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evaluation and improvements
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Abstract

Background: Identifying transcriptional enhancers and other cis-regulatory modules (CRMs) is an important goal
of post-sequencing genome annotation. Computational approaches provide a useful complement to empirical
methods for CRM discovery, but it is critical that we develop effective means to evaluate their performance in terms
of estimating their sensitivity and specificity.

Results: We introduce here pCRMeval, a pipeline for in silico evaluation of any enhancer prediction tools that are
flexible enough to be applied to the Drosophila melanogaster genome. pCRMeval compares the result of predictions
with the extensive existing knowledge of experimentally-validated Drosophila CRMs in order to estimate the
precision and relative sensitivity of the prediction method. In the case of supervised prediction methods—when
training data composed of validated CRMs are used—pCRMeval can also assess the sensitivity of specific training
sets. We demonstrate the utility of pCRMeval through evaluation of our SCRMshaw CRM prediction method and
training data. By measuring the impact of different parameters on SCRMshaw performance, as assessed by
pCRMeval, we develop a more robust version of SCRMshaw, SCRMshaw_HD, that improves the number of
predictions while maintaining sensitivity and specificity. Our analysis also demonstrates that SCRMshaw_HD, when
applied to increasingly less well-assembled genomes, maintains its strong predictive power with only a minor drop-
off in performance.

Conclusion: Our pCRMeval pipeline provides a general framework for evaluation that can be applied to any CRM
prediction method, particularly a supervised method. While we make use of it here primarily to test and improve a
particular method for CRM prediction, SCRMshaw, pCRMeval should provide a valuable platform to the research
community not only for evaluating individual methods, but also for comparing between competing methods.

Background
Transcriptional enhancers, or more broadly, cis-regula-
tory modules (CRMs), are essential building blocks of
gene regulatory networks [1, 2]. Present upstream,
downstream, and within introns of their associated
genes, and often at a considerable genomic distance,
CRM sequences serve as scaffolds for the binding of
transcription factors and chromatin modifying enzymes.
Their identification is critical for understanding the
spatial and temporal regulation of metazoan gene
expression.

As part of the contemporary arsenal of methods for
CRM discovery, computational approaches have
proven to be an important complement to experimen-
tal ones [3, 4]. Computational CRM discovery has several
advantages, including low cost, rapid results, and no
requirement for access to cell lines, antibodies, tissue sam-
ples, and other expensive and/or limiting biological
resources and assays. This is of particular benefit when
working with non-model organisms, for which there may
be genome sequence but frequently not extensive other
genomic data. However, the existence of multiple compu-
tational CRM discovery methods leads to a familiar prob-
lem: with many software approaches, how do how do we
know which ones perform the best? Given time and
resource constraints, typically only a limited number of
predicted regulatory elements from a given method can
be validated empirically, and a comprehensive set of CRM
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and non-CRM sequences does not exist for any metazoan
genome. A systematic evaluation of a dozen in silico CRM
discovery methods was carried out in 2010 [5], but a simi-
lar assessment of the many approaches developed since
that time has not been performed.
To help address this, we have developed pCRMeval, a

pipeline for in silico evaluation of predicted CRMs with
particular application to supervised methods trained on
known CRMs. Our pipeline provides a general frame-
work that can be used to evaluate any CRM prediction
tool flexible enough to be applied to the Drosophila
melanogaster genome. We leverage the REDfly database
of experimentally-validated Drosophila CRMs ([6]; over
23,900 as of 1 Jan 2019) to compare CRM prediction re-
sults and to make estimates of the sensitivity and specifi-
city of a given method, or of specific training data
applied to that method. Because REDfly includes infor-
mation about the spatio-temporal specificity of CRMs,
our evaluation platform allows for an assessment of not
just a method’s CRM-discovery ability, but also for its
ability to predict CRMs with a specific activity profile.
We demonstrate here the usefulness of the pCRMeval

pipeline by using it to evaluate parameters and training
sets for our own SCRMshaw prediction method [7–9].
We find that SCRMshaw results vary depending on the
chromosomal position at which analysis begins, and
develop a refinement to the SCRMshaw protocol that
provides robustness to starting parameters. This updated
protocol predicts (on average) a greater number of
CRMs while maintaining similar sensitivity and precision
as the original, less robust method. We also test the
impact of degree of genome assembly on SCRMshaw’s
performance and find that SCRMshaw remains effica-
cious for CRM discovery even when assemblies are
poor.

Results
The pCRMeval evaluation pipeline
We developed a comprehensive pipeline, pCRMeval, for
in silico evaluation of CRM prediction methods. We
sought to keep the core requirements for the pipeline
minimal in order to accommodate the widest range of
different prediction approaches. Therefore, the only
input absolutely required is a BED-formatted list of pre-
dicted CRMs. However, because our evaluation methods
rely on the extensive set of experimentally validated
CRMs available for Drosophila melanogaster, the predic-
tions to be evaluated must be based on the Drosophila
genome. Optionally, a list of CRMs used as training data,
which will be a component of most supervised machine
learning approaches, can also be provided; this allows
for evaluation of the performance of specific training
sets in addition to evaluation of the method as a whole.

