we expect future ver-
sions of hapPowerAsymp to handle power calculations
for separate single- and double-dose effects.

Power simulations in Haplin
Haplin also includes an extensive setup for power cal-
culation through simulations. Simulation approaches
are robust ways of checking software implementations,
attained power, and attained significance level. They are
particularly useful for small to moderately sized datasets,
in which the asymptotic properties of the log-linear model
might not hold true. In these situations, the extent and
direction of the possible bias can best be assessed using
simulations. In Haplin, power simulations are carried
out using a two-step approach, by applying the func-
tions hapRun and hapPower. First, hapRun simulates
haplotype data, in which triad genotypes are gener-
ated from the multinomial distribution. The multinomial
probabilities are computed by listing all possible geno-
type combinations in the triad format and then apply-
ing the sampling model described in Gjessing and Lie
[10]. hapRun then performs Haplin runs, i.e., statisti-
cal inference, on the simulated data. To speed up these
calculations, hapRun allows for parallel processing. In
the second step, the simulation results from hapRun are
submitted to hapPower, which computes the power by
calculating the fraction of p-values less than the nominal
significance level.
Clearly, the asymptotic power approximation is much

more time-efficient than brute-force simulations; in its
current implementation, however, it is somewhat more
restricted. The simulation approach is completely gen-
eral; it enables power calculations for a wider range of
parameterization models, such as deviations from the
multiplicative dose-response assumption. The simulation
approach also handles a wider array of child-parent con-
figurations and allows for missing individuals to be gener-
ated at random. Examples and relevant Haplin commands
are provided in Additional file 2.

Results
Examples of asymptotic power calculations
Weillustrate theuse ofourpower function hapPowerAsymp
by plotting power curves for different scenarios, as shown

in Fig. 2. Power calculations for child effects are shown
in panels a and b, and power calculations for PoO effects
are shown in panels c and d. For the PoO effects, we set
RRF = 1, so that the value of RRR = RRM/RRF is equal
to the value of RRM. In the left panels (a and c), we used
varying numbers of case-parent triads and a MAF of 0.2.
In the right panels (b and d), the power was calculated
using varying MAFs and a total of 500 case-parent triads.
We used a nominal significance level of 5% throughout.
In all panels, the green, solid line represents scenarios

in which 500 case-parent triads and a MAF of 0.2 were
used. For child effects, we have 80% power to detect an
RR of 1.35. However, using 250 case-parent triads, the cor-
responding power decreases to 51% (panel a). Moreover,
with 500 case-parent triads and a MAF of 0.1, the power
to detect an RR of 1.35 is 57% (panel b). The PoO analysis
can be viewed as a statistical interaction. Compared with
the child-effect analysis, a higher sample size is therefore
required for the PoO analysis to reach the same statistical
power for a similar effect size. Approximately 1200 case-
parent triads are needed to detect an RRR of 1.35 with
80% power and a MAF of 0.2 (panel c). With 500 case-
parent triads and a MAF of 0.2, we have approximately
80% power to detect an RRR of 1.6. Using a MAF of 0.1,
the corresponding power is 64% (panel d).
Note that sample size and power are directly related

measures. For given relative risks, power curves similar to
Fig. 2 can be made with sample size on the x-axis.

Comparison of the asymptotic power approximations to
the simulated power in Haplin and EMIM
Similar to Haplin, the command line software PRE-
MIM and EMIM are easy-to-use tools for the estima-
tion of child, PoO and maternal effects based on geno-
type data from a number of different study designs
[11, 12]. PREMIM generates required input files for
EMIM by extracting the required genotype data from
standard-format pedigree data (PLINK) files [30], and
EMIM performs the subsequent statistical analyses. PRE-
MIM and EMIM are written in C++ and FORTRAN
77, respectively, and are therefore considerably faster
than R implementations. EMIM allows a variety of
different parameterization models, which makes it an
appealing software for power comparisons with Haplin.
Because EMIM uses multinomial modeling, its infer-
ence should be similar to that of Haplin [31]. How-
ever, to account for unknown parental origin in ambigu-
ous (uninformative) triads or dyads, EMIM maximizes
the multinomial likelihood directly (via a direct search
algorithm), whereas Haplin maximizes the likelihood
using the EM algorithm.
We compared the asymptotic power calculations in

