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Abstract

Background: Whole exome sequencing (WES) has been widely used in human genetics research. BGISEQ-500 is a
recently established next-generation sequencing platform. However, the performance of BGISEQ-500 on WES is not
well studied. In this study, we evaluated the performance of BGISEQ-500 on WES by side-to-side comparison with
Hiseq4000, on well-characterized human sample NA12878.

Results: BGISEQ demonstrated similarly high reproducibility as Hiseq for variation detection. Also, the SNVs from
BGISEQ data is highly consistent with Hiseq results (concordance 96.5%~ 97%). Variation detection accuracy was
subsequently evaluated with data from the genome in a bottle project as the benchmark. Both platforms showed
similar sensitivity and precision in SNV detection. While in indel detection, BGISEQ showed slightly higher sensitivity
and lower precision. The impact of sequence depth and read length on variation detection accuracy was further
analyzed, and showed that variation detection sensitivity still increasing when the sequence depth is larger than
100x, and the impact of read length is minor when using 100x data.

Conclusions: This study suggested that BGISEQ-500 is a qualified sequencing platform for WES.
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Background
The launch of the Roche 454 sequencer [1] opened the
era of next-generation sequencing (NGS). Compared
with the traditional Sanger sequencing technology [2],
NGS has significantly larger throughput and lower
per-base cost. Taking these advantages, researchers can
analyze the information of all the genes in one project,
rather than doing gene-by-gene studies. Researchers can
obtain the information on the whole genome, protein-
coding exons, or other specified regions by performing
whole genome sequencing (WGS), whole exome sequen-
cing (WES) [3] or target region sequencing (TRS), respect-
ively. As an easy to interpret, known functional impacts,
and relatively low-cost technology comparing with WGS,
WES is widely used in human genetics research nowadays.

In the short history of NGS era, five major sequencing
platforms have emerged: Roche 454, Illumina Hiseq
series (GA, Hiseq, Miseq, X) [4], SOLiD [5], Complete
Genomics [6], and Ion Torrent [7]. These platforms use
different mechanics and have their specific advantages
and disadvantages [8]. After years of technology evolu-
tion and competition, Hiseq becomes the most widely
used sequencing platform. In 2015, BGI and Complete
Genomics jointly announced a new next-generation
sequencer, BGISEQ-500 [9]. However, its performance
on WES has not yet been well evaluated by the scientific
community.
We evaluated the performance of BGISEQ-500 on

WES by parallel comparison with Hiseq 4000 on the
well-characterized human sample NA12878. We com-
pared the concordance of variation detected between the
sequencing platforms, and their variation detection
accuracy with the reference variation dataset from the
genome in a bottle project (GIAB) [10]. We found that
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BGISEQ-500 has comparable reproducibility and com-
petitive variation detection accuracy to Hiseq 4000.

Results
Data production
The DNA of NA12878 was used in this study. Agilent
SureSelect Kit v5 (50.4 Mb) was used for exome capture.
The sequencing strategy was pair-end 150 bp for
Hiseq4000 and pair-end 100 bp for BGISEQ-500. The
DNA was sequenced to >100x on both Hiseq 4000 and
BGISEQ-500 platform. (Methods) Each platform sequenced
four replicable libraries, resulting in eight datasets in total.
For comparison, each dataset was down-sampled to 100x.
BGISEQ showed higher exome capture efficiency (faction
of bases on target, BGISEQ 72% vs. Hiseq 58%, fraction of
reads on target, BGISEQ 83% vs. Hiseq 71%), therefore it
requires less sequencing data to reach the same sequencing
depth. BGISEQ also showed slightly lower duplication rate
than Hiseq (7.0% vs 7.6%). For each dataset, > 99.6%
bases of the target region are covered by at least one
read, and > 96% bases of the target region are covered
with > = 20 reads, indicating that the whole target region
is comprehensively and uniformly captured on both plat-
forms (Table 1, Fig. 1).

