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Abstract

Background: Data from genome-wide association studies (GWASs) have been used to estimate the heritability of
human complex traits in recent years. Existing methods are based on the linear mixed model, with the assumption
that the genetic effects are random variables, which is opposite to the fixed effect assumption embedded in the
framework of quantitative genetics theory. Moreover, heritability estimators provided by existing methods may have
large standard errors, which calls for the development of reliable and accurate methods to estimate heritability.

Results: In this paper, we first investigate the influences of the fixed and random effect assumption on heritability
estimation, and prove that these two assumptions are equivalent under mild conditions in the theoretical aspect.
Second, we propose a two-stage strategy by first performing sparse regularization via cross-validated elastic net, and
then applying variance estimation methods to construct reliable heritability estimations. Results on both simulated
data and real data show that our strategy achieves a considerable reduction in the standard error while reserving the
accuracy.

Conclusions: The proposed strategy allows for a reliable and accurate heritability estimation using GWAS data. It
shows the promising future that reliable estimations can still be obtained with even a relatively restricted sample size,
and should be especially useful for large-scale heritability analyses in the genomics era.
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Background
Heritability measures how much the variation of a phe-
notypic trait in a population is caused by the genetic
variation among individuals in that population. It has
two specific types of definition: the broad sense and the
narrow sense. The narrow-sense heritability is of more
importance in genetic applications, which is defined as
the ratio of the additive genetic variance to the total phe-
notypic variance [1]. With the tremendous technological
advances in genome-wide association studies (GWASs)
in the last few decades, hundreds of thousands of
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geneticmarkers for individuals have been discovered, usu-
ally single nucleotide polymorphisms (SNPs), aiming to
explore the genetic architecture of human complex traits.
Heritability based on GWASs, termed as the SNP heri-
tability [2], has been serving as a more and more critical
measure in this exploration, and can guide downstream
analysis on more specific biological questions. Here-
inafter, we consider the SNP heritability unless otherwise
specified.
Traditional approaches to estimating narrow-sense her-

itability are based on twin or pedigree studies, in which
genetic variance can be estimated from phenotypic sim-
ilarity between relatives; see, e.g., [1, 3] and references
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therein. But in practice, it is rather difficult to completely
partition the genetic variance from the variance resulted
from shared common environmental factors, as relatives
often share similar genes and are more likely to be raised
in similar environment [4]. In modern GWASs, designs
based on a population sample of unrelated people help
to overcome the confounding of genes and environment,
with the SNP heritability being viewed as a lower bound
for the narrow-sense heritability. However, for most traits
the declared highly significant SNPs fail to capture all the
genetic variance; see, e.g., [5, 6]. This has been referred to
as the “missing heritability” problem [7, 8]. To address this
gap, researchers in [9] developed the software genome-
wide complex trait analysis (GCTA) to estimate the SNP
heritability without the requirement that individual SNPs
are significant, arriving at a higher lower bound for the
narrow-sense heritability [10]. Recently, computing tools
such as BOLT-REML [11], BayesR [12], and massively
expedited genome-wide heritability analysis (MEGHA)
[13] have been developed to achieve a higher speed. These
works make use of the linear mixed model (LMM) to con-
sider all SNPs across the genome-wide average, assuming
that the genetic effects are random variables and the
genotypes are fixed quantities.
However, from the framework of quantitative genetics