Performance measures
Assessing the performance of CRM prediction ap-
proaches is challenging, as the true full set of CRMs
in the genome, and knowledge of each CRM’s
complete activity profile, is not known. As a result,
accurate calculations of sensitivity and precision of
CRM prediction is not possible. In light of this, we
devised several performance measures to evaluate
different aspects of CRM prediction, as follows (see
Methods for details):

REDfly recovery

The most straightforward way to assess the overall
performance of a CRM prediction method is to
compare the prediction results with the set of true
CRMs. While the full set is not known, almost
24,000 experimentally-validated Drosophila enhancers
are contained in the REDfly database [6]. We meas-
ure REDfly recovery by determining what fraction of
predicted CRMs overlap the known sequences in
REDfly.
REDfly, while extensive, does not contain a complete

catalog of all true CRMs in the Drosophila genome. As a
result, REDfly recovery can be interpreted in two ways. A
low recovery could indicate that the majority of predic-
tions correspond to previously undiscovered CRMs,
suggesting exceptionally good prediction performance.
However, with close to 24,000 CRMs currently in RED-
fly, we expect that at least some number of predictions
will correspond to known CRMs. We therefore generally
place more weight on the second alternative, that lower
REDfly recovery correlates with decreased performance
and a higher false-positive prediction rate, as fewer true
CRMs are being discovered. In a supervised (trained)
setting, interpretation of REDfly recovery is influenced
by the number of known CRMs matching the expression
characteristics of each training set. The former scenario
increases in likelihood when the number of non-training
REDfly CRMs annotated with the training set expression
pattern is a very small fraction of the total REDfly
CRMs, as there is thus a lower expectation that appro-
priate known CRMs will be identified. Conversely, the
latter interpretation gains strength with increased
numbers of appropriately-annotated CRMs. Additional
file 1: Table S1 provides these numbers for the vari-
ous training sets discussed in this study. Despite its
ambiguity in interpretation, we find REDfly recovery
to be a useful metric when used in conjunction with
the other performance measures. It is particularly
helpful in comparing different prediction methods
head-to-head using the same set of training data.
Moreover, as REDfly continues to grow, this measure
will gain in utility.
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Training set sensitivity

A method trained on a set of known CRMs should be
able to predict all members of that same set. For
optional use with supervised methods, therefore, we cal-
culate training set sensitivity as the fraction of training
CRMs successfully recovered.

Expression pattern precision

REDfly annotates CRMs with the developmental stages
and tissues where they are active. These data can be
used to assess the precision of CRM prediction in cases
where a method is trained to recover CRMs with a
particular activity profile. Expression pattern precision
measures the fraction of predicted CRMs driving the
expected expression pattern out of the total number of
predicted CRMs driving any annotated expression
pattern.

Additional measures

Along with REDfly recovery, training set sensitivity,
and expression pattern precision, pCRMeval calculates
two additional sensitivity measures: REDfly recall and
expression pattern recall (see Methods). At present, we
have not found these measures useful in our CRM
prediction method evaluations, and do not discuss them
further here. However, we include them in the software
pipeline in the event that they prove helpful under a
different evaluation framework, or with different input
data.

Output
pCRMeval generates a tab-delimited summary table
amenable for downstream analysis. An R markdown
script [10] is also provided for presenting the data in
graphical form.

Application of pCRMeval to SCRMshaw
We previously developed an effective method for com-
putational CRM discovery, SCRMshaw (for Supervised
cis-Regulatory Module discovery) [7–9]. SCRMshaw uses
a training set composed of known CRMs defined by a
common functional characterization (e.g., “nervous
system,” “midgut”) to build a statistical model that cap-
tures their short DNA subsequence (k-mer) count distri-
bution and compares it to that of a set of non-CRM
“background” sequences in a machine-learning frame-
work. The trained model is then used to score overlap-
ping sequence windows in the genome, and the
highest-scoring windows are predicted to be CRMs. In
empirical validation experiments using reporter genes in
transgenic animals, success rates have averaged roughly

80%, and when trained on Drosophila melanogaster
sequences, SCRMshaw is even able to discover CRMs in
a cross-species fashion in genomes as far diverged as the
345Ma honeybee (Apis mellifera) genome with a ~ 75%
true-positive rate [11, 12].
Our empirical testing suggested that some training

sets are more effective than others at high-quality
prediction, but the large number of possible training sets
makes it infeasible to attempt empirical validation of
each set. Similarly, it is not practical to attempt to use in
vivo validation to assess the effect of changing various
SCRMshaw parameters in a systematic way. We there-
fore applied pCRMeval to SCRMshaw for purposes of
evaluating different training sets and SCRMshaw
parameters.

Training set evaluation
We used the pCRMeval pipeline to assess 29 different
training sets used with SCRMshaw, following the
SCRMshaw-HD protocol (an improved variant of the
default SCRMshaw protocol, described below) (Fig. 1,
Additional file 2: Table S2).
Results are summarized in Fig. 1a. REDfly recovery

ranged from 15 to 55% (median 32%), versus a random
expectation of 17%. The median training set sensitivity
was 54% (range 21–100%) versus a random expectation
of 0.47%. Expression pattern precision ranged from 0 to
71% (median 23%, expectation 4%). One-to-one compar-
isons for individual training sets with their respective
random expectations are shown in Fig. 1b-d and
Additional file 2: Table S2.
We also compared the performance of each of our

training sets to the averaged results from running
SCRMshaw on 62 “random” training sets composed of
30 randomly-selected regions from the Drosophila
non-coding genome (Fig. 1a, “random”). SCRMshaw
consistently showed higher performance using real
training data as compared to the random training sets
(random training set values: training set sensitivity 41%,
range 6–60%; REDfly recovery 28%, range 20–45%;
expression pattern precision 4.6%, range 0–65%).
In addition, we evaluated the performance of each

individual training set in a semi-continuous fashion by
calculating training set sensitivity, REDfly recovery, and
expression pattern precision every 250 predictions for the
top 7000 predictions (Fig. 2a-c, Additional file 3: Figure S1
and Additional file 4: Table S3). Training set sensitivity is
always substantially better across the entire range of
predictions compared to both random training sets
(black dashed line with shaded area) and to random
expectation (black dotted line) (Fig. 2a). In contrast,
while REDfly recovery is always at least moderately
better than random expectation, some training sets
perform less well than the random training sets (e.g.