Variation detection
The variation detection was processed under the guide-
lines from the Genome Analysis Toolkit (see Methods
for details) [11, 12]. Only the target region was used for
variation detection. Roughly 41 thousand single nucleotide
variants (SNVs) were detected from each dataset, including
19 thousand inside the protein coding region, and ~ 9.4
thousand could lead to protein change (Table 2). The BGI-
SEQ datasets generated slightly fewer SNVs than Hiseq
datasets. About 99.7% of detected SNVs could be found in
dbSNP142 [13]. The transition/transversion ratio (Ti/Tv)
on whole target region and on the exonic regions is 2.56

and 3.09, and the corresponding heterozygous to homozy-
gous variation ratio (het/hom) is 1.64 and 1.52, respectively.
(Table 2) These metrics from our datasets are comparable
to other sources [10, 14].
Roughly 3.5 thousand insertion/deletions (indels) were

detected, approximately 470 out of which lie on coding
regions. BGISEQ detected slightly more heterozygous
indels than Hiseq, resulting in higher het/hom ratio
(1.46 vs. 1.31). (Table 2) Around 95% of indels have been
previously reported in dbSNP142. The indels from these
datasets also showed similar length distribution (Fig. 2).

Variation concordance
It has been noticed that the repetitive sequence in the
genome could lead to ambiguity of short fragment align-
ment, which subsequently leads to false variation detec-
tion results. This could be a major cause of the SNV
detection errors. [15] Using the genome mappability
score [15], ~ 2.3% of the target region was identified with
alignment uncertainty. These regions were eliminated,
and only the mappable regions were used hereafter.
The SNVs and indels from these four datasets were com-

pared against each other separately, and Jaccard similarity
was used to measure the concordance between datasets. It
is showed that SNV results have 97.6% intra-platform con-
cordance and 96.7% inter-platform concordance, and BGI-
SEQ has slightly higher intra-platform concordance than
Hiseq. (Figure 3) The high intra-platform concordance in-
dicated qualified reproducibility of each platform. More-
over, BGISEQ has excellent inter-platform concordance
with Hiseq, suggesting that BGISEQ could substitute Hiseq
in many application fields where SNVs are the primary
focus.
For indel, the intra-platform concordance is 82.3% for

BGISEQ and 83.6% for Hiseq, and the inter-platform
concordance is 81.7%. Indels with exact the same position
and alternate alleles were considered as concordant,

Table 1 Data production

Hiseq-1 Hiseq-2 Hiseq-3 Hiseq-4 BGISEQ-1 BGISEQ-2 BGISEQ-3 BGISEQ-4

Read length PE150a PE150 PE150 PE150 PE100 PE100 PE100 PE100

Raw data/Gb 10.04 9.83 9.78 9.00 7.81 7.90 7.65 7.56

Mean depth 99.77 99.78 100.37 99.66 102.27 101.88 101.92 101.77

Bases on targetb (%) 56.02 56.84 58.79 62.43 71.54 70.22 72.65 73.20

Reads on target (%) 70.85 71.32 71.70 70.31 83.36 82.14 83.18 84.15

Duplication rate 7.12 6.59 8.79 7.92 7.10 7.00 7.18 6.75

Coverage (%) 99.74 99.66 99.72 99.75 99.82 99.83 99.82 99.82

4x coverage (%) 99.51 99.37 99.43 99.49 99.63 99.64 99.62 99.61

10x coverage (%) 98.89 98.67 98.60 98.74 98.89 98.93 98.85 98.84

20x coverage (%) 97.10 96.80 96.11 96.16 96.29 96.30 96.01 96.18
aPE, pair-end
bBases aligned on target region/raw data amount
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Fig. 1 Cumulative depth distribution. The cumulative frequency is the fraction of target regions covered by given depth or higher