theory, the effects of genetic markers on a trait are fixed
quantities, and genetic variance stems from variation at
quantitative trait locus (QTL) genotypes [1, 14]. What
is the difference between the fixed and random effect
assumption? Does it matter which assumption is used to
estimate heritability? This motivates us to investigate the
two assumptions in order to compare their influences on
heritability estimation. Moreover, heritability estimators
produced by GCTA and following tools may have large
standard errors, which is especially the case in the field of
imaging genetics, where the sample size cannot increase
arbitrarily due to high costs; see, e.g., [15–17]. This stim-
ulates the main focus of our work to construct reliable
estimators for heritability with smaller standard errors in
the ultrahigh dimensional scenario. The main contribu-
tions of this paper are as follows. First, we investigate
the influences of the fixed and random effect assump-
tion on heritability estimation, and prove that these two
assumptions are equivalent under mild conditions in the
theoretical aspect. Second, former GWASs have pointed
out that the number of SNPs with nonzero effects that
are associated with a given disease or a trait may be rel-
atively small or moderate (e.g., ∼ 103), though the whole
number of SNPs is usually very large (e.g., 105 ∼ 106)
[18, 19]. In other words, not all SNPs are causal (strictly
speaking, here “causal SNPs” just refer to SNPs with
nonzero effects), or at least not all SNPs are in perfect
linkage disequilibrium (LD) with QTL. In a statistical ter-
minology, the underlying true model is sparse. Therefore,

we make use of the underlying sparse structure of GWAS
data, and propose a two-stage strategy by first perform-
ing sparse regularization via cross-validated elastic net
and then applying certain variance estimation methods
to construct reliable heritability estimations. Results from
simulated data and real neuroanatomical data from the
IMAGEN project show that our strategy can provide esti-
mators with a considerable reduction in the standard error
while retaining the accuracy. The results demonstrate the
promising capability of our strategy for large-scale her-
itability analyses in the genomics era, especially in the
field of imaging genetics, where the sample size is usually
limited nowadays.

Methods
We begin this section by first introducing some defini-
tions and notations for future reference. For 0 < q <

+∞, the �q norm of a vector u ∈ R
n is defined as

‖u‖q := (∑n
i=1 |ui|q

)1/q. We say that u = 0 if ui = 0
for all i = 1, 2, · · · , n. For m ≥ 1, let Im stand for the
m × m identity matrix. For a matrix W ∈ R

m×n, we
use Wij (i = 1, 2, · · · ,m, j = 1, 2, · · · , n) to denote its
ij-th entry, Wi· (i = 1, 2, · · · ,m) to denote its i-th row,
and W·j (j = 1, 2, · · · , n) to denote its j-th column. For
any index set M ⊆ {1, 2, · · · , n}, we use uM to denote
the subvector containing the components of the vector u
that are indexed by M, and WM to denote the submatrix
containing the columns of the matrix W that are indexed
byM.

Model
In this paper, we consider the following sparse linear
model to approximate the true underlying model in
GWASs,

y = Wu∗ + e, (1)

where y ∈ R
m is a vector of observations, W is an

m × n (m 	 n) design matrix storing the SNP informa-
tion, u∗ ∈ R

n is the unknown vector representing the SNP
effects with s (s ≤ n) nonzero entries, and e is a vector
of residual effects with e ∼ N (0, σ 2

e Im). The true model
is denoted as M0 := {j : u∗

j �= 0}. Then the cardinal-
ity of the true model |M0| = s represents the number of
causal SNPs of a given trait. The sparsity level is defined as
γ := s/n, which may be high or low according to the trait
studied. When there are other covariates (such as overall
mean, sex and age) to be considered, we simply apply the
method proposed in [20], which projects out the nuisance
variables (covariates).
Then we state two assumptions regarding the model

Eq. 1.
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Fixed Effect Assumption. This assumption is consistent
with the quantitative genetics paradigm. We now spec-
ify it in the sparse scenario as follows: (i). The rows
of the design matrix W1·,W2·, · · · ,Wm· are independent
and identically distributed random vectors with mean
E(W1·) = 0 and n × n positive definite covariance
matrix � = Cov(W1·); (ii). The residuals e1, e2, · · · , em
are independent of the design matrix W ; (iii). The vec-
tor u consists of fixed quantities with supp(u∗) = M0.
Here the assumed covariance structure of Wi· is used to
characterize the correlations between the n SNPs.
Random Effect Assumption. Recently, researchers in

