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Abstract

Background: Inexpensive high-throughput DNA sequencing has democratized access to genetic information for
most organisms so that research utilizing a genome or transcriptome of an organism is not limited to model
systems. However, the quality of the assemblies of sampled genomes can vary greatly which hampers utility for
comparisons and meaningful interpretation. The uncertainty of the completeness of a given genome sequence can
limit feasibility of asserting patterns of high rates of gene loss reported in many lineages.

Results: We propose a computational framework and sequence resource for assessing completeness of fungal genomes
called FGMP (Fungal Genome Mapping Project). Our approach is based on evolutionary conserved sets of proteins and

DNA elements and is applicable to various types of genomic data. We present a comparison of FGMP and state-of-the-art
methods for genome completeness assessment utilizing 246 genome assemblies of fungi. We discuss genome assembly

help reducing genome sequencing Costs.
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improvements/degradations in 57 cases where assemblies have been updated, as recorded by NCBI assembly archive.

Conclusion: FGMP is an accurate tool for quantifying level of completion from fungal genomic data. It is particularly
useful for non-model organisms without reference genomes and can be used directly on unassembled reads, which can

Background

The recent explosion of high-throughput sequencing
methods and analytic tools has made sequencing easier
and cheaper for nearly all species across the tree of life
including uncultivable organisms. However, the quality
and completeness of these genomes can vary due to
challenges in assembling repeat rich regions and variable
or insufficient sequencing coverage [1]. Large-scale se-
quencing projects such as the microbial dark matter pro-
ject [2], the Human Microbiome Project [3] or the 1000
fungal genomes project (http://1000.fungalgenomes.org)
have produced thousands of microbial genome assemblies.
The rapid generation and release of draft data is contribut-
ing important and useful datasets that are extensively used
for studies of pathology, evolution, and discovery of en-
zymes or pathways. Variable quality and completeness of
draft genomes can impact the inferences drawn regarding
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gene content, transposable element load, and genome
size. There is a need to quantify a genome’s complete-
ness to provide context of the quality of information
that can be inferred from it. This work is also moti-
vated by observations that lineage specific gene loss is
an important driving force in evolution, especially in
fungi [4, 5], and the accuracy of conclusions drawn
about the patterns of missing genes requires compari-
sons among similar quality genomes.

Approaches to assess the quality and completeness of
a genome have been proposed using nearly 100 different
metrics [6]. Unfortunately, most of these metrics are
generally not applicable to non-model species because they
require a substantial amount of additional high-quality data
(e.g. fosmids, reference genomes, optical maps) that can be
expensive or infeasible to obtain for a large number of
samples. Currently, few methods attempt to estimate the
amount of missing data in an assembly without prior know-
ledge. One of the most popular approaches, CEGMA esti-
mates the completeness to the presence of set of 248 single
copy gene markers [7, 8]. Although CEGMA has been used
in numerous studies, a key issue is that markers were
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selected from only six model eukaryotic species and the
ubiquity and detections of these markers may not be con-
sistent as more distant lineages are sampled. CEGMA has
been recently discontinued and the authors recommend
using alternative tools (http://www.acgt.me/blog/2015/5/
18/goodbye-cegma-hello-busco). The concept has been
recently revisited and updated with clade-focused sets of
protein coding gene markers in BUSCO [9]. Another set of
246 single copy fungal gene families has been proposed by
FUNYBASE [10]. The latter provides a set of conserved
fungal genes but the tools are not explicitly developed to
assess genome completeness. Furthermore, the FUNYBASE
database was generated in 2010 while a broader sampling
of diverse fungal genomes is now available [11].

