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Abstract

Background: Numerous essential algorithms and methods, including entropy-based quantitative methods, have
been developed to analyze complex DNA sequences since the last decade. Exons and introns are the most notable
components of DNA and their identification and prediction are always the focus of state-of-the-art research.

Results: In this study, we designed an integrated entropy-based analysis approach, which involves modified

topological entropy calculation, genomic signal processing (GSP) method and singular value decomposition (SVD), to
investigate exons and introns in DNA sequences. We optimized and implemented the topological entropy and the
generalized topological entropy to calculate the complexity of DNA sequences, highlighting the characteristics of
repetition sequences. By comparing digitalizing entropy values of exons and introns, we observed that they are
significantly different. After we converted DNA data to numerical topological entropy value, we applied SVD method
to effectively investigate exon and intron regions on a single gene sequence. Additionally, several genes across five
species are used for exon predictions.

Conclusions: Our approach not only helps to explore the complexity of DNA sequence and its functional elements,

sequences.

Genomic signal processing

but also provides an entropy-based GSP method to analyze exon and intron regions. Our work is feasible across
different species and extendable to analyze other components in both coding and noncoding region of DNA
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Background

Research on Deoxyribonucleic acid (DNA) is a key con-
tent and important foundation in biological and life sci-
ence studies [1, 2]. Functional DNA elements such as
genes and noncoding elements are composed of four
nucleotides: adenine (A), cytosine (C), guanine (G) and
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thymine (T). Their functions are basically decided by
order of nucleotides. Essential part of genomic sequence
analysis is to identify functional elements and their posi-
tions in DNA sequence [3—-8], which is a basis for further
research on target genes and plays a vital role in species
evolution studies.

Information theory is a science which studies the mea-
surement, transmission, exchange and storage of infor-
mation. Genetics information is supposed to follow the
general law of information storage and communication.
Therefore, information theory [9, 10] method is a feasible
way to analyze genetic information [6, 11-13]. As a mea-
sure of information complexity, information entropy was
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first proposed by Shannon in 1948 [10]. It is reasonable
to analyze the genome sequence based on information
entropy methods. For example, there are different con-
served and correlated loci on the DNA sequence and
their randomness leads to various information entropy
values. Based on the theory of information entropy, peo-
ple can quantitatively describe the complexity of given
sequences and categorize these sequences according to
their complexity.

In past decade, entropy-based quantitative analysis
methods facilitated calculating sequence complexity and
analyzing underlying connections between genetic ele-
ments. For instance, the Shannon metric entropy is
used to calculate the genomic DNA sequence of dif-
ferent organisms [14] and the Renyi entropy is mainly
applied to evaluate randomness of the DNA sequence
[15]. The diffusion entropy can be used to analyze the
complexity of promoter region of the human genome [5].
Topological entropy [16, 17] and generalized topological
entropy [17] are able to analyze the finite length DNA
sequence [10, 13, 18, 19]. These genomic sequence analy-
sis methods based on information entropy have obtained
a series of research results. Recently, genetic informa-
tion is generated exponentially with the development of
next-generation technology, which puts forward higher
requirements for entropy-based quantitative methods.

Genomic signal processing (GSP), which is based on
digital signal processing (DSP), has been widely applied
in DNA sequence studies in recent years [20-28]. In gen-
eral, four nucleotides T, C, G and A are converted to
corresponding numerical values and the whole sequence
is presented by numerical sequence. Then the numeri-
cal sequences are analyzed by the algorithms in accor-
dance with various purposes. Different GSP methods have
their own rules of conversion and algorithms. And they
are used in genetic sequence comparison [26, 27, 29],
sequence alignment [30] and gene prediction [22, 31-33].
Specifically, discrete Fourier transform [34], short-time
Fourier transform [22] and singular value decomposition
(SVD) [31-33] have been effectively used to predict exon
locations.

In this study, we designed an integrated entropy-based
analysis approach, which involves modified topological
entropy calculation, genomic signal processing (GSP)
method and singular value decomposition (SVD) [32, 33],
to investigate exons and introns in DNA sequences. We
optimized and implemented the topological entropy and
the generalized topological entropy to calculate the com-
plexity of DNA sequences, highlighting the character-
istics of repetition sequences. We compared the differ-
ence between digitalizing values of exons and introns,
and found that a significance level of difference between
them is improved with our optimized entropy calcula-
tion. After we converted DNA sequences to numerical
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topological entropy values, we applied SVD method to
effectively investigate exon and intron regions on single
gene sequences from five species. Our integrative analy-
sis approach is also extendable to study other elements in
both coding and noncoding region of DNA sequences.

