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Abstract

Background: Haemorrhagic stroke accounts for approximately 31.52% of all stroke cases, and the most common
origin is hypertension. However, little is known about the method to identify high-risk populations of hypertensive
intracerebral haemorrhage.

Results: The results showed that the angle between the middle cerebral artery and the internal carotid artery
(AMIC), the distance between the beginning of the median artery and superior trunk (DMS), and the density
(CT value) of the lenticulostriate artery (CTL) were statistically significant enough to cause intracerebral
haemorrhage. In addition, we chose these three potential features for the ensemble learning classification
model. Our developed ensemble-learning method outperforms not only previous work but also three other
classic classification methods based on accuracy measurements.

Conclusions: The developed mathematical model in the present study is efficient in predicting the probability of
intracerebral haemorrhage.

Keywords: Intracerebral haemorrhage, Computed tomography angiography, Ensemble learning, Lenticulostriate
arterial, data mining

Background
Haemorrhagic stroke accounts for approximately 31.52%
of all strokes, and the most common origin is hyperten-
sion [1]. The most frequent location of hypertensive in-
tracerebral haemorrhage is around the basal ganglia and
thalamus, which could easily lead to death or disability
[2]. The most prevalent risk factors among stroke survi-
vors are hypertension (88%), smoking (48%), and alcohol
use (44%) [3]. However, we know little about the method

to identify high-risk populations of hypertensive intrace-
rebral haemorrhage. Since the pre-diagnosis of intracere-
bral haemorrhage can effectively reduce the incidence
rate of intracerebral haemorrhage [4–8], this research
develops a mathematical model for the prediction of the
probability of intracerebral haemorrhage.
Recently, computational biologists employed informa-

tion technologies to predict haematoma expansion after
intracerebral haemorrhage and the prognosis of intracere-
bral haemorrhage [9–11], but only a few studies consider
the haemorrhage risk for the non-intracerebral haemor-
rhage patients. Previous studies [12, 13] already used
external factors (i.e., temperature and weather [12, 13]) as
the features to build up the predictive models for
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intracerebral haemorrhage. However, these models can
only predict population occurrence probability for the in-
tracerebral haemorrhage, and it is difficult for us to pre-
dict the probability of intracerebral haemorrhage and
obtain high predictive accuracy for each patient.
Usually, we employ computed tomography (CT) im-

ages to predict the haematoma enlargement after intra-
cerebral haemorrhage, or the historical characteristics
and biomarkers for the neurological outcome prediction
of intracerebral haemorrhage patients. Recently, compu-
tational biologists started using density, area and other
factors of the abnormal area of haematoma in CT im-
ages to develop a predictive model for haematoma en-
largement after intracerebral haemorrhage [14, 15].
However, since recent studies could not collect adequate
training and testing data, they only predicted the degree
of deterioration of intracerebral haemorrhage but could
not effectively estimate the probability of intracerebral
haemorrhage for these patients.
To overcome the shortcomings for previous predictive

models [5–8, 10, 11], this study proposes a mathematical
framework for the prediction of intracerebral haemor-
rhage with the following three innovations. First, statistical
methods are employed to compute the size of the samples
and demonstrate which candidate biomarkers are statisti-
cally significant enough to be the features of the model.
Second, the predictive model is built with these features.
Finally, a novel ensemble-learning method [16] is devel-
oped by integrating the support vector machine (SVM)
[17], decision tree [18] and K-Nearest Neighbor(KNN)
[19] algorithms into the model to improve the predictive
accuracy.
Our research results reveal that AMIC, DMS and CTL

can predict intracerebral haemorrhage. Moreover, we
use them to build the ensemble-learning predictive
model, which not only outperforms the classic SVM, de-
cision tree and KNN models but also performs better
than previous similar research [20–22].

