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Abstract

Background: Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been
adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains
challenging due to the scale of the data and differences in preprocessing methods between published datasets.

Results: We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a
new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from
raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in
an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure
reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per
sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided
data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to
best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced
representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS).

Conclusions: The workflows produce data quality metrics, visualization tracks, and aggregated output for further
downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and
integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
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Background
DNA methylation is an essential component of the
epigenetic machinery that regulates gene expression. It
involves a chemical modification whereby a methyl
group is added to Cytosine bases [1]. DNA methyla-
tion is highly dynamic during development and aber-
rations in the mark are associated with a range of
diseases including cancer, autoimmune and neurode-
generative disorders [2–5].
The gold-standard assays for DNA methylation are

based on bisulfite sequencing, where unmethylated cyto-
sines (C) are selectively and efficiently converted to thy-
mines (T) allowing base-pair resolution methylation state
to be read out by standard high-throughput sequencing

[6]. Bisulfite sequencing can be applied to a whole genome
library (WGBS) [7], or in targeted variants that include
Reduced Representation Bisulfite Sequencing (RRBS) [8]
that enriches for regions of high CpG density, and Hybrid
Selection Bisulfite Sequencing (HSBS) [9] that uses cap-
ture probes to target a specific set of genomic regions of
interest.
Preprocessing and quality control typically comprise

the most computationally intensive portion of bisulfite
sequencing data analysis, due to the large size of raw
datasets which may contain > 100 GB of data for deeply
sequenced individual samples, or thousands of cells in
single-cell projects [10]. Here we present a set of prepro-
cessing tools for bisulfite sequencing data that facilitate
analyses of such datasets, by simplifying, and making
more accessible, the use of large computational compute
clusters. We also introduce a new R/Bioconductor pack-
age, scmeth, that is optimized for QC analysis of large
datasets. The pipelines can be run locally or on cloud
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computing infrastructure, providing practically unlimited
scalability without requiring local compute resources.
The cloud implementation, in particular, is accessible
through a web browser interface and lends itself to both
researchers who have technical expertise and to users
with limited bioinformatics analysis experience.

Implementation
The pipelines are designed to go from raw sequencing
data to CpG-level methylation estimates. The workflows
first perform read alignment and methylation calling in
parallel across samples, followed by an aggregation and
quality control analysis step. The workflows are imple-
mented in the WDL workflow description language
[11, 12] and use software packaged into Docker [13]
containers. WDL files are typically structured to contain a
workflow consisting of one or more tasks. Both workflows
and tasks can specify input parameters such as raw read
file names, and runtime parameters such as the amount of
CPU and memory resources required for processing and
the specific docker image to use. Docker containers are
lightweight virtual machines that encapsulate the entire
software environment required by the pipeline tools, in-
cluding their dependencies. In addition to the option of
running the WDL workflows locally on a single computer
or on an HPC (High-Performance Computing) cluster
using job management systems such as LSF (Load Sharing
Facility) or SLURM (Simple Linux Utility for Resource
Management), we also provide an implementation that
is available through the Google Cloud-based FireCloud
platform [14, 15]. FireCloud is accessible through a
web-browser and allows execution of WDL-based work-
flows on cloud compute resources with scalability that is
unlimited for most practical use cases. The scmeth pack-
age used for QC analysis is part of the R/Bioconductor
project.