To build a dataset of independent markers to assess
completeness, typically, single copy orthologous genes
are chosen. Multi-copy gene families are systematically
filtered out in these selections, but their utility, as well
as that of alternative, non-protein coding gene markers
has not been fully explored in assessing genome com-
pleteness. Two summary statistics of genome assemblies
are frequently used to evaluate quality and completeness.
The N50 and L50 statistics [12] which describe the level
of fragmentation of the assembly are computed based on
the lengths of assembly scaffolds or contigs. Both statis-
tics utilize a sorted list of largest to smallest sizes of con-
tigs, where L50 is the length (in bases) of the shortest
contig for which 50% of the genome can be contained
within contigs of that size or larger, and N50 is the num-
ber of contigs that when summed their length is half of
the assembly size [13]. Note that unfortunately these two
concepts are swapped in some tools, where N50 means
length and L50 means the count. Still other methods
measure the number error per bases or assembly incon-
sistencies to predict genome quality [14, 15].

In the present study, we focused on the fungal kingdom.
Fungal genome sizes vary from several megabases (Mb) to
nearly 1000 Mb [11]. A primary motivation of this work is
to provide a realistic estimation of assembly completeness
for fungal genomes. The precision depends on the ability
to accurately identify genes, which can appear artifactually
fragmented by an incomplete assembly or appear lost due
to more rapidly evolving loci in some lineages. The nature,
evolutionary trajectory and loss likelihood of genes need to
be considered when calculating genome completeness
from gene content. We propose a novel set of markers and
build a pipeline to assess their presence in genome assem-
blies called FGMP (Fungal Genome Mapping Project). Our
multistep approach extends previous approaches by inte-
grating identifiable fungal proteins and highly conserved
non-coding regions. The protein markers selected include
both single and multi-copy markers and have only a 50%
overlap with previously published datasets providing a dif-
ferent dimension of sequence evolution to evaluate the
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completeness. Highly conserved non-coding regions of
fungal genomes are novel resources we have developed
and incorporated into assessment of genome complete-
ness in FGMP. Lastly, we use a multisampling approach
coupled to a rarefaction analysis to search for markers
in unassembled sequencing reads, which bypass the need
for an assembly. Therefore, using FGMP, a researcher can
quickly assess the quality of a set of reads in hand before
attempting an assembly, which can be computationally ex-
pensive. Finally, we described a side-by-side comparison
of our tool with state-of arts methods over 246 fungal spe-
cies with genome assemblies of varying ranges of quality.
We captured assembly improvements/degradations in 57
fungal species with more than one released assembly, as
recorded in NCBI assembly archive. The modular con-
struction of this work can be a valuable tool for genome
completion estimation that can be easily incorporated in
more complex pipeline.

Implementation

A typical run of FGMP consists of three steps. First, a
set of raw gene models (proteins) is generated from the
queried assembly which are further filtered down to high
confidence genes in subsequent steps. Second, the pres-
ence of highly conserved non-coding fungal DNA ele-
ments (>200 nucleotides) is estimated. Third, the copy
number of ubiquitous multi-copy protein families is de-
termined to track possible mis-assemblies or collapsed
duplicated regions. The FGMP workflow is diagrammed
in Fig. 1 and methodology further detailed in the follow-
ing sections. FGMP is not intended to assess the com-
pleteness of metagenome assemblies. Input data are
expected to belong to a single species, and bacterial con-
taminants should be removed beforehand.

Reference data preparation

FGMP is primarily designed for assessment of fungal
genome quality using defined sets of conserved proteins,
noncoding highly conserved DNA elements (HDE) and
multi-copy protein families. All the datasets are included
in FGMP package and a stable released version is avail-
able at DOL: https://doi.org/10.5281/zenodo.1453438. In-
stallation is available via Bioconda package system as
“conda install -c¢ bioconda fgmp” [16]. Alternatively, a
step by step manual installation guide is provided at
https://github.com/stajichlab/FGMP.