Methods
Experimental materials
A total of 151 patients with unilateral hypertensive
ICH admitted to the Department of Neurosurgery,
Southwest Hospital, Chongqing, China and confirmed
with computed tomography angiography between
January 2012 and December 2016 were analysed
retrospectively. The protocol was approved by the
Ethics Committee of Southwest Hospital, and the
committee waived the need for patient consent due
to the retrospective nature of the study. The basic in-
formation of these patients is listed in Additional file 1:
Tables S1 and Table S2. All patients’ computed tom-
ography angiography images were analysed from the
haematoma side and non-haematoma side as a

self-controlled study of the high-risk features of intra-
cerebral haemorrhage.
Since haemodynamics around the middle cerebral ar-

tery and lenticulostriate artery are tightly associated with
the blood vessel rupture for intracerebral haemorrhagic
patients [23–25], we selected ten potential features
(Fig. 1) related to the artery angle, artery distance, and
artery density as the candidate features for model devel-
opment in this area (Additional file 1: Table S3).
This study recruited 151 CT angiography imaging

series, and we used RadidaDicomViewer software [26] to
extract the digital values of the potential features (Add-
itional file 1: Table S4) from the samples.

Model development
Figure 2 shows the workflow of the mathematical model.
The first step of the study was using the experimental
design to determine the size of the sample and employ-
ing statistical tests to choose the candidate features for
the model from the potential features. Second, we devel-
oped a novel ensemble-learning method by integrating
SVM, the decision tree and KNN algorithm into our
predictive model based on the selected features for intra-
cerebral haemorrhage prediction. Finally, we trained and
tested the model by optimizing the key parameters and
validating the model predictive capacity, respectively.

Sample size estimation
Limited by resources and ethical reasons, it is impossible
to obtain an infinite sample size for the optimization of
the key parameters of the model, so Eq. 1 computes the
optimum sample size (n) to meet statistical significance
[27].

n ¼ 2 uα þ uβ
� �

σ

δ

� �2
ð1:1Þ

d ¼ μ1‐μ2
σ

¼ δ
σ

ð1:2Þ

n ¼ 2 uα þ uβ
� �

d

� �2
ð1:3Þ

Eq. 1.1 denotes σ as the standard deviation; uα and uβ
as the critical values of the u-test at the first type of
error rate and the second type of error rate, respectively.
Eq. 1.2 defines effect size d [26] as δ/σ; μ1 and μ2 as

the mean values of the disease and the control data, re-
spectively. The first and the second type of error α and β
were set to 0.05 and 0.1, respectively. Indicated by
Kabacoff et al. [26], δ represents μ1 ‐ μ2. Then, we
re-wrote Eq. 1.1 as Eq. 1.3.
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Fig. 1 Images of ten potential features

Fig. 2 Workflow of the research
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Feature selection
After locating the sample size, we employed a (Add-
itional file 1: Figure S1) statistical significance test for
these candidate features, and the digital values of this
test were extracted by using RadidaDicomViewer soft-
ware [26].

Machine learning methods
In the beginning, this study employed three commonly
used classification algorithms [17–19] such as KNN, de-
cision tree and SVM to develop the predictive model.
Then, we integrated these three classic methods detailed
in the supplemental methods section into a novel en-
semble learning [16] model to improve our predictive
accuracy. Here, we employed Matlab2014a [28] to im-
plement these methods with the default parameter setup
and the parameter k of KNN was set to 5. We describe
the ensemble-learning algorithm (Additional file 1:
Figure S2) as follows.
Input: Sample set S = {(x1, y1), (x2, y2),⋯, (xn, yn)},

where xn is the example and yn ∈ {0, 1} is the label; weak
classifier L∈fL1 ¼ SVM;L2 ¼ Decision tree;L3 ¼ KNN
g. T is the iteration number.
Process:

1) for m = 1,…, L
2) Initialize the weight distribution D1ðiÞ ¼ 1

.
n
; (n is

the number of examples and i is the index of the
example)

3) for t = 1,…,T
4) Based on the sample distribution Dt and Lm, we

train the weak classifier ht
5) Compute the error (εt) for ht

εt ¼ number of incorrectly classified examples

total number of examples

ð2Þ
6) Compute the weight (αt) for ht

αt ¼ 1
2

ln
1−εt
εt

ð3Þ

7) Update the weight for each sample

Dtþ1 ið Þ ¼ Dt ið Þ
sum Dð Þ

exp −αtð Þ if ht xið Þ ¼ yi
exp αtð Þ if ht xið Þ≠yi

�
ð4Þ

8) End
9) Obtain the ensemble learning classifier Hm by the

adaboost algorithm [29, 30]