Results
The methylation workflows follow a two-step pattern,
with a parallelized per-sample preprocessing step followed
by an aggregation and QC step that integrates data across
the dataset. Following initial preprocessing with the pipe-
line default bisulfite-aware aligner Bismark [16], the fol-
lowing outputs are generated for each input sample: (i)
BAM and BAM index files; (ii) a per-CpG coverage file
with unmethylated and methylated read counts; (iii) a big-
wig file for visualization, and (iv) a set of quality assess-
ment metrics such as fraction of aligned reads, bisulfite
conversion rate and methylation value distributions. The
aggregation step then prepares the individual sample out-
puts for downstream analysis by combining them into
coverage and methylation matrices, available either as
plain text or as an R/Bioconductor bsseq [17] object that is
also annotated with metrics including the number of

reads, number of covered CpGs and bisulfite conversion
rate (Fig. 1).
In addition to preprocessed methylation data, compre-

hensive HTML and plain text quality reports are also
generated using tools implemented in the scmeth Bio-
conductor package [18]. The QC report can be used to
identify low quality batches or samples, and provides
metrics, including number of reads, total CpG coverage,
bisulfite conversion rate, methylation distribution, gen-
omic feature coverage (e.g. promoters, enhancers), a
downsampling saturation curve and methylation distri-
butions (Table 1). In order to scale to large sample sizes
as is common in single-cell analysis, an on-disk repre-
sentation of the methylation and coverage matrices as
implemented in the bsseq [17] package is used by de-
fault. In order to improve QC analysis run time for large
datasets, scmeth provides an option to subsample while
calculating metrics. We find that estimates based on
using as few as one million of the ~ 28 million CpGs in
the human genome are unbiased and stable.
We used 1000 single-cell RRBS samples with a median

of 872,223 reads (range of 5437 to 4,165,149) to estimate
the run time and cost for the workflows. For example,
processing the full set of 1000 samples using default
options took 62 h and accrued $66 of Google Cloud
charges (Table 2).

TCGA data analysis
We have preprocessed and made available 47 WGBS
samples available from TCGA. These samples were
sequenced with a median of 361,777,141 reads (range of
289,476,432 to 955,974,014). We confirmed a high con-
cordance in methylation estimates with the available
BEDgraph files from the NCI Genomic Data Commons
(GDC), with a correlation of 0.99 when considering
CpGs with a minimum read coverage 10. The raw
(FASTQ) data, processed data and workflows are made
available in a FireCloud workspace (See https://github.
com/aryeelab/dna-methylation-tools/blob/master/READ
ME.md#tcga-data). We have also made the processed
data available via tcgaWGBSData.hg19, an experiment
data package in Bioconductor.
The workflows are pre-configured with the quantity of

compute resources (e.g. memory and number of CPU
cores) to request from either an HPC system (e.g. LSF)
or the cloud environment for each analysis step, but
these can be altered by the user if a different tradeoff be-
tween run time and cost is desired [15].

Discussion
To guarantee reproducible analyses, we take advantage
of two components: First, we use a workflow description
language, WDL, that can be executed without modifica-
tions on systems ranging from a laptop, to an HPC
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cluster, to cloud compute resources. This flexibility is
provided by the workflow engine, Cromwell [15], which
has various “back-ends” allowing it to execute workflow
tasks on the various platforms. Second, we use Docker
containers, lightweight virtual machines, that package
the full software environment required by the pipeline
tools. These two components together ensure that iden-
tical results are produced across different platforms and
across multiple runs of the pipelines.

Scalability is achieved through parallelization across
samples. For users with an HPC cluster that supports
Docker containers, this parallelization is accessible lo-
cally. Alternatively, any user can take advantage of the
FireCloud platform that uses the Google Compute
Engine as the computing platform. The Google billing
model charges per minute per machine, which enables
all per-sample preprocessing to be performed within a
near-fixed total time, regardless of the number of

Fig. 1 Overview of methylation analysis workflow. Raw read (FASTQ) files and are first processed through a per-sample alignment and pre-
processing step, followed by an aggregation step that combines data from all samples into a matrix format and generates a QC report

Table 1 Quality control metrics

QC Metric Information gained from this metric

Read metrics Number of mapped and unmapped reads

CpG Coverage Number of CpGs observed with a minimum coverage threshold

M-bias Average methylation by position across reads. Deviation from uniformity typically indicates a
problem with library construction or data preprocessing.