Asma and Halfon BMC Bioinformatics          (2019) 20:174 Page 3 of 15



mapping1.neuroectoderm; Fig. 2b). For expression pat-
tern precision, almost all of the training sets perform
better than both random expectation and random
training sets for their top few hundred to thousand
predictions, but performance declines markedly with
larger numbers of predictions (Fig. 2c). Both REDfly
recovery and expression pattern precision decrease as
the number of predictions increases, suggesting in-
creasing numbers of false-positive predictions. In

general, we find our cutoffs for top predictions (see
Methods) to be a reasonable tradeoff between number
of predictions and number of false positives.
Based on its performance for each of our three

measures, we categorized each training set as “good,”
“intermediate,” or “poor” (Table 1). Good training sets
perform well by all three measures, with the training set
outperforming random training sets by at least 10% for
training set sensitivity, at least 5% for expression pattern

A B

C D

Fig. 1 Performance evaluation for SCRMshaw using pCRMeval. pCRMeval demonstrates that SCRMshaw, when training on real CRM data,
performs better than either random training data or random expectation. a Aggregate performance for training set sensitivity, REDfly recovery, and
expression pattern precision for 29 true training sets, 62 random training sets, and random expectation. b-d Comparison of training set sensitivity
(b), REDfly recovery (c), and expression pattern precision (d) for true predictions versus random expectation for each of the 29 training sets
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precision, and at least 4% for REDfly recovery. Intermedi-
ate training sets perform well compared to random
training sets in at least two of the three measures using
a slightly more generous difference of at least 7% for
training set sensitivity, 5% for expression pattern preci-
sion, and 3% for REDfly recovery. Poor training sets
perform worse than or equivalent to random training
sets for at least two of the three measures. Out of our 29
training sets, ten meet the criteria for being a “good” set
and eleven fall into the intermediate category. The
remaining eight sets are classified as poor. Note, how-
ever, that even the sets in the “poor” category perform
better than random in at least one of the three
measures.

Application to a second CRM prediction method
As an illustration of the utility of pCRMeval for evaluat-
ing other CRM prediction methods, we assessed the
recent CRM predictions by [13]. We obtained numbers
for training set sensitivity similar to those that were
reported (94%, compared to the reported 98%). Interest-
ingly, we observed a considerably higher REDfly recov-
ery. Whereas Arbel et al. [13] report that 364 of their
predicted CRMs overlap known REDfly CRMs and 822
are completely novel (31% REDfly recovery value),
pCRMeval yields a REDfly recovery of 72% (859 known
CRMs, 327 novel). Some of this discrepancy may be due
to differences in the stringency used to call a sequence a
known CRM. For pCRMeval the minimum overlap was
set to only 10% (corresponding to a minimum of 100 bp
overlap). Increasing that stringency to 50% (500 bp), for
instance, would yield a more similar REDfly recovery
value of 413. Because they focused on pregastrula gene
regulation in Drosophila, which falls into the REDfly
category “blastoderm,” we were able to assess expression
pattern precision as well, for a value of 40%. These
results from pCRMeval support the contention of Arbel
et al. [13] that they developed an accurate and sensitive
predictor of early Drosophila CRMs.

SCRMshaw is sensitive to the position of the first analysis
window
We next used pCRMeval to assess various SCRMshaw
parameters. By default, SCRMshaw evaluates 500 bp
windows with a 250 bp overlap, starting from the first

A

B

C

Fig. 2 Performance evaluation for SCRMshaw using pCRMeval on a
continuous scale. (a) Training set sensitivity, (b) REDfly recovery, and
(c) expression pattern precision for selected training sets (solid lines)
compared to the median percentage (dashed line) and 1st and 3rd
quartiles (shaded region) of 62 random training sets, and to random
expectation (dotted line). Black solid line, mapping 1.neuroectoderm;
orange solid line, mapping1.somatic_muscle; blue solid
line, mapping1.visceral_mesoderm
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base of each chromosome (or assembled scaffold). We
were curious to determine whether the starting pos-
ition of these windows on the chromosome affects
the output, that is, how sensitive SCRMshaw is to the
specific windows that are analyzed. To test this, we
ran SCRMshaw on the Drosophila genome using the
default parameters, but instead of starting at the be-
ginning of each chromosome took windows starting
from the 5th, 15th, 40th, 80th, and 125th base pairs.
We analyzed each run using pCRMeval and assessed
each of the three evaluation measures at both a fixed
cutoff and in a semi-continuous fashion, as above. To
our surprise, we observed a small but definite vari-
ation in performance for each training set due to
differences in chromosome starting position (Fig. 3,

Table 2, Additional file 5: Figure S2, and Additional
file 6: Table S4).
With a fixed cutoff, calculated for each SCRMshaw run

based on the elbow point of the score curve (see Methods),
each starting point gave a slightly different number of top
predictions (Fig. 3, x-axis), with moderate variation in
REDfly recovery, training set sensitivity, and expression
pattern precision. For example, for the training set
“mapping1.blastoderm,” the REDfly recovery ranges from
34 to 40%, training set sensitivity from 48 to 54% and ex-
pression pattern precision from 43 to 70% (Fig. 3). On the
continuous scale (i.e., calculated at each 250 predictions
until 7000) we similarly observed differences based on each
starting point (Fig. 3, Additional file 7: Figure S3, and Add-
itional file 8: Table S5).