Hm xð Þ ¼ sign f xð Þð Þ ¼ sign
XT

t¼1
αtht xð Þ ð5Þ

10) Calculate the accuracy of Hm

PHm ¼ number of correctly classified examples
total number of examples

ð6Þ

11) End
12) Assign a weight wHm to each Hm

wHm ¼ 1
2

ln
PHm

1−PHm

ð7Þ

Output: anomaly ensemble

Y xð Þ ¼ sign
X3

m¼1
wHmHm xð Þ ð8Þ

Results
Sample size estimation
We used Eq. 1 to compute the sample size by setting
parameter d [26]. The sample size of the lower bound
was 66. Half the samples were the control and the rest
were the disease.

Statistical test results for the candidate features
Since there were ten potential features closely related to
the intracerebral haemorrhage [2, 4, 9, 12, 31, 32], this
study chose them as the candidate features (Additional
file 1: Table S5) to develop the predictive model. Then,
we employed the statistical test workflow [33] (Add-
itional file 1: Figure S1) to verify the statistical signifi-
cance of each potential feature.
Additional file 1: Table S5 demonstrates that the angle

between the middle cerebral artery and artery (AMIC),
the distance between the beginning of the median cere-
bral artery and the superior trunk (DMS) and the CT
value of the lenticulostriate artery (CTL) were statisti-
cally significant between the control and the disease data
set since they have small p values. To confirm these stat-
istical results, we collected a clinical CT image to inves-
tigate these three potential features. Figure 3 shows that
the angle of the AMIC was 127.7 degrees, the length of
the DMS was 18.4 mm and the CTL was 242 HU on the
haematoma side, whereas the angle of the AMIC was
163.6 degrees, the length of the DMS was 28.1 mm and
CTL was 158 HU in the non-haematoma side. It is obvi-
ous that the angle of the AMIC on the haematoma side
was smaller than the angle of the AMIC on the
non-haematoma side, the length of DMS on the haema-
toma side was much shorter than the length of DMS on
the non-haematoma side, and the CTL on the haema-
toma side was greater than the CTL on the
non-haematoma side.
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Predictive performance for each model
We employed SVM, decision tree, KNN and ensemble
learning methods to develop the predictive model by
using AMIC, DMS and CTL as the features.
Here, we employed cross validation [34] to train and

test each model. We divided the data set into eight
groups, 6 training sets and 2 test sets, to train and test
the data. Figure 4a and Additional file 1: Table S7 show
the sensitivity, specificity, precision and accuracy for
KNN, SVM, decision tree and ensemble learning, in
which ensemble learning outperforms the other three.
Additional file 1: Table S6 details four classic classifica-
tion measurement standards (sensitivity, specificity, pre-
cision and accuracy).
Moreover, since the ensemble-learning algorithm em-

ploys the accuracy measurement as the objective function
to optimize the key weight of the weak classifiers, here, we
compare the predictive capacity among ensemble learning,
SVM, KNN and decision tree in Fig. 4b and compare the
predictive capacity between ensemble-learning and previ-
ous research [20–22] in Fig. 4c. Figure 4b and c demon-
strate that ensemble learning performs best in the
prediction of intracerebral haemorrhage based on the ac-
curacy measurements with statistically significant results.

Discussion
Because of the high morbidity and mortality of intrace-
rebral haemorrhage, the prevention and treatment of in-
tracerebral haemorrhage is currently an issue of great
concern. Research on the prediction of intracerebral

haemorrhage is becoming increasingly important. Cur-
rently, the relative risk between intracerebral haemor-
rhage and hypertension, diabetes, hyperlipemia, or other
systemic diseases is widely accepted, but these diseases
correlate to other cardio-cerebral vascular incidents,
such as ischaemic stroke and coronary heart disease,
with poor specificity [15, 35]. In clinical practice, it is
still difficult to predict the direct haemorrhagic risk for
these high-risk populations. There are many studies [15,
35] on the prediction of haematoma expansion after
intracerebral haemorrhage by using CT images of the
brain, such as spot signs. However, no other study has
identified the haemorrhagic risk for the non-intracerebral
haemorrhage potential patients, which may be the reason
for the negative results of many intracerebral haemor-
rhage clinical trials by mixing these subpopulations with
others. If so, risk identification might greatly facilitate pre-
cise control and prevention of the increasing occurrences
of intracerebral haemorrhage [3].
ICH in the basal ganglion, which constitutes the ma-

jority of ICH subtypes that are frequently related to
hypertensive vasculopathy, often occurs due to the rup-
ture of small vessels, especially the branches of lenticu-
lostriate artery, releasing the blood into the brain
parenchyma [2]. The lenticulostriate artery usually arises
from the trunk of the middle cerebral artery before the
bifurcation. The intracerebral segments of the lenticu-
lostriate artery with its branches are shaped as a curve
or a loop, which results in much more pressure on the
vessel wall when it flows through the bending portion.

