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Abstract

Background: Predicting drug-target interactions is time-consuming and expensive. It is important to present the
accuracy of the calculation method. There are many algorithms to predict global interactions, some of which use
drug-target networks for prediction (ie, a bipartite graph of bound drug pairs and targets known to interact).
Although these algorithms can predict some drug-target interactions to some extent, there is little effect for some
new drugs or targets that have no known interaction.

Results: Since the datasets are usually located at or near low-dimensional nonlinear manifolds, we propose an
improved GRMF (graph regularized matrix factorization) method to learn these flow patterns in combination with
the previous matrix-decomposition method. In addition, we use one of the pre-processing steps previously proposed
to improve the accuracy of the prediction.

Conclusions: Cross-validation is used to evaluate our method, and simulation experiments are used to predict new
interactions. In most cases, our method is superior to other methods. Finally, some examples of new drugs and new
targets are predicted by performing simulation experiments. And the improved GRMF method can better predict the
remaining drug-target interactions.
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Background
With advances in drug discovery technologies, the exist-
ing methods can identify drug targets to some extent.
But drug development is a high-cost, inefficient problem
[1]. For drug developers, there has been a great deal of
interest in the repositioning of drugs. This repositioning
has some potential to reduce risk time and cost [2]. A
crucial element for the repositioning of medicines is on-
line biological databases such as KEGG [3], DrugBank
[4], STITCH [5] and ChEMBL [6], which store a large
number of current drug-target interactions. It is worth

noting that there are still many interactions that have
not been found [7]. Therefore, the advances of
drug-target prediction technology is accelerated, and
more and more prediction methods are proposed [8].
These computations, which reasonably predict new and
unexplored interactions, have greatly facilitated the drug
discovery process, making the process more credible.
Recent research shows that there are three popular
methods for predicting drug-target interactions, such as
ligand-based methods [9], docking-based methods [10],
and chemogenomic approaches [11]. Of course, we can
also use the opposition-based learning particle swarm
optimization to predict interactions, such as SNP-SNP
interactions [12]. Moreover, the potential gene-gene in-
teractions network can be identified by LNDriver [13].
Recently, many researchers have used matrix decom-

position methods to solve drug-target interaction
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problems. The main methods are Bayesian matrix
factorization, KBMF2K [14] and collaborative matrix
factorization method, CMF [15]. A high-dimensional
drug-target interaction matrix is decomposed into a
plurality of low-dimensional matrices, and these matri-
ces have characteristics of the original matrices, which is
the principle of these methods. However, in theories, the
above methods of matrix factorization still have some
room for improvement. [16].
Using chemogenomic approaches to predict drug-target

interactions is an effective method. The reason is that the
first two methods have their own drawbacks. If a docking
simulation is used, the three-dimensional structure of a tar-
get protein must be available. Furthermore, for
ligand-based methods, if there are few or no target proteins
known, this would be a problem that cannot be ignored.
[9]. The advantage of using chemical genomics is that the
information from the drugs and targets is used simultan-
eously for prediction [17]. New interactions are inferred by
calculating the similarity of the chemical structures be-
tween drugs and the similarity of the genomic sequences
between the targets. In this paper, the drug similarity and
the target similarity are based on the construction methods
in previous studies, which are based on the characteristics
of the drug and the characteristics of the target. Its advan-
tage is that we are better able to compare it with other
methods, which is universal. However, if the same con-
struction method of the drug similarity and the target simi-
larity is used, this may affect the final results.
Two separate models are used to train drug target

pairs, one based on the drug side and the other based on
the target side. Thus, the final results are solved by pre-
dicting these two aspects. In this paper, to avoid
over-fitting and sparing the target, the L2,1-norm is
added in our method, which can eliminate some un-
attached target pairs [18]. Ten-fold cross-validation is
used to evaluate the performance of our method.
We present the experimental results in Results. In

Datasets, we conducted a case study. And we summarize
this paper in Cross-validation experiments. In Inter-
action prediction under CVd, we clearly introduced the
methods, including specific iteration formulas and
algorithms.