Table 1 Evaluation of training sets based on their performance of measures

Class Training set Name Difference to randoma in
REDfly recovery at cutoff

Difference to random in training
set sensitivity at cutoff

Difference to random in
expression pattern precision
at cutoff

Good mapping1.blastoderm 11.28777 15.29412 65.08609

mapping1.ectoderm 6.000862 12.83019 39.83357

mapping1.endoderm 16.77476 10 39.38912

mapping1.glia 5.071332 60 16.60124

mapping1.tracheal_system 6.446144 37.27273 12.83098

mapping1.visceral_mesoderm 15.07699 30 20.70558

mapping2.glia 6.586659 60 6.326622

mapping1.adult_mesoderm 6.49964 26.66667 4.764122

mapping1.mesectoderm 4.541295 60 5.389122

mapping1.ventral_ectoderm 4.046977 32.22222 23.96055

Intermediate mapping1.amnioserosa 0.839151 35 26.15835

mapping1.malpighian_tubules 3.107168 26.66667 0.389122

mapping1.dorsal_ectoderm 1.833739 45.71429 18.03063

mapping1.mesoderm −0.00957 32.41379 23.1669

mapping1.neuroectoderm −1.26327 37.77778 12.6305

mapping1.pns −1.52394 10 18.57753

mapping1.salivary_gland 24.95711 −4.28571 8.722456

mapping1.somatic_muscle 4.778675 8.717949 18.46605

mapping2.ectoderm 0.548001 8 51.79938

mapping2.mesoderm 13.1938 −10.0935 44.00023

mapping2.wing −2.08398 7.727273 5.225188

Poor mapping1.cns −2.33838 0.909091 61.32319

mapping1.eye −4.91517 35 −0.61088

mapping2.eye −3.869981 13.57143 0.040285

mapping1.female_gonad −15.4483 −1.53846 23.96055

mapping1.imaginal_disc −4.60542 0.740741 17.05579

mapping1.male_gonad −5.34252 1.176471 −4.61088

mapping2.neuronal −3.78756 −2.7451 66.44175

mapping2.reproductive_system 1.796743 −18.125 −4.61088
a “Random” refers to the averaged results of 62 random training sets of 30 sequences each (see text)
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A more robust approach: SCRMshaw-HD
Although the differences are relatively minor, these re-
sults indicate that the default 250-bp window shift size
used by SCRMshaw is sensitive to where the windows
begin. We reasoned that a smaller shift would fix this

problem by scoring a more comprehensive set of se-
quence windows, but would have significantly increased
computational cost. We devised a new variant of the
SCRMshaw protocol, “SCRMshaw-HD,” to balance the
need for more tightly overlapping windows with the

A

B

Fig. 3 SCRMshaw results vary based on analysis starting position. Results are shown based on pCRMeval assessment of training set sensitivity,
REDfly recovery, and expression pattern precision for two representative trainings sets (“mapping1.blastoderm,” “mapping1.dorsal_ectoderm”) with
starting position offsets of 0, 5, 15, 40, 80 and 125 base pairs. a Results using a fixed cutoff. b Results using a continuous scale

Table 2 Performance comparison of default SCRMshaw with different starting points with SCRMshaw-HD

Number of top predictions Training set sensitivity (%) REDfly recovery (%) Expression pattern sensitivity

5 to 125
bp offsets
(range)

SCRMshaw-HD 5 to 125
bp offsets
(range)

SCRMshaw-HD 5 to 125
bp offsets
(range)

SCRMshaw-HD 5 to 125
bp offsets
(range)

SCRMshaw-HD

mapping1.blastoderm 254–329 328 48.24–51.76 55.29 33.84–38.98 41.84 43.15–48.90 69.70

mapping1.dorsal_ectoderm 234–306 330 78.57–92.86 85.71 24.51–28.46 32.39 12.75–15.70 22.64

mapping1.mesoderm 241–278 332 58.62–72.41 72.41 22.27–25.74 30.55 19.92–27.01 27.78

mapping2.wing 364–550 453 38.64–54.55 47.73 22.86–24.45 28.47 4.31–7.43 9.84

Bolded values are greater than or equal to the maximum value observed for default SCRMshaw
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computational demands (Fig. 4). To obtain higher reso-
lution scoring profiles, we run SCRMshaw using a wide
range of starting positions, from 0 to 240 bp, with a step
size of 10 bp (i.e., 0, 10, 20, 30,…,240). This is achieved
by use of a new “offset” parameter in the SCRMshaw
software, while maintaining the default 500 bp window
with 250 bp overlap. We chose 10 bp as the step size
because the performance difference with 5 or 15 bp off-
sets as compared to the original (0 bp) starting position
tends to be negligible (Fig. 3, Additional file 5: Figure S2,
Additional file 7: Figure S3 and Table 2). Each of the 25
starting positions can be run as a separate instance of
SCRMshaw, allowing for simple parallelization on a
computing cluster (Fig. 4a-c). Note that this is equivalent
to simply changing the default shift size parameter from
250 bp to 10 bp and following the basic SCRMshaw
protocol (e.g., as described in [9]), which allows for exe-
cution on single processor. However, the latter approach
would significantly boost the execution time, particularly
for a large genome.
A post-processing script concatenates the output from

each of the 25 individual instances (Fig. 4d). We then
sum the SCRMshaw scores from each prediction over-
lapping every 10 bp window in the genome, resetting
scores below a cutoff threshold (defined as the
SCRMshaw score at the 5000th ranked prediction) to
zero (Fig. 4e). The resulting set of windows with their
summed SCRMshaw score is used as the input to a
peak-calling algorithm (Fig. 4f ), with the peaks passing a
cutoff criterion considered as “top” predictions (see
Methods for details; Fig. 4g, h).
We used our evaluation pipeline to compare the results

from SCRMshaw-HD to those from the SCRMshaw runs
for individual starting positions. For almost all of the
training sets, performance of SCRMshaw-HD for training
set sensitivity fell within or exceeded the range seen with
default SCRMshaw, while SCRMshaw-HD performance
exceeded that of the default method for both REDfly
recovery and expression pattern precision (Table 2). Inter-
estingly, the number of top predictions also tended to be
larger for SCRMshaw-HD (Table 2). SCRMshaw-HD is
therefore not only more robust to chromosome starting
positions, but generally provides a larger number of pre-
dicted CRMs while maintaining or improving multiple
measures of sensitivity and specificity.