To generate the protein markers, we analyzed a phylo-
genomic dataset of 25 fungi with complete genomes cov-
ering major fungal lineages (Additional file 1). In total,
164,232 proteins were analyzed. Our goal is to capture the
fungal protein diversity rather than focusing on universally
conserved proteins. We focused on obtaining a set of di-
verse proteins to be used for initial identification of candi-
date regions and training sets for gene predictions. Our
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Fig. 1 The FGMP workflow. A typical workflow consists of three sequential modules (indicated by the boxes). The first module (FGMP_PROT)
automates the use of different programs to evaluate the genome completeness based on pre-defined protein and nucleotide markers. Additional
modules evaluate the patterns of conservation fungal multi-copy protein families. FGMP protein and nucleotide datasets are derived from 25 and
nine fungal species, respectively (indicated as dotted arrows)

assumption is that irrespective to the phylogenetic classifi-
cation of species under analysis, our diversified set of pro-
teins would contain a homolog with sufficient protein
similarity to generate a valid gene model. With these con-
cepts in mind, we identified orthologous protein families
using OMA [17] followed by inspection of the ortholog
clusters using BLAST [18] and full-length pairwise align-
ments generated using needle from EMBOSS package
[19]. We extracted 7773 protein families present in at least
four species and use them to construct Hidden Markov
Models (HMMs) using HMMER3 [20]. Protein families
here refer to orthologous groups. In parallel, we selected a
single most informative protein in each of these families
using M-COFFEE [21], which corresponds to the se-
quence containing information that is lacking in other se-
quences of a multiple sequence alignment. The sequences
lacking information in the other sequences might be due
be mispredictions and/or protein domain loss, which are
common in most annotated genomes. We computed the

significance scores as follows: each protein of each cluster
was compared to its corresponding HMM and the thresh-
old corresponds to 80% of the score of the protein pre-
senting lowest the score. The use of the full set of 7773
proteins appeared to be excessively demanding in terms of
computational resources, even for small sized genome as-
semblies (e.g. <8 megabases; data not shown; the 7773
protein markers are available at DOI: https://doi.org/10.
5281/zenodo.2541782). To reduce the computational bur-
den, we then filtered out potentially paralogous sequences
using PHMMER with an E-value of 10™ 50 as cut off [20],
and applied the following rules: (i) a marker should be
present in at least 99% of the species and (ii) should be
unambiguously identifiable based on the alignment score
of the protein against the HMM of the family. This filter-
ing reduces our markers dataset to 593 proteins of which
60.3% are from single copy genes contrasting other pub-
lished strategies, which exclude multi-copy gene families
(BUSCO and CEGMA). These 593 representative protein


https://doi.org/10.5281/zenodo.2541782
https://doi.org/10.5281/zenodo.2541782

Cissé and Stajich BMC Bioinformatics (2019) 20:184

sequences are aligned to the queried genome assembly
to identify genomic regions that encode homologous
genes using tBLASTn [18]. Once candidate regions are
narrowed down by these translated alignment searches,
fine-grain alignments of the proteins to these homolo-
gous regions in the target genome are generated using
splice-site aware protein2genome alignment with EX-
ONERATE [22]. These alignments-based gene models are
used as training sets for AUGUSTUS [23]. The predicted
proteins including both AUGUSTUS gene models and
translated EXONERATE alignment matches are then
searched against 593 HMMs to identify the originating
genes. FGMP assigns confidence in these predictions based
on pre-defined thresholds. We benchmarked FGMP using
the full (7773) and reduced set of proteins (593) on our
subsequent analyses and found no significant differences in
completeness estimates between the two sets of proteins.
Protein domains were inferred using InterProScan [24] and
mapped to gene ontology terms with InterPro2GO (http://
www.geneontology.org/external2go/interpro2go).