Results
Datasets
Four datasets are used to experiment: the nuclear recep-
tor (NR), the G protein-coupled receptor (GPCR), the
ion channel (IC) and the enzyme (E). The size of these
four datasets is different. Nuclear receptors are one of
the most abundant transcriptional regulators in meta-
zoans. NR includes some steroid hormones, vitamin D
and quinone. In recent years, nuclear receptors have re-
ceived widespread attention. For example, they are

closely related to the development of diseases such as
diabetes and fatty liver. Among them, PPAR-g agonist
thiazolidinedione rosiglitazone can effectively improve in-
sulin sensitivity in diabetic patients. GPCRs are one of the
target enzymes that are important proteins in cell signal-
ing and have so far been found as therapeutic drugs. The
total number of targets is about 500, and GPCR targets ac-
count for the vast majority of receptors therein. In recent
years, indications for targeting GPCR drugs are expanding
from traditional areas such as allergies, hypertension,
anesthesia and schizophrenia to new areas such as obesity.
An ion channel is a pore-forming protein that traverses
the channel by allowing an ion of a particular type to rely
on an electrochemical gradient. ICs are small pores in the
cell membrane that allow ions to enter and exit the cell.
Therefore, most of them have become the targets of some
mainstream drugs. Enzymes are macromolecular biocata-
lysts. Some common drugs use enzymes as targets, and
some effects on enzymes such as inhibition, induction, ac-
tivation or reactivation are exerted. In addition, drugs like
this are mostly enzyme inhibitors. According to statistics,
half of the top 20 drugs in the world are enzyme inhibi-
tors. It is worth noting that some drugs are enzymes
themselves, such as pepsin and trypsin.
Each dataset contains three matrices, Y, Sd and St.

Matrix Y represents the drug-target interactions. It is
worth noting that this matrix is an adjacency matrix. If it
is known that the drug di is related to the target tj, Yij is 1,
otherwise Yij is 0. The matrix Sd represents the chemical
pairing structural similarity [19] and the matrix St repre-
sents the genome sequence similarity of the target pair
[20]. Table 1 lists the specific information for the four
datasets. More information about the datasets are pub-
lished in https://github.com/cuizhensdws/L21-GRMF.

Cross-validation experiments
We compare the existing matrix decomposition methods
CMF (Collaborative matrix factorization), GRMF (Graph
regularized matrix factorization), WGRMF (Weighted
graph regularized matrix factorization) and our proposed
method and compare WKNKN preprocessing on these
methods. We use cross-validation experiments on these
methods. In this paper, we use a ten-fold cross-validation
(CV). The original dataset Y is divided into ten subsets,
each of which is tested once and the rest as a training set.
The cross-validation is repeated five times, one subset is
selected each time as a test set, and the average

Table 1 Drugs, Targets, and Interactions in Each Dataset

Datasets NR GPCR IC E

Drugs 54 223 210 445

Targets 26 95 204 664

Interactions 90 635 1476 2923
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cross-validation recognition accuracy rate of five times is
taken as a result.
To verify the effect of the prediction, we use the evalu-

ation index which has been widely used before, the
AUPR (Area under the Precision-Recall curve) [21].
There is also an evaluation scale called AUC (Area
under the receiver operating characteristic curve). We
can use this method when forecasting. In our experi-
ments, ten AUPR values are calculated for each ten-fold
cross-validation, an average is obtained and we repeat
five times, so we take the average of the five AUPRs as
the final result [22]. In general, the AUPR value is less
than the AUC value. The AUPR value is above 0.3, so
the experimental results are reasonable.
We test two aspects [23], one is CVd which is

based on the drug-interaction profiles and the other
is CVt, which is based on the target-interaction pro-
files. CVd is used to test the ability to predict new
drugs, CVt is used to test the ability to predict new
targets. In addition, we perform a convergence ana-
lysis of each method using the NR and GPCR data-
sets as examples, and each method is subjected to
100 iterations. When the number of iterations is
about 20, our method achieves convergence. It is
worth noting that we have different tolerances for er-
rors, considering the size and type of the datasets.
Generally speaking, as long as the error is within a
reasonable range, this is acceptable. Figures 1 and 2
show the convergence of different methods on the
NR and GPCR datasets, respectively.