Effect of degree of genome assembly
Because many newly-sequenced species do not yet have
full chromosome-level assemblies, we were interested to
know how SCRMshaw would perform on less-well-as-
sembled genomes. The improved robustness conferred
by the SCRMshaw-HD approach might be particularly
valuable for this, as such genomes have many individual
scaffolds and therefore more potential starting positions

for window generation. To explore this, we simulated a
range of poorly-assembled genomes by “fragmenting”
the Drosophila genome into a series of shorter
sequences, and comparing CRM predictions run on the
fragmented genomes to predictions using the fully
assembled genome.
To make the simulations realistic, we mimicked the

scaffold-length distribution of real insect species with
varying quality of genome assembly, ranging from
“excellent” to “poor” (see Methods). We then used
SCRMshaw-HD to obtain the top CRM predictions from
each simulated genome, and from the native Drosophila
genome. For purposes of evaluation, we considered all
CRM predictions for the native genome above our score
cutoff to be true positives, and everything below the
cutoff to be true negatives. For the simulated genomes,
the percent true positives (sensitivity) could then be cal-
culated as the number of predictions above the cutoff
that mapped to true positives in native genome. Overall,
we observed a minimal decline in true positives—less
than 15% on average—in moving from the best to the
worst-assembled genomes, and only a negligible increase
in false positive rate (~ 1%; Fig. 5). Although a few train-
ing sets (e.g., mapping1.cns, mapping2.ectoderm)
showed high variability in true positive rate, fluctuating
by as much as 40% (Fig. 5), these changes were not
correlated with the extent of genome assembly and are
likely more indicative of training set quality than gen-
ome quality. As an additional assessment, we compared
the SCRMshaw scores of corresponding windows in the
simulated vs. native genomes, and consistently observed
a high correlation between the two (r > 0.99; Fig. 6).
From these two measures, we conclude that SCRMshaw
remains effective for CRM prediction even in cases
where the genome assembly is poor.

Discussion
A more robust SCRMshaw approach
In this study, we have developed an improved version of
our SCRMshaw method, SCRMshaw-HD, in which we
predict enhancers using a higher density of genome
coverage coupled with a peak-calling algorithm to select
the top CRM predictions. These modifications make
SCRMshaw more robust to initial placement of the scor-
ing windows on the chromosome while simultaneously
providing a slightly larger number of predictions, with-
out decreasing sensitivity and specificity. The increased
robustness is likely to be of particular importance when
analyzing less-completely-assembled genomes, which
have increased numbers of “starting” positions when the
number of unassembled scaffolds is high. Our analysis
demonstrates that the new SCRMshaw-HD method is
successful in predicting CRMs effectively even from
relatively less-assembled genomes, with only a minor
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A
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D

E

F

G H

Fig. 4 The SCRMshaw-HD protocol. The new, more robust SCRMshaw-HD protocol is shown to the left, with the default SCRMshaw protocol to
the right. a In both protocols, 500 bp windows are scored with a 250 bp offset between windows. b, c For SCRMshaw-HD, this process is parallelized
by running 25 instances of SCRMshaw simultaneously, with each instance starting its first window at a different starting points corresponding to 0, 10,
20, 30, …, 240 bp from each chromosome/scaffold end. d The output from the individual SCRMshaw runs is concatenated into a single output
representing 500 bp windows with 10 bp offsets across the entire genome. e The SCRMshaw scores for each 10 bp genomic window are summed,
with any individual score (orange boxes) below the value of the 5000th ranked score reassigned to zero (gray boxes). The summed scores (f) are used
as the basis for peak calling. Any peaks with amplitude above the selected amplitude threshold (g, red dot) are then evaluated for SCRMshaw score
(h, red dot; see Methods for details). Peaks meeting both criteria (e.g., peak “d” in panel f) are accepted as “top predictions.” Peaks that either fall below
the amplitude cutoff (e.g. “b” in panel f), or which pass the amplitude cutoff but not the score cutoff (“a” in panel f) are not considered top predictions.
In default SCRMshaw (right side of figure), those predictions with SCRMshaw score above the elbow point of the curve of all ranked SCRMshaw scores
are considered to be “top” predictions (h, red dot)
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drop-off in performance. This is a welcome finding, as
most newly-sequenced genomes do not have complete
assemblies.
However, there is a computational cost to the improved

SCRMshaw-HD method, as the number of sequence win-
dows to be examined increases 25-fold. While we provide
a simple parallelization solution for those with access to a
computing cluster, execution times will be signifi-
cantly longer if SCRMshaw-HD is run using a single
processor. Because the degree of difference between
the results from the original SCRMshaw method and
SCRMshaw-HD is modest, using SCRMshaw in its
original form remains an acceptable alternative for
those without access to a cluster.

SCRMshaw training set assessment
Although we have demonstrated its effectiveness in
several prior studies [7, 8, 11, 12, 14], pCRMeval allowed
us for the first time to conduct an unbiased assessment
of SCRMshaw on a training set by training set basis.
Our results confirm SCRMshaw’s basic utility as a
CRM-discovery method—virtually every tested training
set performed better than random expectation, for all
measures—but also provide useful insights both into
aspects in need of improvement, and into CRM biology
in general. For instance, median training set sensitivity
was only 54%, suggesting that many training sets contain
sequences that are not good fits to the predominant
CRM sequence model for their set. This has been noted
previously [7] and is not surprising given that these
training sets were compiled using fairly low-granularity
expression pattern data. Using pCRMeval to test
performance, we will better be able to compile better,
more cohesive training sets that should improve predict-
ive performance. Preliminary testing with a few hand-
picked, carefully assembled training sets has confirmed
this both in silico and in in vivo validation experiments
([15] and unpublished results). Interestingly, training set
sensitivity and REDfly recovery using training sets
consisting of random genomic sequences consistently
scored better than random expectation. Given that the
Drosophila genome is compact, with a high proportion
of non-repeat non-coding sequence likely devoted to
gene regulation, this suggests that SCRMshaw is adept
at discerning “generic” regulatory signatures even in the
absence of a strong regulatory model dominating the
training set. This helps explain why in empirical