Fig. 3 Computed tomography angiography features for the haematoma side and contralateral side of ICH patients
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Therefore, the branches of the lenticulostriate artery
bear much more shear stress or pressure due to the de-
creasing diameter and the unique morphology of the
lenticulostriate artery and its branches, which becomes a
high-risk factor for intracerebral haemorrhage [36, 37].
For this reason, the present study chose ten potential
characteristics (Additional file 1: Table S3) associated
with the shear stress of the lenticulostriate artery on
computed tomography angiography imaging.
The present study found that the angle between the

middle cerebral artery and the internal carotid artery
(AMIC), the distance between the beginning of the me-
dian artery and superior trunk (DMS), and the CT of
the lenticulostriate artery (CTL) are statistically

significant enough to be causes of intracerebral haemor-
rhage (Additional file 1: Table S5). In addition, we
employed these causes as the features of the classifica-
tion model to predict the occurrence of intracerebral
haemorrhage (Fig. 2). As we know, shear stress arises
from the friction between blood flow and the vascular
endothelium, paralleling the vessel wall. The magnitude
of shear stress in straight vessels is directly proportional
to the viscosity of blood and blood flow and inversely
proportional to the third power of the inner radius of
the vessel. The three characteristics we chose as features
in the present study may be closely associated with the
local shear stress around the basal ganglion, especially
the density (CT value) of the lenticulostriate artery, as

Fig. 4 Model performance. a. General model performance; b. Comparison among ensemble learning, KNN, decision tree and SVM; c. Comparison
of previous similar research (Index 1, 2, 3 and 4 indicate the references [20–22] and our model, respectively)
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the greatest change in blood pressure and velocity of
blood flow occurs at the transition from arterioles to ca-
pillaries. Briefly, the narrow AMIC (Fig. 3a) and short
DMS (Fig. 3b) may lead to high impact forces towards
the branches of the middle cerebral artery, while the
high CT value in lenticulostriate arterial areas (CTL)
illustrates tighter arterioles with possible weak vessel
walls that receive the shear stress of the blood stream
(Fig. 3c).
Moreover, since accuracy is an important measure-

ment for clinical personnel [21] and the function of our
ensemble-learning model, we compared the performance
of the ensemble-learning method with previous similar
studies and our three methods (KNN, decision tree and
SVM), as shown in Fig. 4b and c, respectively. Figure 4b
and c demonstrate that these features are so efficient
that our developed ensemble-learning method outper-
forms not only previous work [20–22] but also the other
three methods based on accuracy measurements with
statistically significant results. However, Fig. 4a shows
that the sensitivity of ensemble learning was not better
than that of the KNN method. Since the ensemble learn-
ing method employs accuracy as the objective function
to optimize the key weights (Eq. 3 and Eq. 4) for each
weak classifier, it cannot guarantee the best performance
for the other three measurements, including sensitivity.
While this study demonstrated better performance in

stroke prediction, it still has several drawbacks. For ex-
ample, our sample size was too small for us to consider
more classification measurements for the predictive
model. Therefore, we are going to integrate more recent
bioinformatics research algorithms [38–43] into this sys-
tem and employ a large CTA imaging data set to over-
come the current shortcomings.
In conclusion, AMIC, DMS and CTL can predict intrace-

rebral haemorrhage. Our developed ensemble-learning
method efficiently employs these selected features to effi-
ciently predict the probability of intracerebral haemorrhage.