To identify highly conserved non protein-coding fun-
gal DNA elements, we performed pairwise whole gen-
ome alignments of nine fungi using LAST [25]. The
phylogeny of the selected species is presented in the
Additional file 2. Coding regions were removed from
alignments based on NCBI annotations using BEDtools
[26]. The filtering was carried out using a computational
pipeline combining enriched motifs and alignments from
MEME [27], BLASTn [18] and EMBOSS ‘needle’ [19]. A
total of 31 non-coding highly conserved regions in each
species were extracted with a requirement that loci be at
least 200 nucleotides long with a minimum of 70% global
identity. These alignments were converted into HMMs using
NHMMER from HMMER version 3.1b2. Comparison of
these non-coding segments to Rfam database v14.0 [28]
detects only one putative non coding RNA (FGMP.Ri-
bo_CE.scaffold_35.127.484) with similarity to the Intron
gpl family (RF00028), which suggests that most of the
conserved DNA elements are true non-coding regions.
To investigate whether our conserved DNA elements
are specific to fungi, we aligned FGMP DNA markers
to a custom non-fungi eukaryotic genomic database
using nhmmer with an e-value of 10™%° as cut off. The
database includes Toxoplasma gondii (NCBI accession
number GCF_000006565.2), Trichomonas vaginalis
(GCF_000002825.2), Leishmania major (GCF_000002725.2);
Leishmania donovani (GCF_000227135.1), Plasmodium vivax
(GCF_000002415.2),  Plasmodium  falciparum  (GCF_
000002415.2), Plasmodium yoelii (GCF_900002385.1).
Seventeen out of 33 elements had significant hits
against the database, although no full-length match
was detected. This finding suggests that these half of
FGMP conserved DNA elements could be present in
other eukaryotes.
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To identify ubiquitous multi-copy protein families
within our set of 593 proteins, we surveyed 345 fungal
genomes. Thirty-three protein families appear to have
more than one copy in all the genomes (HMMSEARCH,
E-value <10 °°). The dataset includes 15 helicases, six
kinases, six chaperonin and six diverse proteins. For
each of these 33 proteins, we consider the minimum
number of copies. FGMP records the number of copies
of these 33 proteins and reports when the copy number
is lower than expected. The current implementation
cannot differentiate independent copies from unassem-
bled data.

Lastly, FGMP can estimate the level of completion dir-
ectly from raw sequences using an iterative reservoir
sampling approach. The process starts by splitting the
set of reads by blocks of 10* sequences. Then, FGMP
randomly selects 1000 blocks using a reservoir sampling
approach. This parameter can be modified by the user.
Chunks of sequences are iteratively screened for pres-
ence of 593 protein makers using BLASTx [24]. The
number of markers detected is recorded at each iter-
ation. FGMP will stop after 20 successive unsuccessful
attempts to detect new markers.

Results

Protein markers comparison

To determine if there is overlap among protein markers,
we compared FGMP protein markers to proteins used
by other tools. Noting that CEGMA has been recently
discontinued and FUNYBASE is outdated, this compari-
son is only for an historical perspective. A total of 7773
FGMP markers were originally obtained, which was re-
duced to 593 after the removal of ambiguous markers
(see Reference data preparation). We compared the
markers selected for FGMP (593 proteins) to those used
in CEGMA (248 families, 1488 proteins), BUSCO fungi
(1438 proteins) and FUNYBASE (246 families, 5166 pro-
teins). Using reciprocal best BLASTp (E-value <10~ %),
49.5% of FGMP protein markers are not found in the
other datasets whereas the proportions of unique
markers using the same criterion in CEGMA, FUNY-
BASE and BUSCO are respectively 21.7, 10.5 and 69.8%
(see Additional file 3). FGMP proteins tend to be con-
served in other eukaryotes but their utility outside the
fungal kingdom is not explored in the present study.
Transferases and transporters are common (13%).
Kinases and helicases are overrepresented in FGMP pro-
tein dataset where they represent 10 and 5% of 593 pro-
tein markers, respectively as compared to 0.8 and 2% of
CEGMA makers; 3.3 and 2% in FUNYBASE markers;
3.3 and 0.7% of BUSCO fungi markers. Kinases and heli-
cases are multi-copy protein families in nearly all fungi
and likely this multicopy property is why these genes are
not present in other datasets, which actively restrict gene
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duplicates. Most FGMP transferases have homologs in
bacteria and archaea, suggesting that they are ancient.
Most of the helicases present similarities with archaeal or
bacterial proteins as well (PHMMER e-value of 10”°), and
might represent a mix of ancient and derived forms [29].