Table 2 Variation detection and annotation

Hiseq-1 Hiseq-2 Hiseq-3 Hiseq-4 BGISEQ-1 BGISEQ-2 BGISEQ-3 BGISEQ-4

SNV total number a 41,554 41,506 41,627 41,540 41,264 41,294 41,292 41,172

found in dbSNP(%) 99.75 99.73 99.70 99.78 99.74 99.76 99.76 99.80

homozygous 15,741 15,723 15,723 15,758 15,671 15,666 15,692 15,642

heterozygous 25,813 25,783 25,904 25,782 25,593 25,628 25,600 25,530

Ti/Tv 2.56 2.57 2.56 2.56 2.56 2.56 2.56 2.56

het/hom b 1.64 1.64 1.65 1.64 1.63 1.64 1.63 1.63

intronic variations c 17,298 17,351 17,321 17,288 17,217 17,232 17,220 17,229

exonic variations 21,540 21,497 21,561 21,533 21,408 21,407 21,433 21,322

coding variations 19,353 19,332 19,354 19,364 19,269 19,273 19,291 19,210

nonsynonmous 9446 9439 9437 9466 9393 9391 9400 9343

Ti/Tv on exome 3.09 3.10 3.08 3.09 3.08 3.08 3.08 3.09

het/hom on exome 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52

indel total number 3461 3436 3470 3445 3503 3559 3506 3538

found in dbSNP(%) 94.42 95.08 94.55 94.83 94.78 94.44 94.69 94.04

homozygous 1491 1491 1492 1502 1433 1444 1432 1420

heterozygous 1970 1945 1978 1943 2070 2115 2074 2118

het/hom 1.32 1.30 1.33 1.29 1.44 1.46 1.45 1.49

intronic variations 2493 2493 2518 2496 2558 2585 2553 2581

exonic variations 703 689 702 694 705 706 703 702

coding variations 460 465 459 464 473 477 468 473

het/hom on exome 1.12 1.11 1.11 1.11 1.17 1.21 1.14 1.17
aOnly variants on target region were used in these statistics
bhet/hom, heterozygous to homozygous variation ratio
cVariations located at splicing sites are considered as nonsynonymous and not count as intronic
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regardless of their genotypes. This concordance level is
lower than SNV’s, as expected, because it is harder to de-
tect indels from short reads using current methods [16]. It
is possible that there could be different concordance met-
rics for indels, depending on how position and genotype
concordance is defined. When only the location is consid-
ered, regardless of the genotypes, the intra-platform con-
cordance increased to 87.7% for BGISEQ and 87.4% for
Hiseq, and the inter-platform concordance increased to
85.1%. On the other hand, if we restrict concordance sites
as exact genotype match, the intra-platform concordance
decreased to 79.4% for BGISEQ and 81.3% for Hiseq, and
the inter-platform concordance decreased to 76.5%. These
results suggest that different datasets and platforms have
better agreement on indel location, but diverge on zygos-
ity and genotypes.

Variation accuracy
As the sequenced sample NA12878 had been well charac-
terized by genome in the bottle project (GIAB) [10], the
genotype result from GIAB was used as the reference to

benchmark variants accuracy. Only the high confidence
regions from the GIAB dataset was used for evaluation.
Sensitivity and precision were used during the evaluation.
Variation detected by both test data and GIAB were consid-
ered as true positive if they have exactly the same positions,
regardless of whether they have the same genotypes. Over-
lapping indel positions were not considered as the same
one unless they have the same start and end positions.
Regarding SNV detection, 35,210 SNVs were found in

the GIAB dataset, and the sensitivity and precision from
datasets is 99.0 and 99.4%, respectively. Both platforms
have excellent SNV detection accuracy. Furthermore,
within 196 false positive and 356 false negative sites per
sample, 126 (64%) and 204(57%) are concordant in all 8
samples, respectively, indicating errors in the reference
set or systemic exome sequencing bias. Taking this into
consideration, the actual accuracy from these platforms
should be higher, and the difference between datasets on
these loci is minimal.
For indel detection, 2650 indels are found in the GIAB

dataset, and the sensitivity is 93.8 and 92.6%, and the

Fig. 2 Indel length distribution. Deletions are shown as negative length whereas insertions are shown as positive. The fraction of insertions and
deletions sum up to 1 separately. All datasets showed similar length distribution
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precision 97.2 and 98.0% for BGISEQ and Hiseq, re-
spectively. BGISEQ showed higher sensitivity but lower
precision than Hiseq. Thirteen false positive and 42 false
negative sites are concordant across samples, contribut-
ing to 22.9 and 23.6% total false positives and false nega-
tives on average. To achieve better indel detection
performance is still challenging for exome sequencing
and GATK pipeline.

Impact of sequence depth and read length
To analyze the sequence depth effects to variation detec-
tion, the raw data were down-sampled to various se-
quence depths (20x, 30x, 50x, 70x, 100x, 150x). The
SNV detection sensitivity increases with increased se-
quence depth, and it plateaus after the sequence depth
exceeds 100x (Fig. 4). The increase in sensitivity may be
due to better coverage of the target with increased

sequence depth. On the other hand, the SNV detection
precision stays constant while sequence depth increased,
showing that the model has reached its limit when the
depth is greater than 20x. For indel detection, the sensi-
tivity increases while sequence depth increasing, as ex-
pected. But it does not reach a plateau even when the
sequence depth is as high as 150x, showing that add-
itional data is required for a better indel detection.
By truncating read length to 100 bp, four additional