Conclusions
In this article, we propose a mathematical framework for
the prediction of intracerebral haemorrhage. Statistical
methods are employed to compute the size of the sam-
ples and demonstrate which candidate biomarkers are
statistically significant enough to be the features of the
model. A novel ensemble-learning method is developed
by integrating SVM, decision tree and KNN algorithms
into the model to improve the predictive accuracy. Our
research results reveal that AMIC, DMS and CTL can
predict intracerebral haemorrhage, and the developed
mathematical model in the present study not only out-
performs the classic KNN, decision tree and SVM
models but also performs better than previous similar
research.

Additional file

Additional file 1: Basic information of 151 intracerebral haemorrhage
patients in the present study; Supplementary tables and figures.
Table S1. Distribution of age group in patients with cerebral.
Table S2. The complications of patients with intracerebral haemorrhage.
Table S3. The candidate features. Table S4. The digital values of the
candidate feature from the CT imaging samples. Table S5. P value of the
statistical test for each candidate feature. Table S6. The standard of the
classification measurement. Table S7. The classification results. Figure S1.
Work flow of the statistical test. Figure S2. Workflow of the ensemble
learning. (PDF 130 kb)

Abbreviations
KNN: K-Nearest Neighbour; SVM: Support Vector Machine

Acknowledgements
Not applicable.

Funding
Publication costs are funded by the Major Innovation Project of Southwest
Hospital (No. SWH2016ZDCX1011), the National Basic Research Program of
China (No. 2014CB541600), National Science and Technology Major Project
of China (NO. 2018ZX10201002) and the National Natural Science
Foundation of China (NO. 81501002 and NO.61372138).

Availability of data and materials
All data generated or analysed during this study are included in this
published article and its supplementary information files.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 7, 2019: Selected papers from the 12th International Conference on
Computational Systems Biology (ISB 2018). The full contents of the supplement
are available online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-20-supplement-7.

Authors’ contributions
LZ and YJC conceived the study and developed the model. JL and KKY
performed the simulations for the model. ZYJ and TTL wrote the manuscript.
RH and ZY performed the analysis for the model. HF contributed to
acquisition of data. All authors read and approved the final manuscript.

Ethics approval and consent to participate
A total of 151 patients with unilateral hypertensive ICH admitted to the
Department of Neurosurgery, Southwest Hospital, Chongqing, China and
confirmed with computed tomography angiography between January 2012
and December 2016 were analysed retrospectively. The protocol was
approved by the Ethics Committee of Southwest Hospital, and the
committee waived the need for patient consent due to the retrospective
nature of the study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1College of Computer and Information Science, Southwest University,
Chongqing 400715, People’s Republic of China. 2College of Computer
Science, Sichuan University, Chengdu 610065, People’s Republic of China.
3Medical Big Data Center, Sichuan University, Chengdu 610065, People’s
Republic of China. 4School of Medical Information and Engineering,
Southwest Medical University, Luzhou 646000, People’s Republic of China.

Zhang et al. BMC Bioinformatics 2019, 20(Suppl 7):193 Page 115 of 151

https://doi.org/10.1186/s12859-019-2741-5
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-7
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-7


5Department of Neurosurgery, Southwest Hospital, Third Military Medical
University, Chongqing 400038, People’s Republic of China. 6School of
Mathematics and Statistics, Southwest University, Chongqing 400715,
People’s Republic of China. 7Department of Neurosurgery, Fuling Central
Hospital, Chongqing 400715, People’s Republic of China.

Published: 1 May 2019

References
1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett

DA, Moran AE, Sacco RL, Anderson L, Truelsen T, et al. Global and regional
burden of stroke during 1990-2010: findings from the global burden of
disease study 2010. Lancet. 2014;383(9913):245–54.

2. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF.
Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):
1450–60.

3. Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, Wang L, Jiang Y, Li Y, Wang
Y, et al. Prevalence, incidence, and mortality of stroke in China: results from
a Nationwide population-based survey of 480 687 adults. Circulation. 2017;
135(8):759–71.

4. Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on
intracerebral hemorrhage: is there an end in sight? Prog Neurobiol. 2014;
115:45–63.

5. de Rooij NK, Greving JP, Rinkel GJ, Frijns CJ. Early prediction of delayed
cerebral ischemia after subarachnoid hemorrhage: development and
validation of a practical risk chart. Stroke. 2013;44(5):1288–94.