Interaction prediction under CVd
Table 2 lists the experimental results at CVd. And
Standard deviations are given in parentheses. Under the

NR dataset, the L2,1-GRMF (L2,1-norm Graph regular-
ized matrix factorization) method is superior to the
GRMF method and is almost the same as the GRMF
method after adding the WKNKN. Importantly, our im-
proved method L2,1-GRMF, with the addition of
WKNKN, has seen significant improvements. Moreover,
after adding the weight matrix to L2,1-GRMF and using
WKNKN, the accuracy of prediction is also improved.
Figure 3 shows the PR curves on the CVd side of each
method on the NR dataset.
However, on the GPCR dataset, we run our method

and find that it is not outperform the previous method,
and initially estimate that there is a problem with the
dataset itself. Figure 4 shows the PR curves on the CVd
side of each method on the GPCR dataset. We observe
that using the weight matrix when performing CVd ex-
periments is higher than the AUPR value obtained with-
out using the weight matrix. In addition, the
L2,1-WGRMF (Weighted L2,1-norm graph regularized
matrix factorization) method using WKNKN is superior
to any other method in the IC dataset, slightly better
than the WGRMF method using WKNKN. Figure 5
shows the PR curves on the CVd side of each method
on the IC dataset. In the E dataset, the best method is
L2,1-WGRMF but the AUPR score drops instead after
applying WKNKN. In other words, in the E dataset, the
preprocessing step will actually have a negative effect on
the forecast result. Figure 6 shows the PR curves on the
CVd side of each method on the E dataset. In general,
not all methods use WKNKN to improve AUPR scores,
which have a positive effect on most datasets and nega-
tive effects on some datasets. In practice, the negative
impact of the WKNKN method is unavoidable on some
datasets. One important reason is that the WKNKN

Fig. 1 Comparison of convergence about three methods on the NR dataset
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method assigns an inaccurate value to the 0 element of the
matrix Y on the E dataset. When we add the L2,1-GRMF
method to make more accurate predictions, these inaccur-
ate values will reduce the prediction accuracy.

Interaction prediction under CVt
We can see in Table 3 that under most datasets, the AUPR
value of CVt is generally higher than the AUPR value of
CVd. This shows that hiding the interactions of the target
can still get a better prediction result. But hiding the drug
interactions and the prediction result will be greatly reduced.
And standard deviations are given in parentheses. It is worth
noting that in most datasets, the CMF method has lower
AUPR values than any other method, and its AUPR value is
far less than our method, especially in the NR dataset.

Discussion
Among the NR, GPCR and IC datasets, the superior
methods are the L2,1-GRMF method using the

preprocessing steps, and our improved method has
some improvement on all three datasets. Figures 7, 8, 9
and 10 show the PR curves on the CVt side of each
method on the NR, GPCR, IC and E datasets, respect-
ively. On the E dataset, it is still the best GRMF
method. We can also see that some instances are ig-
nored after using the weight matrix, whereas the GRMF
method does not use the weight matrix W. Therefore,
based on the previous conclusions, the information of
the target is more important than the information of
the drug. Therefore, using the GRMF method, the
AUPR value is higher than the AUPR value using
WGRMF.
On most datasets, the L2,1-norm does play a key role

in predicting the results. The L2,1-norm can provide a
sparse solution for the final result. Compared with the
CMF method, the L2,1-norm also promotes the final con-
vergence. Therefore, the overall performance of the
L2,1-GRMF method and L2,1-WGRMF is superior to
other methods.

Fig. 2 Comparison of convergence about three methods on the GPCR dataset

Table 2 AUPR Results for Interaction Prediction Under CVd

Methods NR GPCR IC E

CMF 0.482(0.034) 0.406(0.008) 0.350(0.008) 0.375(0.007)

GRMF 0.517(0.025) 0.369(0.011) 0.341(0.016) 0.349(0.012)

WGRMF 0.520(0.025) 0.408(0.010) 0.364(0.018) 0.404(0.014)

L2,1-GRMF 0.543(0.034) 0.373(0.011) 0.345(0.012) 0.346(0.013)

L2,1-WGRMF 0.542(0.024) 0.400(0.010) 0.370(0.016) 0.408(0.013)

WKNKN+CMF 0.515(0.032) 0.409(0.010) 0.350(0.014) 0.385(0.004)

WKNKN+GRMF 0.542(0.028) 0.404(0.011) 0.356(0.014) 0.390(0.010)

WKNKN+WGRMF 0.528(0.033) 0.410(0.012) 0.369(0.017) 0.401(0.013)

WKNKN+L2,1-GRMF 0.573(0.011) 0.394(0.007) 0.356(0.012) 0.386(0.013)