Comparison with related tools

To investigate the ability of different software to detect
changes in genome assemblies’ quality, we analyzed the
initial and subsequently updated genome assemblies of
45 fungi. As FGMP measures the genome completeness
using protein and highly conserved non-coding ele-
ments, we refer to these modules as FGMP_PROT and
FGMP_HCE, respectively. This is because FGMP_PROT
is roughly equivalent to BUSCO or CEGMA, but
FGMP_HCE is unique to FGMP. FGMP_PROT and
FGMP_HCE predict increases in genome completeness
in 35 and 31% of the 45 species, respectively whereas
BUSCO-fungi predicts increases in 53% and CEGMA in
60% of the species (Fig. 2 panels a to d). Overall, the
compared methods agree on 16 out of 45 species (Fig. 2
panel e). BUSCO and CEGMA genome completeness
predictions agree on 31 out of 45 genomes, whereas
BUSCO and FGMP_PROT/FGMP_HCE predictions
agree on 26 and 21 genomes, respectively. CEGMA and
FGMP_PROT/EGMP_HCE agree on 28 and 25 ge-
nomes, respectively. FGMP_PROT and FGMP_HCE pre-
dictions agree on 24 genomes. FGMP is the most
conservative method at assigning increase in complete-
ness between versions and CEGMA is the most permis-
sive. No statistically significant correlation between
FGMP and BUSCO results and various genome statistics
was observed (i.e. N50, sequencing coverage, or the se-
quencing technology used), which is consistent with
Assemblathon results [6] showing that completeness
metrics are not necessarily correlated among genome as-
sembly statistics. However, CEGMA results appeared to
be correlated to the sequencing technology used (Spear-
man rho = 0.2), that is, assemblies generated exclusively
with short reads (e.g. Illumina) tend to have lower rates
of increased completeness between versions than those
built using long reads (e.g. PacBio). FGMP_PROT and
FGMP_HCE results are correlated (Spearman rho =
0.39) but clearly independent, which further highlights
the utility of interrogating different genomic regions to
assess completeness.

To further assess the ability of FGMP to detect missing
genes and gene loss, we evaluated the impacts of ran-
domly removing ~10% of genomic sequence using 57
fungal genome assemblies (completeness estimates are
provided in Additional file 4). FGMP_PROT successfully
captures the degradations in all assemblies, the average
loss rate was estimated at 5% instead of the original 10%,
which means the full extent of the simulated loss is not
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recovered. FGMP_HDE detected the loss of genomic
regions in 54 assemblies with an average loss rate of
5.2%. A search with BUSCO (fungi models) captures
degradations in 55 assemblies with an average loss rate
of 4.3%. The removal of genomic regions prevented
CEGMA pipeline from completing in many cases without
apparent reasons. Therefore, we have concluded that
CEGMA could only be run on the original genome assem-
blies. Examination of CEGMA completeness estimates
found they are not statistically different from BUSCO
(fungi models) estimations (Wilcoxon test, p-value 0.73),
but differ significantly from FGMP results (p-value = 0.01).
These findings indicate FGMP and BUSCO perform rela-
tively well on genome assemblies of varying degrees of
completeness and are similar in estimations detecting deg-
radations in genomes (Fig. 3). These conclusions hold
when simulated loss of genomic regions ranged from 5 to
30% (Additional file 4b).