Fig. 5 Degree of genome assembly has a minimal impact on
SCRMshaw performance. Black boxplots (top) show the aggregate
percentage of true positives for eight representative training sets
(each shown as different colored point), and blue boxplots (bottom)
the aggregate percentage of false positives for the same sets, over a
range of simulated qualities of genome assembly. For details about
genomes “A” through “J” see Table 3

Fig. 6 Correlation between SCRMshaw scores of corresponding
windows in the native and simulated genomes
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evaluation studies SCRMshaw has consistently per-
formed better at discovering CRMs than in discovering
CRMs that exclusively match the training set expression
pattern [7, 8], and may also contribute to SCRMshaw’s
demonstrated success in cross-species CRM discovery
[11, 12, 14]. These generic signatures most likely consist
of binding sequences for common transcription factor
families, such as E-boxes and homeodomain binding
sites, which can be bound by many different transcrip-
tion factors and are known to be present in a large
fraction of CRMs. A number of our current training sets
performed only equivalent to (or worse) than the
random training sets on one or more measures. These
sets may lack a strong common regulatory signature and
are in need of reconstitution with a more well-defined
set of similarly-functioning CRMs. In a similar vein, we
note that we find expression pattern recall—the sensitiv-
ity of predicting all known CRMs with expression char-
acteristics matching those of the training set—to be
quite low (median 4%, range 0–14%; Additional file 2:
Table S2). We ascribe this to the fact that the expression
pattern categories we use are broad and likely contain
numerous CRMs that are not responsive to the regula-
tory signature defined by the training set. More fine-
grained annotation and compilation of expression
pattern categories should help to alleviate this problem
and lead to improved expression pattern recall.

pCRMeval vs. in vivo validation
Our empirical validation results have frequently demon-
strated better performance than what is inferred by the
pCRMeval results. For instance, in vivo validation of
predictions from the “mapping1.blastoderm” training set
yielded a 100% true positive rate/40% pattern precision
rate (n = 5, [7]), while predictions from “mapping1.meso-
derm” and “mapping1.somatic_muscle” had an 83% true
positive rate/60% pattern precision rate (n = 12, [8]).
This is compared to pCRMeval values of 42%/70% and
~ 33%/26% REDfly recovery/expression pattern precision
for “mapping1.mesoderm” and “mapping1.somatic_mus-
cle,” respectively. The “mapping2.wing” training set en-
abled cross-species predictions in the beetle Tribolium
castaneum with a greater than 90% true positive rate as
assessed by overlap with FAIRE-predicted CRMs [14],
despite this training set being only an “intermediate”
performer by pCRMeval (28%/10%). Similarly, while the
pCRMeval value of 40% for expression pattern precision
that we determined for the method described by Arbel
et al. [13] is toward the high end of the range we saw
with our SCRMshaw datasets—consistent with the
highly selected training data used—it is considerably
below the 91% in vivo validation rate that study ob-
tained. We ascribe these discrepancies to the fact that
REDfly only contains known CRMs, and that expression

pattern annotations are often incomplete as they are
based only on features chosen to be described by the au-
thors of the papers REDfly curates. Thus, it is important
that pCRMeval results not be considered as an exact re-
flection of performance. Nevertheless, pCRMeval serves
as a useful means for comparisons between training sets,
prediction methods, parameter choices, and the like, and
can provide an estimated lower bound for prediction
sensitivity and precision.

Comparing CRM prediction methods
Although our pCRMeval pipeline was designed with
SCRMshaw in mind, it is easily applied to other CRM
prediction methods, in particular supervised (trained)
methods. Indeed, one interest of ours was to compare
the performance of a number of current approaches,
along the lines of the important but becoming outdated
assessment previously performed by Su et al. [5]. Unfor-
tunately, we found that we were unable to apply a suffi-
cient number of the methods we selected due to myriad
issues including inaccessibility via the published URLs,
missing and/or obsolete dependencies, or failure to ob-
tain a successful software installation despite reasonable
efforts to modify or update the code. This finding is in
line with a recent study that found over 77% of compu-
tational biology software tools either “difficult to install”
or unable to be installed altogether [16]. Nevertheless, as
demonstrated by our analysis of the Arbel et al. [13]
prediction data discussed above, our evaluation pipeline
is suitable for use with any working CRM prediction
method that can be applied to the Drosophila genome
and produces a list of predicted CRM coordinates as
output.

Conclusions
The pCRMeval pipeline allows for assessment of
CRM-discovery methods in terms of their sensitivity
and precision with respect to a large collection of
known CRMs. When applied to our proven
SCRMshaw method, it enabled construction of an
improved, more robust protocol, characterization of
multiple sets of training data, and an examination of
the effects of genome assembly on CRM discovery.
pCRMeval thus provides both a convenient platform
for comparing the relative performance of CRM-dis-
covery methods and a useful means for optimizing
individual methods, and should be a useful addition
to the CRM discovery software toolbox.

Methods
Datasets
The following files, based on Drosophila CRM data
obtained from REDfly [6], were used for assessing
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training set sensitivity, REDfly recovery, and expression
pattern precision:

REDfly CRMs file
CRMs from the REDfly database with length < 2 kb were
downloaded in BED format (data downloaded July 14,
2017).

Expression-mapped CRMs file
This file contains the subset of REDfly CRMs that have
associated tissue-pattern expression data, mapped to
larger groupings as in [7] Table S6.