WKNKN+L2,1-WGRMF 0.544(0.026) 0.394(0.012) 0.374(0.016) 0.385(0.007)
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Case study
In this section, we conduct a simulation experiment.
First, we erase some of the known drug targets in the
original dataset. That is, those elements that are origin-
ally 1 in the original matrix become 0. This process is
performed randomly by the computer. In the second
step, we perform the experiment. We examine the re-
sults of the experiment and see if the erased condition is
successfully predicted.
The experimental procedure we implement is that in

the NR dataset, ten drugs with the interaction of the tar-
get estrogen receptor alpha (KEGG ID: hsa2099) are re-
moved. This target is the main cause of breast cancer.
After the experiment is done, we count the experimental
results. We predict five of the hidden interactions. At
the same time, we also predict a portion of new drugs
and take the most reliable top five new drugs stated in

Table 4. Among them, the sixth drug Testosterone is the
drug with the highest correlation with this target.
In IC dataset, for the drug Diazoxide (KEGG ID:

D00294), a blood pressure lowering drug. We also use a
similar approach. Before using the L2,1-GRMF method, we
eliminate twenty of them in the matrix Y. Because the
GPCR dataset is larger than the NR dataset and there are
many targets associate with this drug, we have removed
twenty interactions here. After conducting simulation ex-
periments, we successfully predicted twelve known targets
and eight new targets. We then list the top twenty targets
in Table 5. The first 12 are known targets and the
remaining part is our prediction of a new target.
For these two cases, the similarity of the estrogen re-

ceptor alpha to its nearest neighbor target is less than
0.02 in the matrix St. In the matrix Sd, the similarity of
Diazoxide to its nearest neighbor is 0.3, which is also

Fig. 3 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR curves
on the CVd side of each method on the NR dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves for
each method

Fig. 4 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR curves
on the CVd side of each method on the GPCR dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves for
each method
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quite low. Therefore, we are more difficult to make pre-
dictions. Thus, this shows that our proposed L2,1-GRMF
method is excellent and reliable results can be obtained
when predicting some challenging drugs and targets. Of
course, there are still some limitations to the two
methods proposed. If we add a weight matrix, the time
required for the experiment will multiply. Compared
with other methods, our time complexity is relatively
high. In addition, the method does not predict new
drugs and new targets without any interaction.

Conclusions
In this paper, we propose two improved matrix decom-
position methods, L2,1-GRMF and L2,1-WGRMF. Both
methods are used to predict drug-target interactions.
We use cross-validation to calculate AUPR values and
predict on the drug side (CVd) and the target side
(CVt), respectively. We compare them with the most

advanced matrix factorization methods currently avail-
able. In most cases, our improved methods can provide
the best results, which means that the predictive per-
formance is improved with the use of the L2,1-norm.
WKNKN preprocessing steps are used to help the ex-

perimental results. In addition, it can also be used as an
independent method to predict the interactions of
drug-target. Considering that the dimensions of the data
are relatively small, so the drug-target interactions con-
tained in each dataset are also limited. And our ap-
proach applies to these datasets.
In the future, we expect more and more known inter-

action of drug targets will be found, providing more
valuable datasets for our prediction. We will explore
more effective prediction methods to solve drug-target
interaction problems. For example, we can use matrix
factorization of hyper-graph method to improve the reli-
ability of predictive interactions.

Fig. 5 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR curves
on the CVd side of each method on the IC dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves for
each method

Fig. 6 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR curves
on the CVd side of each method on the E dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves for
each method
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Methods
CMF
Co-matrix factorization is an effective method to predict
the interactions of drug-target [15]. The objective func-
tion of CMF method is

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þ λd Sd−AAT
�� ��2

F
þ λt St−BBT

�� ��2
F
; ð1Þ

where W represents a weight matrix, Wij = 1 when Yij is
known, Wij = 0 otherwise. Obviously, the last two items
of the objective function are regularization terms. We
use L to represent the objection function in Eq. (1), ai
represents the i-th vector of A, and bj represents the j-th
vector of B. Two update rules are used to solve ∂L/∂a =
0 and ∂L/∂b = 0. Finally, the two update rules are exe-
cuted using least square until convergence:

A ¼ YBþ λdSdA
� �

BTBþ λlIk þ λdAAT
� �−1

; ð2Þ

B ¼ YTAþ λtS
tB

� �
ATAþ λlIk þ λtB

TB
� �−1

: ð3Þ

In summary, after the potential feature matrices A and
B are updated, the predicted score matrix can be ob-
tained by multiplying A and B. This predicted score
matrix can be used to predict new drug-target interac-
tions by comparing with the original drug-target interac-
tions matrix Y.