[9, 10] made use of this assumption to solve the “missing
heritability” problem. We also endow it with the sparse
structure as follows: (i). {u∗

j : j ∈ M0} are a set of
independent and identically distributed Gaussian random
variables with mean 0 and variance σ 2

u ; (ii). For any i ∈
{1, 2, ·,m} and j ∈ M0, ei is independent of u∗

j ; (iii). The
design matrixW is made up with fixed entries.
We now describeW in detail under the context of genet-

ics. Noting from the facts that in GWAS each SNP is
regarded as a binomial random variable with two trials,
and that the success probability is defined as “reference
allele frequency”, the entries of the design matrix W can
be formulated by another matrix Z in the following way:

Wij = Zij − 2pj√
2pj(1 − pj)

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n,
(2)

where the matrix Z stores the original genetic informa-
tion in a population. Concretely speaking, the genotype of
each SNP is coded in this way: Zij = 0 (resp. 1, resp. 2) if
the genotype of the ith individual at locus j is bb (resp. Bb,
resp. BB), and pj is the frequency of the reference allele at
locus j. After being constructed as above, W is the stan-
dard genotypematrix with each column/row standardized
to have zero mean and unit variance.
Then we are at the stage to define heritability under the

two assumptions on the model Eq. 1. Recall the defini-
tion that heritability measures the fraction of variation of
a given trait that can be explained by variation of genetic
markers among individuals in a population. For the fixed
effect assumption, let τ 2 = u∗T�u∗ = ∥

∥�1/2u∗∥∥2
2, which

represents a measure of total genetic variance attributed
to causal SNPs. With the residual variance σ 2

e = Var(ei),
we can naturally define the heritability as the proportion
of explained variance in the linear model Eq. 1:

h∗
fixed = τ 2

τ 2 + σ 2
e
. (3)

For the random effect assumption, which has been
investigated by many authors [9, 21], the heritability is
defined as:

h∗
rand. =

sσ 2
u

sσ 2
u + σ 2

e
. (4)

The following proposition tells us that Eq. 3 is equivalent
to Eq. 4 under the assumption that the nonzero genetic
effects {u∗

j : j ∈ M0} are independently drawn from a prior
distribution. Under this assumption, in order to guarantee
that the total genetic variance τ 2 is still a fixed quantity,
we make a slight modification to take expectation over the
distribution of u∗, that is, τ 2 = Eu∗

(
u∗��u∗).

Proposition 1 Suppose that the nonzero genetic effects
{u∗

j : j ∈ M0} are independently drawn from a prior dis-
tribution with mean 0 and variance Var(u∗

j ) = σ 2
u , and

that for any i ∈ {1, 2, · · · ,m}, W�
i· and u∗ are independent.

Then h∗
fixed = h∗

rand..

Proof For any i ∈ {1, 2, · · · ,m} fixed, the total genetic
variance attributed to causal SNPs is

τ 2=Eu∗
(
u∗��u∗)=Eu∗

[
u∗�Cov(Wi·)u∗]=Eu∗

[
u∗�

EWi· (Wi·�Wi·)u∗]

= E
(
Wi·u∗)2 = EWi·

[
Eu∗ (Wi·u∗)2|Wi·

]
,

(5)

where the third equality is from the fixed effect assump-
tion (i) that EWi·(Wi·) = 0, and the last equality is from
the definition of the conditional expectation. It then fol-
lows the assumptions that {u∗

j : j ∈ M0} are independent,
andW�

i· and u∗ are independent that

EWi· [Eu∗(Wi·u∗)2|Wi·] = EWi·

⎧
⎪⎨

⎪⎩
Eu∗

⎡

⎢
⎣

⎛

⎝
∑

j∈M0

Wiju∗
j

⎞

⎠

2
∣∣
∣Wi·

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

= EWi·

⎧
⎨

⎩
Eu∗

⎡

⎣
∑

j∈M0

(
Wiju∗

j

)2 ∣∣∣Wi·

⎤

⎦

⎫
⎬

⎭
.

(6)

By the assumption that for j ∈ M0, E
(
u∗
j

)
= 0 and

Var(u∗
j ) = σ 2

u , one has that Eu∗
[
(u∗

j )
2
]

= σ 2
u . Then

substituting Eq. 6 into Eq. 5, we obtain that

τ 2 =EWi·

⎧
⎨

⎩
Eu∗

⎡

⎣
∑

j∈M0

(
Wiju∗

j

)2 ∣∣∣Wi·

⎤

⎦

⎫
⎬

⎭
=EWi· (σ

2
u
∑

j∈M0

W 2
ij )=σ 2

u
∑

j∈M0

EWi· (W 2
ij ).