Methods

Data sets

Data sets of exon, intron and promoter for each chro-
mosome on human genome were used in this study
(Table 1). We downloaded human genome data hg38
from UCSC (http://genome.ucsc.edu/index.html) [35]
and acquired sequence information of genomic elements
by Galaxy (https://usegalaxy.org/) [36]. We have filtered
out sequences which have length less than 200 base pairs
(bp) to lower significant noise.

We used a sequence ranging from 3500-10500 bp from
gene AJ229040 to predict exons and introns. The sequence
was downloaded from NCBI [37]. Six exon locations are
marked as 3770 — 3826 bp, 4584 — 4601 bp, 4671 — 4730

Table 1 Mean entropy value and number (in parentheses) of
exons, introns and promoters on each chromosome in human
genome

Entropy (number) of  Entropy (number) of Entropy (number) of

exon promoter intron

chr1 0.9653 (18043) 0.9643 (13010) 0.9689 (42806)
chr2 09677 (13911) 0.9619 (9180) 0.9687 (39446)
chr3  0.9651 (11456) 0.9648 (7992) 0.9707 (32834)
chr4  0.9656 (7087) 0.9622 (5016) 0.9697 (20301)
chr5  0.9668 (8036) 0.9621 (5834) 0.9707 (22176)
chr6  0.9653(17918) 0.9636 (12728) 0.9687 (31005)
chr7  0.9652 (8159) 0.9631 (6140) 0.9678 (22410)
chr8  0.9646 (7170) 0.9640 (5280) 0.9682 (22011)
chr9  0.9642 (7084) 0.9637 (5230) 0.9681 (19486)
chr10  0.9677 (8529) 0.9636 (6342) 0.9690 (24883)
chr11 0.9651 (10006) 0.9640 (7504) 0.9690 (23462)
chr12 0.9660 (9533) 0.9633 (6886) 0.9695 (25561)
chr13 0.9651 (3589) 0.9638 (2684) 0.9699 (10396)
chri4  0.9666 (5948) 0.9632 (4244) 0.9691 (14017)
chr15 0.9644 (6857) 0.9643 (4706) 0.9691 (18634)
chr1i6  0.9636 (7303) 0.9647 (5300) 0.9691 (16214)
chr17 0.9642 (10218) 0.9649 (7118) 0.9687 (2295)

chr18 0.9656 (3041) 0.9646 (2202) 0.9697 (9062)

chr19  0.9689 (15539) 0.9647 (8016) 0.9705 (25077)
chr20 0.9634 (4724) 0.9646 (3594) 0.9702 (10692)
chr21  0.9639 (2326) 0.9612 (1732) 0.9692 (7033)

chr22  0.9626 (3985) 0.9621 (2866) 0.9675 (9221)

chrX  0.9665 (6836) 0.9615 (5392) 0.9685 (14929)
chry 09647 (1121) 0.9588 (1872) 0.9671 (3320)
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bp, 4999 — 5277 bp, 5730 — 5823 bp and 6719 — 6898 bp.
We also used other 15 genes from five species (human,
dog, zebrafish, C. elegans and fruitfly) for exon predic-
tions. The sequences were downloaded from Ensembl
[38]. The names of these genes are listed in Additional
file 1: Table S3.

Modified topological entropy and modified generalized
topological entropy

Koslicki proposed topological entropy [16] of a sequence
and defined it as follows:

10g4 (po(m))

n

Htop(w) = (1)

where the finite DNA sequence has a length of w. Its sub
sequence has length of 7, where 4" +n—1 < |w| < 4"t1 +
(n+ 1) — 1. And p,,(n) is the number of sub sequences
of length n within first 4" + n, — 1 bps of w. In general,
topological entropy reflects the complexity and random-
ness of a sequence. If the sequence has low entropy, it has
less randomness. For example, entropy values of exons are
supposed to have lower values than that of introns since
exons are more conserved and have relatively fixed func-
tions. Moreover, topological entropy is able to compare
sequences with different lengths. Generalized topological
entropy is a complete form of topological entropy [19] and
it is defined as:

1 & o i
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where n,, satisfies 4" + n, — 1 < |w| < 4%t1 4
(ny + 1) — 1and k < n. p, (i) is the number of different
sub sequences within w. Generalized topological entropy
includes contributions from all the sub sequences and
measures the complexity of DNA sequence more compre-
hensively. In our method, we modified both topological
entropy and generalized topological entropy. Since all sub
sequences are counted in entropy calculations, we opti-
mized entropy calculation by filtering out sub sequences
which have lower appearance frequencies. The criterion is
that if the counting frequency of a sub sequence is smaller
than 4" /w, this sub sequence will not be counted in the
entropy calculation.