GRMF
In the GRMF method, the benefits of regularization
items is that it can avoid over-fitting [20]. The objective
function of GRMF is as follows:

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þ λdTr AT ~LdA
� �þ λtTr BT ~LtB

� �
; ð4Þ

Then, matrix A and B are initialized. The SVD
(singular value decomposition) method is used to de-
compose matrix Y ∈ Rn ×m into U ∈ Rn × k, Sk ∈ Rk × k,
and V ∈ Rn × k. In matrix Y, the largest possible

Table 3 AUPR Results for Interaction Prediction Under CVt

Methods NR GPCR IC E

CMF 0.379(0.020) 0.540(0.028) 0.751(0.014) 0.740(0.014)

GRMF 0.423(0.032) 0.567(0.027) 0.745(0.008) 0.763(0.020)

WGRMF 0.423(0.017) 0.574(0.027) 0.801(0.008) 0.801(0.018)

L21-GRMF 0.465(0.056) 0.607(0.020) 0.823(0.012) 0.804(0.021)

L2,1-WGRMF 0.425(0.023) 0.603(0.026) 0.801(0.007) 0.802(0.016)

WKNKN+CMF 0.434(0.029) 0.557(0.021) 0.742(0.015) 0.772(0.014)

WKNKN+GRMF 0.500(0.028) 0.615(0.023) 0.815(0.010) 0.807(0.016)

WKNKN+WGRMF 0.446(0.015) 0.585(0.027) 0.799(0.007) 0.798(0.018)

WKNKN+L2,1-GRMF 0.519(0.038) 0.617(0.024) 0.826(0.008) 0.799(0.016)

WKNKN+L2,1-WGRMF 0.457(0.032) 0.548(0.021) 0.799(0.012) 0.791(0.014)

Fig. 7 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR curves
on the CVt side of each method on the NR dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves for
each method

Cui et al. BMC Bioinformatics 2019, 20(Suppl 8):287 Page 7 of 13



number of singular values is min(n,m), so kmax =
min(n,m). Finally, the square root of Sk can be obtained,

where A ¼ US1=2k , B ¼ VS1=2k .
Next, the least square method is used to update A and

B. This objective function in Eq. (4) can be replaced by
L. These two update rules are used to solve ∂L/∂a = 0
and ∂L/∂b = 0. Finally, the two update rules are executed
by using least square until convergence.

WGRMF
Like CMF, the weight matrix W in WGRMF is the
same as W in CMF. Behind the weight matrix, either
to prevent unknown interactions, the purpose is to
help find the latent feature matrix A and B. The ob-
jective function of WGRMF method is as follows

minA;B ¼ W⊙ Y−ABT
� ��� ��2

F

þ λl Ak k2F þ Bk k2F
� �

þ λdTr AT ~LdA
� �þ λtTr BT ~LtB

� �
: ð5Þ

This objective function in Eq. (5) can be replaced
by L, where ai represents the i-th vector of A, and
bj represents the j-th vector of B. These two update
rules are used to solve ∂L/∂a = 0 and ∂L/∂b = 0. Fi-
nally, the two update rules are executed by using
least square until convergence. However, it is worth
noting that the update rules here are not the same
as the update rules in GRMF. In GRMF, the rules
are matrix updates, but in WGRMF the rules are
row updates.

Fig. 8 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR curves
on the CVt side of each method on the GPCR dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves for
each method

Fig. 9 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR curves
on the CVt side of each method on the IC dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves for
each method
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Our proposed methods
Here, our improved approach is used to solve the pre-
diction of drug-target interactions problem. WKNKN
(weighted K nearest known neighbors) [20] as a prepro-
cessing step is used to solve unknown missing value prob-
lems. Two methods are proposed, Graph Regularization
Matrix factorization based on L2,1-norm, and a variant
called L2,1-WGRMF, both of which are used to predict
drug-target interactions. Figure 11 shows a flow chart of
the proposed method.