Genome completion and ecological or lifestyle traits

We estimated the genome completeness of 166 fungal
genomes (species details are described in Additional
file 5). Only one version of the genome assembly was
considered for each species. Each species was classified
according to its lifestyle based on published literature
(e.g. saprotroph, parasite; references are presented in
Additional file 5). Parasites are typically characterized
by a reduced genome size usually attributed their reli-
ance, either partially or obligately, on nutrients scav-
enged from hosts. Their genomes are often enriched
with transposable and repetitive elements, which in
some extreme case composed more than 80% of the ge-
nomes [11]. Our dataset includes 34 pathogenic species
which genome sizes range from 177.6 Mb for the ecto-
mycorrhizal fungus Cenococcum geophilum to 2.1 Mb
for the microsporidia Encephalitozoon romaleae. The
remaining 132 fungi were classified as saprotopic and
their genome sizes vary from 177 Mb for the ectomy-
corrhizal fungus Cenococcum geophilum to 9.8 Mb for
the xerophilic fungus Wallemia sebi. Taking the whole
set of genomes, the average N50 is 126.7 Mb for an
average number of scaffolds per genome of 1029; an
average genome size of 38 Mb and the average fraction
of Ns per genome is 3.2%.

Analysis of our set of 166 genome assemblies found
that 92% have a CEGMA value > 95% whilst only 58.7%
of these assemblies have a 95% completeness with
BUSCO fungi, 40% with FGMP_HDE and 54.2% with
FGMP_PROT. Genomes labeled as incomplete are typic-
ally parasites, which suggest that gene losses from gen-
ome streamlining and missing sequence in assemblies
might be confounded. These results indicate that a dif-
ferent set of representative sequence will be necessary
for obligate parasites. Overall completeness predictions
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correlated with the N50: CEGMA (Spearman rho =
0.35, P-value = 1.3 x 10~ %), BUSCO fungi (R = 0.40; P =
21x10"'Y), FGMP_HDE (R=0.17; P=0.005) but
FGMP_PROT (R =-0.05; P=0.4). FGMP_PROT pre-
dictions are not correlated with N50 as this metric in-
corporates gene fragments, which allow the partial
detection of markers even when reliable gene models
cannot be built. To avoid overcounting false positives
and inflating the estimate, gene fragment sequences are
required to score above a predetermined threshold to
be accepted as valid hit. However, because short fragments
are still required to display a significant similarity versus
FGMP protein markers (scores), the likelihood of inflated
completeness estimates is expected to be negligible.

Runtimes

We tracked the running times for 90 fungal genome as-
semblies (Additional file 6). Using six CPU cores each
with 8 GB memory (AMD Opteron clock speed 2.1Ggz),
FGMP runtimes are proportional to the size and the
levels of fragmentation of the genomes under analysis.
Runtimes are more influenced by the level of fragmentation
of the assembly than its size (Additional file 7). For ex-
ample, FGMP analysis is completed in 39 min for the 118
Mb genome size of B. graminis (N50 = 2030. 3 kb) whereas
the analysis of the 41 Mb genome of Magnaporthe oryzae
(N50 = 153 kb) requires three hours (Additional file 6). The
fastest runtime observed was that of Cryptococcus gattii
(assembly version 1, size 17.1 Mb, N50 = 44 kb) completed
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Fig. 3 Genomic loss simulations. The genomes of 57 fungal species
were randomly truncated to evaluate accuracy of FGMP, BUSCO and
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percentages) between completeness estimates from the full and
truncated assemblies

in 22 min and the longest with the genome of analysis of
the 499 Mb genome of Hortea werneckii (N50 153 kb)
which required four hours.

Discussion

FGMP is a useful tool for automated assessment of gen-
ome assembly completeness of fungal genomes that in-
corporates measures of gene content covering both
protein coding and noncoding regions. The tool com-
bines multilevel analysis by scanning of both coding and
non-coding regions of a given genome and provides a
detailed reported describing the recovery of multiple
types of genomic features in a genome assembly. Com-
pared to existing methods BUSCO and CEGMA, FGMP
fills a unique niche by assessing non-coding highly con-
served segments and collapsed gene family’s content in
addition to measure of protein coding gene conserva-
tion. Additionally, FGMP does not rely exclusively on ab
inito gene predictions with tools like AUGUSTUS which
require parameter training. FGMP reports complete,
partial and aberrant gene models. FGMP also includes
an experimental module, which allow a user to query
raw reads using a reservoir sampling approach. This
module is currently optimized for low input long reads
similar to PacBio or Nanopore sequences. Future ver-
sions will include support for estimation from Illumina
reads. FGMP has a modular architecture and thus can
be easily incorporated into existing genome annotation
pipelines.
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Conclusion