Genomic signal processing (GSP) and singular value
decomposition (SVD)

Genomic signal processing (GSP) based on digital sig-
nal processing (DSP) has been used for exon prediction
recently. GSP digitalizes DNA sequence and analyze the
numerical sequence with different algorithms. We applied
GSP method and singular value decomposition (SVD)
method to analyze digitalized DNA sequences. In our
study, we digitalized sequences by their entropy value
and investigated the functional and conserved regions by
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using SVD method. SVD is a commonly used approach
in matrix analysis. Matrix A is decomposed into three
matrixes as follows:

Akxp = kakSkXprTxp 3)

where UTU = Iy and VIV = Iyxp. The columns
of U are called the left-singular vectors and those of V'
are called the right-singular vectors. S is a rectangular
diagonal matrix with non-negative real numbers on the
diagonal. The diagonal terms o; of S are the singular values
of S. And the eigenvalue A of Sis A; = UL.Z, In some cases,
such as when A is a sparse matrix, o; decrease quickly and
A can be approximately factorized as:

Akxp ~ uererrVT (4)

rxp

where r is much smaller than k and p.

Results

Modified generalized topological entropy and its
application on exploring complexity of exons, introns and
promoters

Topological entropy was proposed by Koslicki [16] to
solve entropy calculation quest on finite sequences. Gen-
eralized topological entropy was proposed by Wang et al.
[17] and is a complete form of topological entropy. Both of
them can measure complexity of functional elements such
as exons and introns in DNA sequence.

In order to highlight the characteristics of repetition
sequences, we modified generalized topological entropy
and used it to calculate entropy value of exons, introns
and promoters on each chromosome in human genome.
After we calculated all entropy, mean values of entropy of
exons, introns and promoters are listed in Table 1. Mean-
while, the numbers of exons, introns and promoters in each
chromosome are also listed in Table 1. We performed a
Kruskal-Wallis test to check whether there were significant
differences between them (Additional file 1: Table S1).

We plotted the mean entropy value of exons, introns and
promoters on each chromosome in Fig. 1. Figure 1 shows
that average modified generalized topological entropy
value of exons is lower than that of introns in the same
chromosome. The average modified generalized topologi-
cal entropy value of promoters is lower than that of introns
in most chromosomes. Additional file 1: Table S1 shows
that differences between exons, introns and promoters are
statistically significant.

From the definition of information entropy, a sequence
is supposed to have lower entropy value if its sequence
is less complex and more conserved. Normally exons are
more conserved than introns because they carry more
selective pressure in evolution process. Our result shows
that entropy value of exon is smaller than that of intron,
which is consistent with the theory of evolution. Simi-
larly, promoters are highly conserved elements in DNA
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Fig. 1 Modified generalized topological entropy values of introns, exons and promoters

sequences [5] and they participate key processed in many
living cells, remaining essentially unchanged. Promoter
regions often have motifs for binding transcription fac-
tors. Our result demonstrates that entropy values of pro-
moters are even smaller than those of exons.

Entropy normally measures the variety of sub-sequences
and is not directly related to evolutionary conservation.
However, some repetition sequences, which lead to small
entropy values, are in conserved regions. For example,
some motifs for transcription factors binding in promot-
ers are repetition sequences and they might have reg-
ulatory functions. These functions make these regions
conserved in evolution.

Comparison of the generalized topological entropy and
modified generalized topological entropy

We calculated the entropy values of exons, introns and
promoters in the way of previously reported generalized
topological entropy.

Then we tested the differences between exons, introns
and promoters in each chromosome. We found that they
were significantly different, and the significant level was
lower than that calculated by our proposed modified gen-
eralized topological entropy (Additional file 1: Table S1).
For example, the p-value of chromosome 2 is 1.52¢ — 14
after we optimized generalized topological entropy calcu-
lation, which is less than that from original generalized
topological entropy (p = 7.43e — 10). It is reasonable
since we filtered a small proportion of non-repetitive
sequences, highlighted the role of repeated sequences in
our modified generalized entropy calculation.