L2,1-GRMF
Sparsification of the drug similarity matrix and target
similarity matrix
Graph regularization terms are used to fully consider the
internal structure of the similarity matrix Sd and St. In
addition, the graph regularization terms can keep the in-
ternal structure of the matrices unchanged. We derive a
p-nearest neighbor graph from each drug and target
similarity matrix [24] Sd and St in this work. Therefore,

given a drug similarity matrix Sd, a p-nearest neighbor
graph [25] N can be generated as

∀i; j; Nij ¼
1; j∈Np ið Þ i∈Np jð Þ
0; j∉Np ið Þ i∉Np jð Þ
0:5; otherwise;

8<: ð6Þ

where N is used to sparsify the matrix Sd, which can be
written as

∀i; j; Ŝ ¼ NijS
d
ij: ð7Þ

This result is for a sparse drug similarity matrix. Simi-
larly, the target similarity matrix St can be obtained in
the same way. We use the Euclidean distance to calcu-
late the nearest neighbor. In general, Euclidean distance
will give better results because it represents the true
distance.
Graph regularization helps to facilitate the study the

manifold from learning drugs and target spaces. In the
original space, there are points that are close to each
other, and when the manifold learning is performed, the
points are also close to each other in learning.

Low-rank approximation
The idea of low rank approximation (LRA) is applied to
GRMF [26]. It decomposes the target matrix Y into two
low-rank latent feature matrices A and B, i.e., Y ≈ABT

[27]. And the objective function of GRMF can be written
as the following optimization problem:

minA;B ¼ Y−ABT
�� ��2

F ; ð8Þ

where ‖⋅‖F is Frobenius norm. In addition, the number
of potential features of A and B is represented by k.

Fig. 10 PR curves for different methods are plotted together, providing a visual comparison between their prediction performances. The PR
curves on the CVt side of each method on the E dataset. a WKNKN is not used, the PR curves for each method. b WKNKN is used, the PR curves
for each method

Table 4 Predicted Drugs for estrogen receptor alpha, NR
Dataset

Rank Drug Drug ID

1 Progesterone D00066

2 Estrone D00067

3 Ethinylestradiol D00554

4 Etodolac D00315

5 Ethynodiol diacetate D01294

6 Testosterone D00075

7 Budesonide D00246

8 Isotretinoin D00348

9 Mometasone furoate D00690

10 Paricalcitol D00930

Cui et al. BMC Bioinformatics 2019, 20(Suppl 8):287 Page 9 of 13



Regularization
In general, the Tikhonov and graph regularization terms
can be used to avoid over-fitting and enhance
generalization capability. Here is the objective function
of L2,1-GRMF:

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þ λl Bk k2;1 þ λd
Xn
i;r¼1

cSdir ai−ark k2

þ λt
Xm
j;q¼1

cStjq b j−bq
�� ��2; ð9Þ

where λl, λd and λt are positive parameters, ai is the i-th
rows of A, and bj is the j-th rows of B, n is the number
of drugs, and m is the number of targets. The first term
is an approximate model of the matrix Y. The second
term is the Tikhonov regularization. Its main purpose is
to minimize the norms of A, B. The third term is the
L2,1-norm applied on B to increase the target matrix
sparsity and discard unwanted target pairs. Considering
that we are more concerned with certain drugs, we use
the L2,1-norm to sparse the potential feature matrix of
the target, so that we can better predict new drugs.
However, while the L2,1-norm is added to A, some of the
more important drugs may be lost. The last two terms
are graph regularization of drugs and targets,

respectively. Moreover, the drug-target model can be re-
written as:

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þ λl Bk k2;1 þ λdTr ATLdA
� �

þ λtTr BTLtB
� �

; ð10Þ

where Tr(⋅) is the trace of the matrix, Ld¼Dd− bSd is the

graph Laplacian for bSd , Lt¼Dt−bSt is the graph Laplacian

for bSt . Please refer to [28] for more details on rewriting
graph regularization. We know that the known normal-
ized Laplacian is better than unknown, so we replace Ld

and Lt with ~Ld ¼ ðDdÞ−1=2LdðDdÞ−1=2 and ~Lt ¼ ðDtÞ−1=2
LtðDtÞ−1=2. The function can be written as:

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þ λl Bk k2;1 þ λdTr AT ~LdA
� �

þ λtTr BT ~LtB
� �

: ð11Þ

We use the minimization of the objective function to
predict the outcome of the interactions, but this could
lead to unsatisfactory results. Because there are many
zeros that have not been found. Therefore, we use
WKNKN pre-processing method to solve this problem.