(7)

Since {Wij : j ∈ M0} are a set of centralized and
normalized random variables with zero mean and unit
variance by Eq. 2, we have that

∑
j∈M0 E

(
W 2

ij

)
=

∑
j∈M0 Var

(
Wij

) = s, and finally arrive at that τ 2 = sσ 2
u .

It then follows immediately from Eq. 3 and Eq. 4 that,
h∗
fixed = h∗

rand.. The proof is complete.
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Implementation
In this subsection, we introduce our two-stage strategy to
estimate heritability, which consists of a sparse regulariza-
tion step followed by a variance estimation step.
Before a detailed description of the strategy, let us

assume that the sample sizem is even for simplicity. Then
the original data set (y,W ) is randomly split into two
disjoint data sets

(
y(1),W (1)) and

(
y(2),W (2)) with equal

samples. Without loss of generality, the following sparse
regularization step is performed on

(
y(1),W (1)) to reduce

the model, while the variance estimation step is applied
on

(
y(2),W (2)). In doing so, it is guaranteed that sparse

regularization and variance estimation are performed on
independent samples. We explain the reason for using
independent samples at the end of this section.

Sparse regularization
Recall the model Eq. 1, which is a seriously ill-conditioned
linear system with far fewer samples than variables
(SNPs). Thus there exists no unique solution for the effect
vector, and the problem of nonidentifiability appears. For-
tunately, with the sparse assumptions mentioned above,
the popular and practical regularization technique is
applicable, which has been extensively studied for high
dimensional linear models in the past decade; see, e.g.,
[22–24] and references therein.
Since in reality, one has no prior knowledge on the

amount of each effect, the sparse regularization technique
is required to be flexible to both small and large effects.
In this paper, we adopt the elastic net [24] as our sparse

regularization method. More precisely, we solve the fol-
lowing optimization problem:

min
u∈Rn

1
2m

∥
∥
∥y(1) − W (1)u

∥
∥
∥
2

2
+ αλ

∥
∥
∥
∥u
∥
∥
∥
∥1 + 1 − α

2
λ

∥
∥
∥
∥u
∥
∥
∥
∥

2

2
,

(8)

where α ∈ (0, 1] represents the weight of Lasso [23] versus
ridge [25] regularization, and λ > 0 is the regulariza-
tion parameter providing a tradeoff between accuracy and
sparsity.
Here the parameter α is used to adapt to different spar-

sity levels. For high sparsity level, it is chosen to approach
1, while for lower sparsity level, it is chosen to be smaller.
Though the real genetic architecture of a given trait is
generally unknown, some prior knowledge may be used
to roughly determine the value of α. A suitable choice
of λ is critical as its value might strongly affect the set
of variables selected. We here proceed to use the k-fold
cross-validation to reduce the influence of false variables,
and choose suitable values for α and λ.
In practice, we fit the optimization problem Eq. 8 by

implementing the MATLAB function “lasso” (https://
www.mathworks.com/help/stats/lasso.html), which is
designed for Lasso or elastic net regularization of linear
models. Specifically, we first define a set 	 corresponding
to the domain of α. Then for each α ∈ 	 fixed and a set
of regularization parameters λ predefined, we perform
10-fold cross-validation and choose the smallest λ that is
within one standard error of minimum prediction mean
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Fig. 1 Illustrations of the proposed two-stage strategy. a 10-fold cross-validation to choose the most suitable regularization parameter; b The
decomposition of bias and variance of the proposed strategy; c The explanation of the reason for using independent samples. Estimators in the
validation set are obtained with independent samples, and estimators in the training set are obtained with non-independent samples

https://www.mathworks.com/help/stats/lasso.html
https://www.mathworks.com/help/stats/lasso.html


Li et al. BMC Bioinformatics          (2019) 20:219 Page 5 of 11

squared error (MSE), as is shown for instance in blue
dashed line in Fig. 1a. Finally, we determine the value
of α to be the one that meets the minimum prediction
MSE across the set 	. After the parameters α and λ

have been determined, the selected model is denoted as
M̂ = {j : ûj �= 0}, and the number of selected variables is
n̂ = |M̂|, where û is the optimal solution to Eq. 8.