Training set sequences
Training data for SCRMshaw used the sets originally de-
fined in [17]. An updated list of training data is available
at https://github.com/HalfonLab/Training_sets.

pCRMeval
pCRMeval is written in Python and requires the Python
modules pybedtools, statistics, scipy, numpy, pandas, csv
and itertools. The latest version can be obtained at https://
github.com/HalfonLab/pCRMeval. pCRMeval calculates
the following measures:

REDfly recovery

REDfly recovery uses CRMs from the “REDfly CRMs”
file. If training CRM information is available, the training
CRMs are filtered out of this list. The remaining CRM
sequences are sorted and merged using BEDTools sort
and merge respectively [18]. BEDTools intersect is then
used to determine the number of REDfly CRMs present
in the predicted CRM set. For evaluations using
SCRMshaw, the minimum overlap for intersect was set
to 10% (−f 0.10), corresponding to a minimum of 50 bp
overlap (as the shortest possible default SCRMshaw
prediction is 500 bp). REDfly recovery is then calculated
as the number of REDfly CRMs present in the predicted
CRM set divided by the total number of predictions.
We also calculate REDfly recall by dividing the num-

ber of predictions found in REDfly by the total number
of CRMs in REDfly. However, as REDfly is not a
complete catalogue of all CRMs, and we expect that a
good prediction method will identify both known and
unknown CRMs, we do not find this to be a useful
evaluation measure at this time.

Training set sensitivity

Training set sensitivity is assessed by finding the
overlap between training set CRMs and CRM predic-
tions using BEDTools intersect. For evaluations using
SCRMshaw, the minimum overlap for intersect was set

to 10% (−f 0.10). Training set sensitivity is then calcu-
lated as the number of CRM predictions overlapping
training set CRMs divided by the total number of CRMs
present in the training set. Note that we do not calculate
a training set precision value as there is little sense to
such a measure: predicting CRMs not part of the train-
ing set is the goal of a supervised prediction method and
such predictions are not false positives but rather, the
desired outcomes.

Expression pattern precision

To calculate expression pattern precision, BEDTools
intersect is used to obtain overlaps between the
expression-mapped CRMs file and the predicted CRMs
(for evaluations using SCRMshaw, the minimum overlap
for intersect was set to 10% (−f 0.10)). A simple count is
then made of the number of CRMs with the expected
expression pattern, divided by the total number of
expression-mapped CRMs.

Expression pattern recall

Expression pattern recall is calculated as the number
of predictions with the correct expression pattern
divided by the total number of CRMs known to drive
expression similar to the training set.

Permutation testing to calculate random expectation
To calculate the significance of each evaluation measure,
the coordinates of the predicted CRMs are randomized
using BEDTools shuffle, followed by calculation of each
measure using the randomized coordinates instead of
the actual CRM predictions. This is repeated 100 times
to generate an empirical random distribution, and
significance in determined by calculating a z score. The
number of permutations can be adjusted using the -s
argument on the pCRMeval command line. For evalua-
tions using SCRMshaw, the -excl argument to BEDTools
shuffle was used along with a file of exon coordinates, as
SCRMshaw predictions were made using non-exon
sequences only.

Predictions using random training sets
Sixty two training sets containing 30 randomly-chosen
non-coding sequences of varying length (median
length, 745 bp, 1st/3rd quartile 360/1200 bp) were
constructed using randomWithSameGC.pl (available
as part of the SCRMshaw package). SCRMshaw was
then trained on these training sets (random se-
quences) and the output evaluated using pCRMeval
as described above.
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SCRMshaw output file
SCRMshaw was run on the Drosophila melanogaster re-
lease 6 genome with the following command line options:

perl /SCRMshaw/code/scrm.pl --genome TargetSequence
--traindirlst TrainingSetList --gff annotationGffFile --thiwt
5000 --imm --hexmcd --pac --outdir --step 123 –lb

For default SCRMshaw the parameter -lb is set to 0. For
SCRMshaw-HD -lb is set to [0, 10, 20, 30,…,240] for par-
allel instances as described below (see SCRMshaw-HD).
Results are only reported here for the IMM compo-

nent of the SCRMshaw score [8], but evaluations using
the other scoring schemes were comparable (data not
shown).

Testing window starting positions
Offsets to the window starting positions were created by
respectively deleting 0 bp, 5 bp, 15 bp, 40 bp, 80 bp, or
125 bp from the beginning of each of the primary
chromosome arms and then using these trimmed
genome sequences as input to SCRMshaw.

SCRMshaw-HD
To generate higher-resolution scoring profiles, we intro-
duced a command line option, the offset parameter -lb,
to SCRMshaw. This offset value tells the algorithm to
ignore any base pairs at the beginning of a chromo-
some/scaffold before this point, i.e., to start creating the
analysis windows from this point in the genome. Offset
values of 0 to 240 bp with a step size of 10 bp (i.e. 0, 10,
20, 30,…,240) were used for SCRMshaw-HD, with each
individual offset being run as its own instance on a sep-
arate processor. This allows us to obtain the results for
the multiple offsets within the same amount of time as
required for default SCRMshaw.

Postprocessing
The output from all instances were concatenated and
passed to a post-processing Python script. The
post-processing script first splits each 500-bp
SCRMshaw prediction into individual 10-bp segments,
with each segment retaining the score from the larger
window. Note that with the exception of the ends of
each chromosome/scaffold, there will be 25 individual
10-bp segments, each from a different SCRMshaw in-
stance, for every 10-bp window in the genome. 10-bp
segments sharing the same coordinates are merged and
the sum of their SCRMshaw scores is calculated. Only
the top 5000 SCRMshaw windows are scored; all other
500-bp windows are set to score = 0. The resulting file of
10-bp windows, with their summed scores, are then used
as the input to MACs (Model-based Analysis of
Chip-Seq; [19]) for peak calling. The MACs function

bdgpeakcall is used for this purpose with default param-
eters and the score from the 5000th SCRMshaw predic-
tion (i.e., the last non-zero SCRMshaw score used) as
the value for parameter -cutoff.