Table 5 Predicted Targets for Diazoxide, IC Dataset

Rank Target Target ID

1 potassium voltage-gated channel subfamily J member 16 hsa3773

2 potassium voltage-gated channel subfamily A member regulatory beta subunit 1 hsa7881

3 potassium voltage-gated channel subfamily J member 15 hsa3772

4 potassium voltage-gated channel modifier subfamily S member 2 hsa3788

5 potassium voltage-gated channel subfamily H member 5 hsa27133

6 potassium voltage-gated channel subfamily D member 1 hsa3750

7 glutamate ionotropic receptor AMPA type subunit 1 hsa2890

8 potassium voltage-gated channel subfamily D member 3 hsa3752

9 potassium calcium-activated channel subfamily N member 4 hsa3783

10 potassium voltage-gated channel subfamily H member 1 hsa3756

11 potassium calcium-activated channel subfamily N member 3 hsa3782

12 potassium voltage-gated channel subfamily D member 2 hsa3751

13 chloride voltage-gated channel 2 hsa1181

14 calcium voltage-gated channel auxiliary subunit beta 4 hsa785

15 sodium channel epithelial 1 gamma subunit hsa6340

16 ryanodine receptor 3 hsa6263

17 cholinergic receptor nicotinic delta subunit hsa1144

18 solute carrier family 6 member 4 hsa6532

19 sodium voltage-gated channel alpha subunit 3 hsa6328

20 sodium voltage-gated channel alpha subunit 9 hsa6335
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Initialization of A and B
For the input matrix Y, SVD (Singular Value Decompos-
ition) method is used to obtain the initial value of matrix
A and matrix B:

U; S;V½ � ¼ SVD Y; kð Þ;A ¼ US1=2k ;B ¼ VS1=2k : ð12Þ

Among them, Sk is a diagonal matrix and contains the
k largest singular values. In matrix Y, the number of sin-
gular values is kmax =min(n,m). According to the SVD
method, kmax is the maximum possible number.

Optimization algorithm
In this paper, we can update A and B by using the
least square method. Let the partial derivative of A
be equal to 0, the partial derivative of B be equal to
0, the objective function in Eq. (11) can be replaced
by L, that is, ∂L/∂A = 0 and ∂L/∂B = 0. The two up-
date rules are executed by using least square until
convergence. When we perform the L2,1-GRMF
method, λl, λd and λt are determined by the
cross-validation on the training set to the optimal
parameter values. We use grid search, λl ∈ {2

−2, 2−1,
20, 21}. Then we choose the optimal parameters from
this set. Derivation process is as follows:

A ¼ YB−λd ~LdA
� �

BTBþ λlIk
� �−1

; ð13Þ

B ¼ YTA−λt ~LtB
� �

ATAþ λlIk þ λlDIk
� �−1

; ð14Þ

where D is a diagonal matrix with the i-th diagonal
element as dii = 1/2‖(B)i‖2. The specific algorithm of
L2,1-GRMF is as follows:

L2,1-WGRMF
A variant of L2,1-GRMF, called L2,1-WGRMF, is obtained
here by adding a weight matrix W to the L2,1-GRMF. The
advantage is that it helps to determine the latent feature
matrices A and B of the drug-target matrix Y. So, we write
the objective function that contains W as follows:

minA;B ¼ W⊙ Y−ABT
� ��� ��2

F

þ λl Ak k2F þ Bk k2F
� �þ λl Bk k2;1

þ λdTr ATLdA
� �þ λtTr BTLtB

� �
: ð15Þ

Let objective function be set to F such that ∂F/∂ai = 0
and ∂F/∂bj = 0. The update rules are used to obtain A
and B until convergence

Initialize BInitialize A

SVD

Optimize A and B

Prediction score 

matrix Y=ABT

Input original matrix Y, Sd, St

L2,1-GRMF method

YWKNKN, Sd, St

Pre-processing: WKNKN

Fig. 11 A brief flow chart of the L2,1-GRMF method. It includes the
process of inputting the original datasets to the final generation of
the predicted score matrix
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∀i ¼ 1…n;

ai ¼
Xm
j¼1

WijY ijb j−λd ~Ld
� �

i�A

 ! Xm
j¼1

Wijb
T
j b j þ λlIk

 !−1

;

ð16Þ

∀ j ¼ 1…m;

bj ¼
Xn
i¼1

WijY ijai−λt ~Lt
� �

j�B

 ! Xn
i¼1

Wija
T
i ai þ λlIk þ λlDIk

 !−1

:

ð17Þ
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