6. Harrod CG, Bendok BR, Batjer HH. Prediction of cerebral vasospasm in
patients presenting with aneurysmal subarachnoid hemorrhage: a review.
Neurosurgery. 2005;56(4):633.

7. Hijdra A, Gijn JV, Nagelkerke NJ, Vermeulen M, Crevel HV. Prediction of
delayed cerebral ischemia, rebleeding, and outcome after aneurysmal
subarachnoid hemorrhage. Stroke. 1988;19(10):1250.

8. Kusano Y, Seguchi T, Horiuchi T, Kakizawa Y, Kobayashi T, Tanaka Y, Seguchi
K, Hongo K. Prediction of functional outcome in acute cerebral hemorrhage
using diffusion tensor imaging at 3T: a prospective study. AJNR Am J
Neuroradiol. 2009;30(8):1561–5.

9. Sridharan SE, Unnikrishnan JP, Sukumaran S, Sylaja PN, Nayak SD, Sarma
PS, Radhakrishnan K. Incidence, types, risk factors, and outcome of
stroke in a developing country: the Trivandrum stroke registry. Stroke.
2009;40(4):1212–8.

10. Xin WANG, XW-Y XIAO H-z. The correlation analysis of cerebral hemorrhage
and meteorological factors and its prediction study in Jingmen City. Chin J
Prev Contr Chron Dis. 2012;20(5):557–9.

11. Aimei ea L. Relationship between meteorological factors and cardio-
cerebrolvasular diseases incidence. Chinese Journal of Prevention and
Control of Chronic Non-Communicable Diseases. 1997;(2):61–3.

12. Lukic S, Cojbasic Z, Peric Z, Milosevic Z, Spasic M, Pavlovic V, Milojevic
A. Artificial neural networks based early clinical prediction of mortality
after spontaneous intracerebral hemorrhage. Acta Neurol Belg. 2012;
112(4):375–82.

13. Li YF, Luo J, Li Q, Jing YJ, Wang RY, Li RS. A new simple model for
prediction of hospital mortality in patients with intracerebral hemorrhage.
CNS Neurosci Ther. 2012;18(6):482–6.

14. Cao D, Li Q, Fu P, Zhang J, Yang J. Early hematoma enlargement in primary
intracerebral hemorrhage. Curr Drug Targets. 2017;18(12):1345.

15. Li Q, Huang YJ, Zhang G, Lv FJ, Wei X, Dong MX, Chen JJ, Zhang LJ, Qin XY,
Xie P. Intraventricular hemorrhage and early hematoma expansion in
patients with intracerebral hemorrhage. Sci Rep. 2015;5:11357.

16. Dietterich TG. Ensemble methods in machine learning, vol. 1857; 2000. p. 1):
1–15.

17. Burges CJC: Simplified support vector decision rules. In Proceedings of the
thirteenth international conference on international conference on machine
learning. Morgan Kaufmann Publishers Inc. 1996. 71–77.

18. Quinlan JR. Induction on decision tree. Mach Learn. 1986;1(1):81–106.
19. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf

Theory. 1967;13(1):21–7.
20. SHEN Mingyang SX. The progess of clinical applications of the computed

tomography angiography spot sign in hypertensive intracerebral
hemorrhage. Anhui Medical and Pharmaceutical Journal. 2017;21(6):1127–9.

21. Almandoz JED, Kelly HR, Schaefer PW, Brouwers HB, Yoo AJ, Stone MJ,
Goldstein JN, Rosand J, Lev MH, Gonzalez RG. CT angiography spot sign

predicts in-hospital mortality in patients with secondary intracerebral
hemorrhage. Journal of Neurointerventional Surgery. 2012;4(6):442–7.

22. Brouwers HB, Falcone GJ, Mcnamara KA, Ayres AM, Oleinik A, Schwab K,
Romero JM, Viswanathan A, Greenberg SM, Rosand J. CTA spot sign
predicts hematoma expansion in patients with delayed presentation after
intracerebral hemorrhage. Neurocrit Care. 2012;17(3):421–8.

23. Hu R, Feng H. Lenticulostriate artery and Lenticulostriate-artery neural
complex: new concept for intracerebral hemorrhage. Curr Pharm Des. 2017;
23(15):2206–11.