Cutoff script
For many applications, it will be useful to generate a list
of top CRM predictions. To facilitate this task, we devel-
oped a simple python utility script, “cutoff.py”, which
takes into account both the raw SCRMshaw scores and
the summed scores (amplitude) of the SCRMshaw-HD
peaks. The cutoff points are based on determining the
“elbow” points of the score and amplitude curves (calcu-
lated as the point furthest from the line connecting the
first and last points on the curve [20]) (Fig. 4g, h, red
dots). For SCRMshaw-HD, defining the top predictions
is a two-part process. First, all peaks with amplitude
above the amplitude cutoff point are accepted (Fig. 4g).
Then, the SCRMshaw score curve is constructed as
follows: first, each peak is evaluated to determine the
maximum SCRMshaw score for any sequence window
within the peak (Fig. 4d, arrowheads). These scores are
then ranked, and the “elbow” point calculated (Fig. 4h).
Peaks which also pass this cutoff are accepted as the set
of top predictions (which can then be passed to pCRMe-
val for evaluation; Fig. 4f, peak “d”).
For default SCRMshaw, a set of top predictions can be

determined by simply finding the elbow point of the
entire SCRMshaw score distribution and accepting all
predictions with scores greater than or equal to the
score at that point.

Genome fragmentation
To test the effect of genome assembly, we downloaded
the assembly statistics for a variety of arthropod species
and categorized the quality of their genome assembly
from “Excellent” (very well assembled) to “Poor” (very
poorly assembled) (Table 3). Two species from each
category were selected and the length of their sequenced
scaffolds recorded. This length distribution was then
mimicked for the Drosophila melanogaster genome by
randomly picking segments with lengths drawn at ran-
dom from each quartile of the distribution, starting from
the beginning of each chromosome and proceeding
iteratively until reaching the chromosome end. (The
exception is for the “excellent” category, where one of
the genomes was simulated simply by dividing each D.
melanogaster chromosome arm into two halves.) This
enabled us to achieve a simulated chromosome length
distribution similar to that of the true genomes
(Additional file 9: Figure S4). Each segment was then
treated as a distinct chromosome/scaffold for the simu-
lated genome. (For example, if original chrA has length
of 1000 bp, and is broken into two fragments chrA:1–
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500 and chrA:501–1000, in the simulated genome these
will be defined as two distinct chromosomes chrB:1–500
and chrC:1–500). Using the coordinates from the
original genome, the sequence of each simulated
chromosome was extracted using BEDTools getfasta.
The simulated chromosomes were then annotated for
coding/non-coding sequence by mapping the gene anno-
tations from the original genome to the simulated
genome.
Simulated genomes were subject to CRM prediction

using SCRMshaw-HD and the coordinates of the top
predictions were then mapped back to their correspond-
ing coordinates in the original genome. BEDTools
intersect was used to calculate the number of predictions
in common between the original and simulated
genomes, with minimum overlap set at 50% (−f 0.50).

Additional files

Additional file 1: Table S1. Sizes of expression-pattern annotated CRM
groups in REDfly. (XLSX 13 kb)

Additional file 2: Table S2. Data for pCRMeval for 29 training sets at a
fixed cutoff. Values for training set sensitivity, REDfly recovery, REDfly recall,
expression pattern precision and expression pattern recall are reported.
(XLSX 14 kb)

Additional file 3: Figure S1. Performance evaluation of SCRMshaw
using pCRMeval on a semi-continuous scale. Performance of training set
sensitivity, REDfly recovery, and expression pattern precision of 29 training
sets. (PDF 23 kb)

Additional file 4: Table S3. Data for pCRMeval for 29 training sets on a
semi-continuous scale. Values for training set sensitivity, REDfly recovery,
REDfly recall, expression pattern precision and expression pattern recall are
reported. (XLSX 276 kb)

Additional file 5: Figure S2. Results of SCRMshaw assessment by
pCRMeval using a fixed cutoff. (i) Training set sensitivity, (ii) REDfly
recovery, and (iii) expression pattern precision of 29 trainings sets with
starting position offsets of 0, 5, 15, 40, 80 and 125 base pairs. (PDF 50 kb)

Additional file 6: Table S4. Data for pCRMeval for 29 training sets with
varying offsets at a fixed cutoff. Values for training set sensitivity, REDfly
recovery, REDfly recall, expression pattern precision and expression pattern
recall with starting position offsets of 0, 5, 15, 40, 80 and 125 base pairs
are reported. (XLSX 53 kb)

Additional file 7: Figure S3. Results of SCRMshaw assessment by
pCRMeval on a semi-continuous scale. (i) Training set sensitivity, (ii) REDfly re-
covery, and (iii) expression pattern precision of 29 trainings sets with starting
position offsets of 0, 5, 15, 40, 80 and 125 base pairs. (PDF 155 kb)

Additional file 8: Table S5. Data for pCRMeval for 29 training sets with
varying offsets on a semi-continuous scale. Values for training set sensitiv-
ity, REDfly recovery, REDfly recall, expression pattern precision and expression
pattern recall with starting position offsets of 0, 5, 15, 40, 80 and 125 base
pairs are reported. (XLSX 2034 kb)

Additional file 9: Figure S4. Scaffold length distribution of real vs
simulated genome. (PDF 494 kb)

Abbreviation
CRM: cis-regulatory module
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Table 3 Categories and N50 distribution for genome assembly simulations

ID Species Scaffold N50 Category

A Drosophila melanogaster (divided chromosomes) NA Excellent

B Aedes aegypti 409,777,670 Excellent

C Ctenocephalides felis 71,713,785 Very Good

D Apis mellifera 13,619,445 Very Good

E Papilio xuthus 6,198,915 Good

F Schizaphis graminum 1,292,312 Good

G Pogonomyrmex barbatus 819,605 Medium

H Bactrocera oleae 139,566 Medium

I Lutzomyia longipalpis 85,093 Poor

J Drosophila albomicans 23,589 Poor
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