Haplin to the power attained by Haplin and EMIM in
data simulations. The asymptotic power was computed
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Fig. 2 Power analysis using the Haplin function hapPowerAsymp. a Child effects for varying numbers of case-parent triads, using a MAF of 0.2; b
Child effects for varying values of MAFs, using a total of 500 case-parent triads; c PoO effects for varying numbers of case-parent triads, using a MAF
of 0.2; d PoO effects for varying values of MAFs, using a total of 500 case-parent triads. For the PoO effects, RRF = 1, so that the value of RRM/RRF is
equal to RRM . A nominal significance level of 0.05 was used throughout. The power was calculated at relative risks/relative risk ratios of
1, 1.05, 1.10, . . . , 2. Intermediate values correspond to line segments joining two adjacent points

using the function hapPowerAsymp, whereas the simu-
lated power in Haplin was calculated using hapRun and
hapPower. EMIM performs genetic association analyses,
but corresponding power calculations are not imple-
mented. To calculate the power attained by EMIM, we
first used the Haplin function hapSim to simulate the
genotype data. The data was then converted to the stan-
dard PLINK-format files, which were subsequently fed
into PREMIM and EMIM. Given that the power calcu-
lations in Haplin are based on the Wald test, we also
used the Wald test for inference in EMIM. Lastly, we
calculated the fraction of p-values less than the nominal
significance level. We analyzed child, PoO and mater-
nal effects employing the parameterizations presented in
Table 2, assuming a multiplicative dose-response model.
We simulated data for a variety of child-parent configura-
tions (mfc, mc, mfc-mfc, mc-mc), with effect sizes ranging
between 1.0 and 2.0, and a MAF of 0.2. We based the
power comparisons on 500 case families in each design,
i.e., 500 case-mother dyads or 500 case-parent triads,

reflecting that the number of case children available is
often a constraint when designing a study. For the hybrid
designs, we added an equal number of unrelated control
families. The simulations were based on 10,000 repli-
cates of data for a single SNP, and we used a nominal
significance level of 0.05. HWE and random mating were
assumed throughout.
The results are shown in Fig. 3. Child effects are dis-

played in panels a and b, and PoO effects are displayed in
panels c and d, with panels b and d showing the results
obtained when the child and PoO effects were calculated
while adjusting for possible maternal effects (even though,
in the simulation model, we did not assume maternal
effects, i.e., we set RR(M) = 1). For the PoO effects, we
set RRF = 1, so that the value of RRM/RRF is equal to
the value of RRM. Panels e and f show the power to detect
maternal effects, while adjusting for possible child or PoO
effects (simulated under models where no such child or
PoO effects existed, i.e., RR(M) > 1 and RR = 1, and
RR(M) > 1 and RRM = RRF = 1, respectively).
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Fig. 3 (See legend on next page.)
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Fig. 3 (See figure on previous page.)
Comparison of the asymptotic power calculations with the power attained by Haplin and EMIM in data simulations. The power was calculated for
different child-parent configurations, assuming a MAF of 0.2 and a nominal significance level of 0.05. The results were based on 500 case families
and, when applicable, 500 unrelated control families. All simulations were based on 10,000 replicates of data for a single SNP. Asymp: Power
calculations in Haplin, based on asymptotic approximations (Haplin function hapPowerAsymp); Haplin: Power calculations in Haplin, based on
data simulations. The power is the proportion of tests rejected by Haplin (Haplin functions hapRun and hapPower); EMIM: Power calculations
based on data simulations in Haplin (Haplin function hapSim). The power is the proportion of tests rejected by EMIM. a Child effects (RR > 1); b
Child effects, adjusting for maternal effects (RR > 1 and RR(M) = 1); c PoO effects (RRM/RRF > 1 and RRF = 1); d PoO effects, adjusting for maternal
effects (RRM/RRF > 1 and RRF = RR(M) = 1); eMaternal effects, adjusting for child effects (RR(M) > 1 and RR = 1); fMaternal effects, adjusting for
PoO effects (RR(M) > 1 and RRM = RRF = 1). The power was calculated at relative risks/relative risk ratios of 1, 1.1, 1.2, . . . , 2. Intermediate values
correspond to line segments joining two adjacent points. Note that for all study designs, the power was calculated based on asymptotic
approximations in Haplin, as well as simulations where both Haplin and EMIM were used to analyze the genetic data. The lines for Asymp, Haplin
and EMIM are nearly overlapping, demonstrating consistent results