Entropy-based genomic signal processing analysis with
singular value decomposition on a single gene sequence
As mentioned above, topological entropy value can mea-
sure the complexity of a sequence region. Therefore, it
is used to investigate exon and intron regions on single

gene. We applied modified topological entropy calculation
to gene AJ229040 with a sliding window size of 100 bps.
With k value set as 2, 3, 4, 5 and 6, we converted each
nucleotide base to a matrix with dimension of 1 x 5. We
then applied SVD approach [33, 34] on the whole numer-
ical gene sequence. A portion of SVD curve along 3000
to 7000bp is shown in Fig. 2 and red boxes indicate real
locations of exons.

We plotted receiver operating characteristic (ROC)
curve and choose a cut off value as 0.012 to estimate exon
and intron regions. In the region from 3500 bp - 10500
bp, the total length of exons is 688 bps. We correctly pre-
dicted 122 exon nucleotides and 4708 introns. The closer
the ROC curve is to the upper left corner, the higher the
overall accuracy of the prediction. The AUC is a mea-
sure of how well a feature can distinguish between exon
and intron groups. Without using any prior knowledge,
the accuracy of our prediction reaches 0.67 (Additional
file 1: Table S2) and the area under the curve (AUC) is 0.69
(Fig. 3).

To assess the feasibility of our approach across differ-
ent species, we randomly chose some genes from human,
dog, zebrafish, C. elegans and fruitfly from Ensembl
genome browser [38]. We performed our exon predic-
tion approach (Additional file 1: Table S3) and plot-
ted ROC curves of prediction results for each gene
(Additional file 1: Figure S1). It is noted that the AUC
value ranges from 0.55 to 0.81. That means our method for
exon prediction based on generalized topological entropy
is applicable across species.

Discussion

There exist a large number of exon prediction methods
for a single gene or multiple genes [3, 39]. However, most
of them highly rely on prior knowledge such as databases
of protein-coding genes. These homology-based methods
[40, 41] predict genes by comparing sequence with known
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database sequences. Therefore, it takes much more time
to search through the whole database and produce results.
These methods [42, 43] have high prediction accuracy in
finding homology sequences. However, they have limita-
tions in detecting other functional elements in other 97 —

98% noncoding genomic regions. The rapid development
of next-generation sequencing technology leads to big
accumulation of omics data. To discover the underlying
biological mechanisms from the massive data, homology-
based methods are instructive while time consuming.

ROC curve for recognition the exon regions in gene AJ229040
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Therefore, more methods such as entropy-based quan-
titative methods demonstrate their advantages and are
applied to analyze various omics data [44—46].

Numerical signal processing approaches are utilized in
genomic analysis as genomic signal processing. Gener-
ally, information entropy indicates a system status and
predicting exon region by just a feature of entropy is a
very challenging task. Therefore, we integrated optimized
topological entropy and GSP method to calculate com-
plexity of DNA sequences, investigated their application
on exon and intron prediction in DNA sequences. We
used the same gene which Das and Turkoglu used in their
numerical mapping method to predict exons [31]. Their
method has higher prediction accuracy than ours since
they calculated the entropy based on repetition prop-
erty of 64 types of codons. Our result is still reasonable
since no prior knowledge is used and the prediction only
depends on the sequence. That also implies our method
to digitalize DNA sequences based on modified general-
ized entropy is extendable to other element prediction on
single sequence or multiple sequences.

To analyze the digitalized DNA sequence, we employed
SVD approach in our study. For our case, Uy, in
Eq. 4 refers to the highly related entropy calculation
modes for different k and VrTXp represents a series of
highly associated nucleotide positions. By using SVD
method, correlation information on DNA sequence is
investigated and the biological meaning is straightfor-
ward. In the future, we will include other methods in
this integrated entropy-based GSP approach to improve
the result of exon prediction and ROC curve for more
species.

Conclusions

In conclusion, our exon and intron prediction method,
which is based on entropy calculation and genomic sig-
nal processing, analyzes complexity of exons and introns
and is able to distinguish the exon and intron regions
across different species. Our research optimizes the exist-
ing topological and generalized topological entropy cal-
culation. This integrated approach is extendable to exon
and other functional element prediction on the large-scale
genome data.

Additional file

Additional file 1: Figure S1. The AUC value of ROC curves from exon
prediction results of 15 genes.(a) - (e) The performance obtained by our
method for every specie and the value of AUC ranges from 0.55 to 0.81.
Table S1. Significance level of p-value in Kruskal-Wallis Test for generalized
topological entropy and modified generalized topological entropy
calculation of genetic elements. Table S2. Prediction of exon and intron
regions on single gene AJ229040. Table S3. Prediction of exon and intron
regions on genes across five species. (DOCX 17, 765 kb)
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