Hiseq pair-end 100 bp (PE100) datasets were generated
from Hiseq datasets respectively, with the same se-
quence depth used in the above evaluation. Compared
to Hiseq PE150 datasets, PE100 datasets showed similar
precision and sensitivity on SNV detection. On indel de-
tection, PE150 and PE100 have similar precision while
PE100 showed slightly higher sensitivity (Table 3). The
result suggests that the read length has no significant

Fig. 3 Concordance of variation detection. The Jaccard similarity for variation detection results from datasets was calculated for SNV (top-left
triangle) and indel (bottom-right triangle) separately. SNV detection showed excellent intra- and inter-platform concordance, while indel
detection showed inferior concordance. The inter-platform concordance is slightly lower than intra-platform concordance
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impact on variation detection accuracy at this sequen-
cing depth level.

Discussion
The reproducibility of a method and its consistency with
other available methods are essential for its application in
academic and clinical scenarios. The aim of this study was
to evaluate these characteristics of BGISEQ-500 in WES
studies. Considering that WES is widely used in human
genetics research and approaching clinical use, the valid-
ation of this newly established platform is crucial.
By comparison with Hiseq4000 data, this study showed

BGISEQ could achieve comparable coverage to Hiseq for
exome capture and sequencing procedure. For variation
detection, both platforms have high and comparable re-
producibility, although the reproducibility of indels is
lower than of SNVs. Furthermore, the inter-platform con-
cordance is commensurate with intra-platform concord-
ance on SNV detection. This indicates that BGISEQ WES

is capable of the applications which Hiseq WES SNV data
has been tested and verified for.
For data usage, BGISEQ showed higher exome capture

efficiency, and requires about 25% less data than Hiseq
to reach the same sequencing depth. If the sequencing
cost per gigabase is comparable between the two plat-
forms, BGISEQ will have a lower cost per sample to ob-
tain the same amount of effective data. Furthermore,
smaller dataset also means less computational resources
and runtime for bioinformatics analysis.
Unlike former Complete Genomics sequencers, the

raw data generated from BGISEQ-500 is in fastq format,
the de facto standard format for NGS data. As a result,
the data is acceptable to most of the commonly used
analysis software. This allows scientists to manipulate
the data by themselves, to adapt the cutting edge ana-
lysis methods, and to compare results with other data
easily. As an illustration, the commonly used bwa-GATK
pipeline was applied to both Hiseq and BGISEQ data

Fig. 4 Variation detection accuracy versus sequence depth. Raw data were down-sampled to 20x, 30x, 50x, 70x, 100x, and 150x to generate this
plot. Variations on the high confidence regions from the genome in the bottle project were used as the reference
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seamlessly in this study, keeping the results clear of
biases possibly introduced by different analysis software.
It is important to note that BGISEQ is still in its rap-

idly evolving phase and the amount of data generated
from BGISEQ is limited. Therefore, the results showed
in this study could be limited by its sample size and the
current state of the instruments. The full evaluation and
validation of this platform requires more data from re-
search and clinical scenarios.

Conclusion
In this study, we evaluated the performance of BGISEQ-500
on WES and compared it with Hiseq4000 WES and GIAB
high-confidence variation dataset. BGISEQ showed high
reproducibility and concordance in intra- and inter- se-
quencing platforms. Both BGISEQ and Hiseq platforms
demonstrated adequate variation detection accuracy on the
benchmark region. These results suggest that BGISEQ-500
is a qualified sequencing platform for WES.

Methods
Data production
The DNA of NA12878 was acquired from Coriell Institute
(Catalog ID NA12878). Agilent SureSelect Kit v5 was used
for exome capture. The library construction and sequen-
cing procedure on BGISEQ-500 were as described in BGI-
SEQ sequencing section, with a ~ 170 bp insert size and
pair-end 100 bp sequencing strategy. The procedure on
Hiseq4000 followed the manufacturer instructions with a
250~300 bp insert size and pair-end 150 bp sequencing
strategy. The DNA was sequenced to >100x on both plat-
forms. Each platform sequenced four replicable libraries.
Each dataset was randomly down-sampled to 100x for
comparison.