Note that panels b and e are equivalent because the
power to detect a given child or maternal effect is iden-
tical when adjusting for possible confounding of the
effects with one another. However, this symmetry depends
on the study design and will not necessarily hold if
case-mothers are unavailable for genotyping (results not
shown). PoO effects are essentially estimated in case fam-
ilies, by contrasting the frequencies of alleles transmitted
from mother to child with those of alleles transmitted
from father to child. Thus, unrelated control families
do not add extra power to the case-parent triad design,
as can be seen from the overlapping results of the mfc
and mfc-mfc designs in panel c. Note that we excluded
the mc design from the joint PoO and maternal effect-
analyses (panels d and f) because the penetrance model
in Eq. (4) (Table 2) would become overparameterized.
Overall, Fig. 3 shows that the results are highly consis-
tent between the asymptotic power approximations and
the simulated power in Haplin and EMIM, demonstrating
that the asymptotic power function performs well when
the asymptotic properties underlying the log-linear model
hold true. Furthermore, the consistency between Haplin
and EMIM across a wide spectrum of genetic scenar-
ios confirms the computational accuracy of the inference
methods used in both programs. Altogether, the results
indicate that Haplin provides a robust and reliable frame-
work for power calculations in genetic association studies
when the genetic analyses are based on either log-linear or
multinomial modeling.

Conclusions
To our knowledge, a comprehensive software for power
analysis based on the full triad design has been lack-
ing. Here, we have developed and showcased exten-
sive, new and easy-to-use functionalities for statistical
power analyses based on log-linear modeling, incorpo-
rated in the R package Haplin. In Haplin, power analy-
sis can be carried out analytically using the asymptotic
variance-covariance structure of the parameter estimator,

or, by a straightforward simulation procedure. The two
approaches for power calculations complement each
other, balancing time efficiency against generality. Hap-
lin enables power calculations to be performed for child,
PoO, maternal and GxE effects, based on genotype data
from a variety of family-based study designs. An inherent
strength of the Haplin framework is its ability to com-
pute power for both single SNPs and haplotypes, either
autosomal or X-linked. We plan to continue to expand
the present framework for power analysis, adding new
features for power calculations as additional methods for
genetic association analysis are developed and incorpo-
rated into the Haplin software.
To facilitate power analysis in Haplin, we have provided

relevant example commands in Table 3. In addition, an
extended tutorial is provided in Additional file 2, demon-
strating power analysis for GxE interactions, X-linked
models and haplotype effects, as well as our simulation
functions hapRun and hapPower. Researchers can eas-
ily apply our functions using arguments and parameter
values relevant to their own data.
The standard Haplin implementation assumes

haplotype-frequency parameters under HWE instead
of a model with all mating-type parameters [5, 6]. This
improves power and facilitates haplotype reconstruction.
The triad design itself protects against population strat-
ification, but some of that benefit is lost if HWE is not
fulfilled. However, top hits from a GWAS analysis can be
checked retrospectively for HWE. As for power calcula-
tions, a full set of mating-type frequencies will seldom
be available prior to study start, and a HWE assumption
simplifies the calculations.
We conducted a thorough comparison of the asymptotic

approximation approach with the power attained by Hap-
lin and EMIM in data simulations. Child, PoO and mater-
nal effects were assessed. The concordant results obtained
confirm the computational accuracy of the inference
methods used in both programs. They also demon-
strate that power calculations in Haplin are applicable
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to genetic association studies analyzed by either log-
linear or multinomial modeling approaches. Thus, Hap-
lin provides a robust and reliable framework for power
calculations in genetic association analyses for various
genetic effects and etiologic scenarios, based on geno-
type data from a wide range of different child-parent
configurations.

Availability and requirements
Project name: Haplin
Project home page: https://people.uib.no/gjessing/gene-
tics/software/haplin
Operating system(s): Platform independent
Programming language: Haplin is implemented as a
standard package in the statistical software R. It is avail-
able from the official R package archive, CRAN (https://
cran.r-project.org).
Other requirements: None
License: GPL (>= 2)
Any restrictions to use by non-academics: None
Information on EMIM and PREMIM is available from
https://www.staff.ncl.ac.uk/richard.howey/emim.

Additional files
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