Variance estimation
Now some certain variance estimation methods are
applied to

(
y(2),W (2)

M̂

)
. Recall that at this time, the sample

size is onlym/2.
For the fixed effect assumption, as m/2 > n̂ cannot

be guaranteed, the problem might still be high dimen-
sional. There are three notable works [26–28] considering
variance estimation in high dimensional linear regression,
among which the latter two rely strongly on the sparsity
assumption on the model while the first one does not.
Since the number of causal SNPs might vary from moder-
ate (e.g., 102 ∼ 103) to large (e.g., 104 ∼ 105), the method
must be stable with respect to the sparsity level. More-
over, as it is realistic that different SNPs are usually not
independent, the method should also be capable of han-
dling the case where there exist correlations between the
SNPs. Therefore, we choose to use the method proposed
in [26, section 4.2], which is based on the method-of-
moment and is applicable to the correlated case. Two
estimators for τ 2 and σ 2

e are constructed as follows:

τ̂ 2 = − n̂d21
m/2(m/2 + 1)d22

∥
∥
∥y(2)

∥
∥
∥
2

2
+ d1

m/2(m/2 + 1)d2

∥
∥
∥W (2)�

M̂
y(2)

∥
∥
∥
2

2
,

σ̂e
2 =

(

1+ n̂d21
(m/2 + 1)d2

)
1
n̂

∥
∥∥y(2)

∥
∥∥
2

2
− d1

m/2(m/2 + 1)d2

∥
∥∥W (2)�

M̂
y(2)

∥
∥∥
2

2
,

where

d1 = 1
n̂
tr
(

1
m/2

W (2)�
M̂

W (2)
M̂

)
,

d2 = 1
n̂
tr
(

1
m/2

W (2)�
M̂

W (2)
M̂

)2
− 1

n̂m/2

(
tr
(

1
m/2

W (2)�
M̂

W (2)
M̂

))2
.

Note that when m/2 > n̂ and WM̂ has full rank, these
two estimators are quite similar to the estimators obtained
by ordinary least squares. Thus we arrive at a plug-in
estimator for h∗

fixed:

ĥfixed = τ̂ 2

τ̂ 2 + σ̂e
2 .

For the random effect assumption, we simply apply
the widely-used software GCTA [9], which implements
the maximum likelihood method, with

(
y(2),W (2)

M̂

)
as

the input to obtain estimators for variance components.
Other tools such as BOLT-REML [11] or MEGHA [13]
are of course applicable. The final estimator for h∗

rand. is
denoted as ĥrand..

Since the true heritability always belongs to (0, 1), once
ĥfixed or ĥrand. is smaller than 0 or larger than 1, it is
constrained to a value equal to 0.0001 or 0.9999, respec-
tively. Nevertheless, as is shown by numerical results in
the next section, performing a sparse regularization step
first can perfectly restrict the obtained estimators to lie
in (0, 1).
To understand the behavior of the heritability estimator

produced by our two-stage strategy, we make a decom-
position of the bias and variance of the estimator. We
only use ĥrand. here so as to simplify the illustration, and
ĥfixed can also produce the same result. The correspond-
ing result is displayed in Fig. 1b. Recall that λ is chosen
to be the smallest one that is within one standard error of
minimumMSE in section 2.2.1, as is shown in blue dashed
line in Fig. 1a and b. We can see from Fig. 1b that when λ

is too small and the selected model contains many redun-
dant variables, though the heritability estimator is almost
unbiased, its variance is large. Our choice of λ guarantees
that the heritability estimator is not only almost unbiased
but also with a smaller variance. The performance of our
strategy will be demonstrated in detail in the next section.
Now let us turn to illustrate the reason for using