BGISEQ sequencing
DNA preparation
1 μg DNA (Qubit quantified) was sheared by Covaris
and double selected with Ampure XP beads to acquire

Table 3 Variation accuracy estimation by comparison with GIAB

detected variants GIAB-specific
variations

Sensitivity
(%)

Precision
(%)a

F-measure
(%)btotal in GIAB not in GIAB

SNV Hiseq-1 35,051 34,851 200 359 98.98 99.43 99.20

Hiseq-2 35,026 34,793 233 417 98.82 99.33 99.07

Hiseq-3 35,030 34,821 209 389 98.90 99.40 99.15

Hiseq-4 35,037 34,842 195 368 98.95 99.44 99.20

BGISEQ-1 35,073 34,883 190 327 99.07 99.46 99.26

BGISEQ-2 35,069 34,876 193 334 99.05 99.45 99.25

BGISEQ-3 35,071 34,886 185 324 99.08 99.47 99.28

BGISEQ-4 35,048 34,881 167 329 99.07 99.52 99.29

Hiseq-1 PE100 35,110 34,905 205 305 99.13 99.42 99.27

Hiseq-2 PE100 35,056 34,855 201 355 98.99 99.43 99.21

Hiseq-3 PE100 35,174 34,880 294 330 99.06 99.16 99.11

Hiseq-4 PE100 35,143 34,897 246 313 99.11 99.30 99.21

indel Hiseq-1 2501 2453 48 197 92.57 98.08 95.24

Hiseq-2 2493 2454 39 196 92.60 98.44 95.43

Hiseq-3 2507 2457 50 193 92.72 98.01 95.29

Hiseq-4 2508 2453 55 197 92.57 97.81 95.11

BGISEQ-1 2542 2480 62 170 93.58 97.56 95.53

BGISEQ-2 2571 2498 73 152 94.26 97.16 95.69

BGISEQ-3 2553 2478 75 172 93.51 97.06 95.25

BGISEQ-4 2564 2488 76 162 93.89 97.04 95.44

Hiseq-1 PE100 2538 2498 40 152 94.26 98.42 96.30

Hiseq-2 PE100 2512 2471 41 179 93.25 98.37 95.74

Hiseq-3 PE100 2541 2474 67 176 93.36 97.36 95.32

Hiseq-4 PE100 2523 2484 39 166 93.74 98.45 96.04
aPrecision = true positive/(true positive + false positive). Precision instead of specificity was used because true negative dominate the region thus specificity is very
close to 1
bF-measure is the harmonic average of the sensitivity and precision. It combines sensitivity and precision in a single measurement
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fragments around 170 bp. End repairing, A-tailing and
Ad153 index adapter ligation of 50 ng size-selected DNA
(0.6*0.8 Ampure XP beads double-selection) were per-
formed in a single tube for a total time of 1.75 h,
followed by a purification with 50 μL of Ampure XP
beads and 20 μL of TE buffer. After PRE-PCR following
the 95 °C 3min, (98 °C 20s, 60 °C 15 s, 72 °C 30s) 8
cycles, 72 °C 10 min,4 °C hold thermal cycles using
KAPA HiFi Hot Start Ready Mix, the product was puri-
fied with 1X Ampure XP beads and quantified with
Qubit BR ds DNA kit.

Exome capture
The hybridization of BGISEQ-500 library was performed
according to the Agilent SureSelect protocol with the
following optimized parameters: 1000 ng purified DNA
was used for hybridization, the index block and PCR
block of Agilent were replaced by a corresponding
Ad153_index block (one for all indexes) and Ad153_PCR
block. KAPA HiFi Hot Start Ready Mix was used for
Post-PCR following the 95 °C 3min, (98 °C 20s, 60 °C 15 s,
72 °C 30s) 13 cycles, 72 °C 10min, 4 °C hold thermal cycle.
Post-PCR products were purified with 1X Ampure XP
beads and quantified with Qubit BR ds DNA kit. The frag-
ment size distribution was analyzed using the Agilent
2100 Bioanalyzer and DNA 1000 kit.

Single strand DNA (ssDNA) circle construction
300 ng Post-PCR products were denatured at 95 °C for 3
min (with heated lid at 105 °C) and transferred to 4 °C
quickly to make a single strand DNA circle (ssDNA cir-
cle). After heat denaturation, the splint oligo binds to
the adapters on both ends of a single Post-PCR product,
guiding both ends of the single strand to adjacent posi-
tions. The following ligation reaction using T4 DNA lig-
ase at 37 °C for 30 min helps connect the adjacent bases
on different ends of the single strand with a phospho-
diester bond to complete the circularization. An enzyme
digestion using Exo I and Exo III at 37 °C, 30 min was
implemented to eliminate uncirculated DNA. The librar-
ies were purified with 168 μL of Ampure XP beads and
quantified with Qubit BR ssDNA kit. The resulting
ssDNA circle is the final library.