24. Qureshi AI. The importance of acute hypertensive response in ICH. Stroke.
2013;44(6 Suppl 1):S67–9.

25. Oeinck M, Neunhoeffer F, Buttler KJ, Meckel S, Schmidt B, Czosnyka M,
Weiller C, Reinhard M. Dynamic cerebral autoregulation in acute
intracerebral hemorrhage. Stroke. 2013;44(10):2722–8.

26. Kabacoff R: R in action. Manning Publications Co.; 2011.
27. Wang R. Medical experiment design and statistical analysis. Beijing: Beijing

Medical University Press; 2000.
28. Lau B, Marionalbares: Process: Pre Matlab release 2014. 2015.
29. Dietterich TG. Machine learning research: four current directions. AI Mag.

2000;18(4):97–136.
30. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, Mclachlan GJ, Ng A,

Liu B, Yu PS. Top 10 algorithms in data mining. Knowl Inf Syst. 2008;14(1):1–37.
31. Zahuranec DB, Sanchez BN, Brown DL, Wing JJ, Smith MA, Garcia NM,

Meurer WJ, Morgenstern LB, Lisabeth LD. Computed tomography findings
for intracerebral hemorrhage have little incremental impact on post-stroke
mortality prediction model performance. Cerebrovasc Dis. 2012;34(1):86–92.

32. Adeoye O, Broderick JP. Advances in the management of intracerebral
hemorrhage. Nat Rev Neurol. 2010;6(11):593–601.

33. Zhang L, Zheng C, Li T, Xing L, Zeng H, Li T, Yang H, Cao J, Chen B, Zhou Z.
Building up a robust risk mathematical platform to predict colorectal
cancer. Complexity. 2017;2017(8):1–14.

34. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Proceedings of international joint conference on
artificial intelligence. San Fransisco: Morgan Kaufmann Publishers Inc; 1995.
p. 1137–43.

35. Sorimachi T, Osada T, Baba T, Inoue G, Atsumi H, Ishizaka H, Hotta K,
Hayashi N, Matsumae M. The striate artery, hematoma, and spot sign on
coronal images of computed tomography angiography in putaminal
intracerebral hemorrhage. Stroke. 2013;44(7):1830–2.

36. Chien S, Li S, Shyy YJ: Effects of mechanical forces on signal transduction and
gene expression in endothelial cells. Hypertension 1998, 31(1 Pt 2):162–169.

37. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium:
pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):
327–87.

38. Zhang L, Zhang S. Using game theory to investigate the epigenetic control
mechanisms of embryo development: comment on: “epigenetic game
theory: how to compute the epigenetic control of maternal-to-zygotic
transition” by Qian Wang et al. Phys Life Rev. 2017;20:140–2.

39. Zhang L, Liu Y, Wang M, Wu Z, Li N, Zhang J, Yang C. EZH2-, CHD4- and
IDH-linked epigenetic perturbation and its association with survival in
glioma patients. J Mol Cell Biol. 2017;9(6).

40. Xia Y, Yang C, Hu N, Yang Z, He X, Li T, Zhang L. Exploring the key genes
and signaling transduction pathways related to the survival time of
glioblastoma multiforme patients by a novel survival analysis model. BMC
Genomics. 2017;18(Suppl 1):950.

41. Li T, Cheng Z, Zhang L. Developing a novel parameter estimation method
for agent-based model in immune system simulation under the framework
of history matching: a case study on influenza a virus infection. Int J Mol
Sci. 2017;18(12).

42. Gao H, Yin Z, Cao Z, Zhang L. Developing an agent-based drug model to
investigate the synergistic effects of drug combinations. Molecules. 2017;
22(12):2209.

43. Zhang L, Qiao M, Gao H, Hu B, Tan H, Zhou X, Li CM. Investigation of
mechanism of bone regeneration in a porous biodegradable calcium
phosphate (CaP) scaffold by a combination of a multi-scale agent-based
model and experimental optimization/validation. Nanoscale. 2016;8(31):
14877.

Zhang et al. BMC Bioinformatics 2019, 20(Suppl 7):193 Page 116 of 151


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Experimental materials
	Model development
	Sample size estimation
	Feature selection
	Machine learning methods


	Results
	Sample size estimation
	Statistical test results for the candidate features
	Predictive performance for each model

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