independent samples in the proposed two-stage strategy.
Assume that we are in the case where there are 10 causal
SNPs out of total 10000 SNPs. Then Fig. 1c plots the
heritability estimators versus the regularization parame-
ter λ which represents the model selection process. We
only use ĥrand. here so as to simplify the illustration, and
ĥfixed can also produce the same result. The training set
is used to select the model, and then variance estima-
tion is completed on the training set and the validation
set, respectively. Therefore, estimators in the training set
are obtained with non-independent samples, and estima-
tors in the validation set are obtained with independent
samples. When the selected model contains too many
redundant variables, its generalization ability is poor, and
estimators produced by the training set are usually overes-
timated. As λ becomes larger, the selected model becomes
more sparse, and the generalization ability of the selected
model increases. Therefore, using samples independent
of those used in model selection to estimate variance
guarantees that even if the selected model is not sparse
enough, the heritability won’t be overestimated. Other-
wise, if model selection and variance estimation are done
on the same sample set, the heritability is more likely to
be overestimated. Hence, we suggest that model selec-
tion and variance estimation should be performed on
independent samples to reduce overestimation.

Simulated data
The simulated genotype data are generated via the R pack-
age “echoseq” (https://github.com/hruffieux/echoseq)
[29]. Specifically, the genotype matrix W is generated

https://github.com/hruffieux/echoseq
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with correlated columns based on generally accepted
principles of population genetics (Hardy–Weinberg
equilibrium, linkage disequilibrium, and natural selec-
tion). The sparse effect vector u∗ ∈ R

n is generated by
choosing s indices at random according to a N (0, 1/sIs)
distribution, with different s being chosen for given n.
The noise vector e is set as Gaussian with mean 0 and
covariance matrix σ 2

e Im, with σ 2
e representing the noise

level. This generation process ensures that the simulated
data behave like real genotype data. The observations y
are then obtained via the model Eq. 1. The true value of
heritability is approximated by

h̃∗ = |Wu∗|22 /m
|Wu∗|22 /m + σ 2

e
.

We see in the following simulations that the sample stan-
dard error of the approximation h̃∗ is so small that can be
ignored.

Real data from the IMAGEN project
Brain imaging scans were obtained from a cohort of 2089
adolescents (14.5 ± 0.4 years old, 51% females) from
the IMAGEN project (http://imagen-europe.com) using a
standardised 3T, T1-weighted gradient echo protocol in
eight European centres [30]. Genotype data were obtained
using the Illumina 610-Quad and Illumina 660W-Quad
chips, and then preprocessed using PLINK 1.90 (https://
www.cog-genomics.org/plink2) [31]. We excluded SNPs
that did not satisfy the following quality control criteria:
genotype call rate ≥ 99%, minor allele frequency ≥ 1%,
and Hardy-Weinberg equilibrium P ≥ 1 × 10−6. After
quality control, we finally used 225139 SNPs across the 22
autosomes genotyped on 1765 participants.

Results
The purpose of this section is to carry out several experi-
ments and demonstrate results on the heritability estima-
tion problem for both simulated data and real data from
the IMAGEN project. All experiments are performed in
MATLAB R2014b and executed on a computer with the
following configuration: Intel(R) Xeon(R) CPU E5-2630
v2, 12×2.60 GHz, 126 GB of RAM. The runtime formodel
selection is about 10 minutes and the required memory
is about 8GB, with a data set including 1000 samples and
100000 SNPs, whose scale is close to that of real data.
The following variance estimation step takes only a few
seconds.

Simulations on the fixed and random effect assumptions
To compare the influences of the fixed and random effect
assumptions, the estimators ĥfixed and ĥrand. as well as the
approximated true heritability h̃∗ are estimated under dif-
ferent noise levels σ 2

e ∈ {4, 1, 0.25} and under the case

where all the SNPs have nonzero effects for simplicity, that
is s = n andM0 = {1, 2, · · · , n}.
The corresponding boxplot is displayed in Fig. 2a. We

can see from this figure that both the estimators ĥfixed and
ĥrand. are almost unbiased, and that the approximation of
the true heritability h̃∗ behaves well with small deviation
that can be ignored.Moreover, it is also demonstrated that
the fixed and random effect assumptions produce similar
estimators.