Downsampling saturation curve CpG coverage as a function of number of reads. A rising curve indicates that we would
expect to observe additional CpGs from deeper sequencing of a library

CpG discretization Useful in single-cell analysis, this represents the fraction of CpGs with non-binary methylation status

Feature level coverage The fraction of key genomic features (e.g. promoters, CpG Islands), covered with at least 1 CpG.

Bisulfite conversion rate The proportion of non CpG context C’s that were converted to T. This should be close to 100%
in most mammalian tissues.

CpG density distribution The CpG density distribution around observed CpGs is typically similar across samples indicating
coverage of similar genomic regions.

Methylation distribution Unexpected sample-to-sample deviations in the distribution of methylation values can indicate
potential technical artifacts
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samples, as all samples can be processed in parallel.
There are no additional charges for using the FireCloud
platform itself although the user will accrue compute
and storage costs billed by Google for resources used in
workflow execution.
When analyzing a new dataset, it is often useful to

compare the new samples to public data, either from in-
dividual published studies or large consortia like TCGA
[19] and TARGET [20]. These data are often not directly
comparable, however, due to differences in preprocess-
ing and other upstream analysis. Applying a uniform
processing pipeline is, on the other hand, challenging
due to the size of the datasets (e.g. TCGA) making them
difficult to download and process. As FireCloud already
hosts raw TCGA data, an alternative is to take advantage
of our DNA methylation workflow to process both
TCGA and the user’s own data in a uniform manner on
this platform. The preprocessed data, which is much
smaller than the raw sequencing data, can then either be
further analyzed using cloud resources, or downloaded
for local downstream analysis.

Conclusion
We have developed a set of preprocessing and quality as-
sessment pipelines for Bisulfite sequencing-based DNA
Methylation analysis. By leveraging Docker containers and
a workflow language that can be executed both locally and
in the cloud, the pipelines produce reproducible output
across different platforms and user environments. This
also has the benefit of facilitating comparisons across
datasets such as between local user data and data from
public repositories (e.g. TCGA) as identical preprocessing
can be guaranteed. We have also introduced the scmeth
R/Bioconductor package that implements QC functions
optimized for large methylation datasets, such as those
common in single-cell analyses. We take advantage of the
pipelines’ portability by providing an implementation in
the Google Cloud-based FireCloud platform, which en-
ables any user the ability to scale to very large datasets
without local compute capacity restraints. We believe that
these tools will be useful as the scale of DNA methylation
datasets grow, and that they will serve as a template for
tools for other types of large genomic data.

Availability and requirements
Project Documentation: http://aryee.mgh.harvard.edu/
dna-methylation-tools/
Firecloud workspace: https://portal.firecloud.org/

#workspaces/aryee-lab/dna-methylation (Users need to
create a free account).
Operating System(s): Platform independent.
Programming Language: WDL, R.
License: MIT.
Any restrictions to use by non-academics: None.
Documentation for this pipeline and all the workflows

can be accessed at http://aryee.mgh.harvard.edu/dna-
methylation-tools/. scmeth is available through the Biocon-
ductor project (https://www.bioconductor.org/packages/re-
lease/bioc/html/scmeth.html).
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Table 2 Run time and cost estimates

Sample size Per-sample
preprocessing (Hours/$)

Aggregation and
QC (Hours/$)

Total (Hours/$)

10 0.98 ($0.93) 0.97 ($0.28) 1.95 ($1.21)

100 1.47 ($8.99) 6.00 ($0.86) 7.47 ($9.85)

1000 4.48 ($52.48) 58.01 ($13.74) 62.49 ($66.22)

Time and cost to conduct various steps of the workflow with different sample
sizes. Estimates were obtained when the workflows were run on the default
n1-highmem-4 compute nodes (26 GB RAM with 4 CPUs) in FireCloud. Note
that these example times and costs will decrease considerably as workflows
are improved and compute resources become cheaper
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