A realistic estimation of level of genome completeness is
a critical metric for accurate comparative genomics
studies. This is particularly relevant as the sequencing
costs decrease and whole genome assembly is attempted
as daily routine for many purposes. BUSCO is currently
the only maintained tool for such purpose. FGMP fills a
unique niche in the sense that it has modules that assay
additional feature types in genomes with no equivalent
in existing methods. By applying FGMP to real and
simulated datasets, we show that FGMP predictions are
reliable and extended that of other software. The tool
allows a deeper analysis in the context of evolutionary
biology by quickly providing key metrics such the pres-
ence of potentially collapsed regions or can be used to
screen reads before computationally costly genome as-
sembly is attempted.

Availability and requirements
Project name: FGMP.
Project home page: https://github.com/stajichlab/FGMP
Operating system(s): Linux, Mac OS.
Programming language: Perl 5.
License: MIT Open Source License.
Archived release: DOI: https://doi.org/10.5281/zenodo.
1453438
Package system availability: Bioconda.
Any restrictions to use by non-academics: none.

Methods

FGMP is written in Perl 5, and is designed for a com-
mand line interface. The code is organized into five dis-
tinct modules, which are stored in the main library
“FGMP.pm”.

1. Identify candidate regions: this module scans the
genome assembly using 593 fungal proteins with
TBLASTn [18]. In parallel, the assembly is
translated using SIXPACK [19] and compared to
593 Hidden Markov models of the 593 protein
markers using HMMER3 [20]. Long FASTA
headers are discouraged.

2. Process alignments: aligns 593 protein makers to
candidate regions using EXONERATE [22].
Alignments are converted in protein sequences and
training sets for AUGUSTUS [23].

3. Annotation of candidate regions: uses AUGUSTUS to
annotate the candidate regions. The module merges
AUGUSTUS predictions with translated proteins from
module 2 into a single FASTA file. The module
compares raw predictions (proteins or peptides) to
593 HMM:s using HMMSEARCH. Lastly, FGMP
scans the original assembly for 31 universally
conserved fungal elements using NHMMER.
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4. Check the status of multi-copy protein families:
scans the raw predictions and identify markers that
are expected to be in multiple copies. Markers with
a lower number of copies than expected are tagged
as potentially collapsed regions.

5. Generate final report: gather all raw predictions,
filter aberrant predictions (at least twice the average
length of the reference makers) and choose the
longest gene model for each protein markers.

6. Infer genome completeness from long reads: is
triggered when reads are provided. FGMP uses a
reservoir sampling approach and BLASTx [18] to
search for the 593 proteins markers in the reads.

Additional files

Additional file 1: List of fungal species used for phylogenomic analysis.
(XLSX 42 kb)

Additional file 2: Phylogeny of nine fungal species used for the
detection of highly conserved nucleotide elements. The divergence times
were obtained from http://www.timetree.org [30] (PDF 25 kb)

Additional file 3: Comparison of protein markers used for genome
completeness estimation. (PDF 231 kb)

Additional file 4: Assessment of genome completeness in 57 fungal
genome assemblies. b Plots of genome completeness in 57 fungal
genome assemblies. (ZIP 61 kb)

Additional file 5: Lifestyle, genome characteristics and completeness
estimates of 166 fungi. (XLSX 47 kb)

Additional file 6: Genome characteristics, completeness estimates and
run times of 90 fungal genomes. (XLSX 16 kb)

Additional file 7: Scatterplot showing the relationship between FGMP
running times and the level of fragmentation for different genome
assemblies expressed as N50. (PDF 5 kb)
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