Simulations on the sample sizes and SNP sizes
To simplify our expositions, the following simulations are
carried out under the case in which all the SNPs have
nonzero effects, that is s = n and M0 = {1, 2, · · · , n}. The
noise level σ 2

e is set equal to 1.
Firstly, we illustrate the performance of both estima-

tors ĥfixed and ĥrand. under different sample sizes m ∈
{300, 1000, 3000}. The corresponding boxplot is displayed
in Fig. 2b. We can see from this figure that the smaller
the sample size, the larger the standard errors for both
two estimators ĥfixed and ĥrand.. In the case where the
number of samples is relatively small, it is more likely to
obtain many estimators reaching the boundaries 0 and
1, thus leading to estimations that are rather unreliable.
Thus, when dealing with real GWAS data, the sample size
should be as large as possible. This requirement can be
easily satisfied for phenotypes like height and body mass
index, while for phenotypes related to imaging genetics
such as whole brain volume, it is not always the case. The
lack of samples makes it a hard problem to estimate the
heritability of these phenotypes.
Secondly, we illustrate the performance of both estima-

tors ĥfixed and ĥrand. under different numbers of total SNPs
n ∈ {1000, 3000, 10000}. The corresponding boxplot is
displayed in Fig. 2c. We can see from this figure that the
larger the number of SNPs, the larger the standard error of
both estimators ĥfixed and ĥrand.. This indicates that as the
problem dimension gets larger, it becomes more difficult
to obtain estimators with smaller standard errors. Thus
in a typical GWAS, where the dimension is always thou-
sands of hundreds while the number of samples cannot
grow arbitrarily, the estimators should be treated care-
fully, since they may have large standard errors and lead to
unreasonable results.

Simulations on sparsity
To elucidate the importance of sparsity, both estimators
ĥfixed and ĥrand. are estimated under different numbers of
the causal SNPs s ∈ {100, 1000, 10000}. We use the oracle
estimators corresponding to the fixed and random effect
assumptions for comparisons, whose values are calculated
via ĥfixed and ĥrand., respectively, with the oracle M̂ = M0
known in advance. The noise level σ 2

e is set equal to 1.

http://imagen-europe.com
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
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Fig. 2 Boxplots of estimated heritability (100 replicates) under different simulation scenarios. Each plot presents results for one simulation scenario.
a under different values of noise level (m = 1000, n = 10000); b under different values of the sample size (s = n = 10000); c under different
numbers of total SNPs (m = 1000, s = n); d under different numbers of the causal SNPs (m = 1000, n = 10000). Here “fixed” refers to the estimator
ĥfixed with M̂ = {1, 2, · · · , n}, “fixed_ora” refers to the oracle estimator ĥfixed with M̂ = M0, “rand.” refers to the estimator ĥrand. with M̂ = {1, 2, · · · , n},
and “rand._ora” refers to the oracle estimator ĥrand. with M̂ = M0. The approximation of the true heritability h̃∗ is denoted as “approx.”. The whiskers
of each boxplot are the first and third quartiles

The corresponding boxplot is displayed in Fig. 2d. It has
been shown in [21] that, when there are many nonzero
entries contained in the effect vector, the estimators can
still be unbiased even though the model is misspecified.
However, the standard errors of these estimators are so
large that cannot be accepted, as is shown in the case
where s = 100, 1000. On the other hand, we can see
from the oracle estimators that when the sparsity of u∗
is taken into consideration, the corresponding standard
errors have been greatly reduced, resulting in more reli-
able estimations. In practice, since the set of causal SNPs is
usually unknown, it is necessary to approximate the spar-
sity pattern of the effect vector M0 as close as possible
before variance estimation.