Make DNA nanoballs (DNBs)
DNBs were generated from the ssDNA circle using roll-
ing circle amplification (RCA) to enhance the fluores-
cent signals in the sequencing process [6]. Primer mix
bind to 6 ng ssDNA circles at 95 °C for 1 min, 65 °C for
1 min, and 40 °C for 1 min. 40 μL Phi29 DNA polymer-
ase and 4 μL SSB was added for RCA reaction at 30 °C
for 30 min, then quickly transferred to 4 °C. The reaction
was ended completely by 20 μl stop buffer, generating
even-sized DNBs which will have similar fluorescent

intensity in the sequencing process to ensure the signal
chastity. Compared to PCR amplification, RCA has no
PCR error accumulation and no PCR bias because the
original ssDNA circle is the only template during the en-
tire amplification process [6]. Unlike emulsion or bridge
PCR, the rolling-circle amplification does not require
precise titration of template concentrations in situ and
circumvents stochastic inefficiencies.

Loading and sequencing
The DNBs were combined with 1/4 volume of DNB
loading buffer and an appropriate amount of PBS buffer
to a total volume of 140 μL, and placed on the loader
machine. The DNBs were loaded onto the flow cell in
which DNB binding sites are patterned nano-arrays.
Sequencing data were generated with pair-end 100 bp
sequencing strategy on the BGISEQ-500 platform.

Variation detection
The variation detection proceeded under the guidelines
from Genome Analysis Toolkit (GATK) [11, 12]. Reads
were aligned to human reference genome hg19 using
bwa-mem (version 0.7.15) [17] with default parameters.
The bam files were sorted, merged and library duplica-
tions were identified using Picard (https://github.com/
broadinstitute/picard, version 2.5.0). After that, GATK
(version 3.3) was applied to refine reads around indels,
and recalibrate base quality. Variation calling on the cap-
ture region was carried out by GATK HaplotypeCaller
with ‘--emitRefConfidence GVCF --variant_index_type
LINEAR --variant_index_parameter 128000’. Addition-
ally, because the BGISEQ library construction protocol
introduced more PCR cycles, we used ‘-pcrModel AG-
GRESSIVE’ for BGISEQ datasets. The gvcfs were then
genotyped by GenotypeGVCFs with ‘-stand_call_conf 30
-stand_emit_conf 10 -allSites’. Raw SNVs and indels
were extracted by SelectVariants separately. To obtain
high quality variants, hard filter was applied using GATK
VariantFiltration but with separate criteria for each plat-
form. We found that the GATK recommendation cri-
teria worked well for illumina data (‘QD < 2.0 || FS >
60.0 || MQ <40.0 || MQRankSum < -12.5 || ReadPos-
RankSum < -8.0’ for SNVs; and ‘QD < 2.0 || FS > 200.0
|| ReadPosRankSum < -20.0’ for indels), but it looks
poor for the BGISEQ data. This is reasonable because
these recommendation were specific based on Illumina
data, and it is reasonable to assume that BGISEQ data
have different characteristics. A different criteria was
tuned following the hard-filter tuning scheme from
GATK (https://software.broadinstitute.org/gatk/docume
ntation/article.php?id=6925) based on additional inhouse
BGISEQ data, and applied on BGISEQ data (‘QD < 2.0
|| FS > 60.0 || ReadPosRankSum < -8.0’ for SNVs; and
‘QD < 4.0 || FS > 200.0 || ReadPosRankSum < -8.0’ for
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indels). The final call-sets were then annotated by SnpEff
(version: 4.0) [18].

Variation concordance analysis
Regions with genome mappability scores (GMS) [15] less
than 1 were excluded from the evaluation. Jaccard simi-
larity (number of sites where both datasets detected as
SNV divided by the number of sites where at least one
dataset is detected as SNV) was used to measure the
concordance between datasets.

Variation accuracy estimation
The genotype result from GIAB was used as the refer-
ence to benchmark variation accuracy. Only the GIAB
high confidence regions with GMS equal to 1 was used.
During the evaluation, precision (true positive/(true
positive + false positive)) instead of specificity (true
negative/(true negative + false positive)) was used be-
cause true negative dominated the dataset. Variation loci
detected in both test data and GIAB were considered as
true positive.
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