Simulations on the performance of the proposed strategy
To illustrate the performance of the proposed two-
stage strategy, both estimators ĥfixed and ĥrand. are esti-
mated under different problem sizes. The oracle esti-
mators are also used for comparisons with the oracle
M̂ = M0 known in advance. The noise level σ 2

e is set

equal to 1. The corresponding boxplots are displayed
in Fig. 3.
We can see from Fig. 3 that, no matter in the highly

sparse case or the more polygenic scenario, our two-
stage strategy improves the performance of these esti-
mators in the sense that the corresponding standard
errors have been reduced considerably compared to
those obtained without considering the sparsity struc-
ture. Moreover, when the sparsity level of underlying
model is high, as displayed in Fig. 3a and b, our strategy
is so impressive that it produces estimators perform-
ing as well as the oracle estimators, especially under
the random effect assumption. In addition, we find that
when there exist correlations between the SNPs and the
problem dimension n is high (e.g., n = 100000), the
performance of the estimator ĥfixed without consider-
ing the sparsity is somewhat undesirable in the sense
that the standard error is too large to be acceptable,
while the sparse regularization step reduces the standard
error considerably. This result implies that our method
is robust in the presence of correlations between the
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Fig. 3 Boxplots of estimated heritability (100 replicates) under different problem sizes using the proposed strategy. a s = 10,m = 1000,
n = 100000; b s = 100,m = 1000, n = 100000; c s = 1000,m = 1000, n = 100000; d s = 10000,m = 1000, n = 100000. Here “fixed” refers to the
estimator ĥfixed with M̂ = {1, 2, · · · , n}, “fixed_SpaR” refers to the estimator ĥfixed with M̂ given by our sparse regularization step, and “fixed_ora”
refers to the oracle estimator ĥfixed with M̂ = M0. “rand.” refers to the estimator ĥrand. with M̂ = {1, 2, · · · , n}, “rand._SpaR” refers to the estimator
ĥrand. with M̂ given by our sparse regularization step, and “rand._ora” refers to the oracle estimator ĥrand. with M̂ = M0. The approximation of the
true heritability h̃∗ is denoted as “approx.”. The whiskers of each boxplot are the first and third quartile

columns of W, and can be applied to the cases where LD
exists.

Simulations on real data from the IMAGEN project
We apply our two-stage strategy to estimate the heritabil-
ity of height and the volume of neuroanatomical struc-
tures, specifically, the nucleus accumbens (Acc), amygdala
(Amy), caudate nucleus (Ca), hippocampus (Hip), globus
pallidus (Pa), putamen (Pu), and thalamus (Th).
As is widely-acknowledged that most human complex

traits are generally polygenic and the corresponding heri-
tability is largely captured by common SNPs [10, 32], the
sparsity level cannot be too high in reality. Therefore, in
the sparse regularization stage, we set the parameter α ∈
{3 × 10−5, 10−4, 3 × 10−4, 10−3} in Eq. 8. In the variance
estimation stage, the heritability is estimated under the
random effect assumption. The standard error of the esti-
mated heritability is approximated using the delta method
[33]. The final results are displayed in Tab. 1 with the
original results displayed in Additional file 1: Table S1.
As far as we know, the heritability of these phenotypes
from the IMAGEN project has also been estimated in

[17] using GCTA, so Tab. 1 also includes their results for
comparison.
We can see from Tab. 1 that the heritability estimated

by our two-stage strategy is consistent with that reported
in [17] on the same data set, with a considerably smaller
standard error. This is especially the case for the vol-
umes of Acc, Ca, Pa, and Th, where the corresponding
standard error has been greatly reduced. In a word, our
strategy can not only provide accurate estimations but also
improve the reliability of the estimators in the sense that
the standard error is reduced.
In addition to demonstrating the performance of our

strategy, we analyse the heritability of average cortical
thickness measures in 68 regions of interest (ROIs; 34
ROIs per hemisphere) defined by the Desikan-Killiany
atlas [34]. The corresponding results are shown in
Additional file 1: Table S2. Many estimators obtained
using GCTA reach the boundaries (i.e., 0.0001 or 0.9999),
which is of course unreasonable, while our strategy over-
comes this obstacle to some extent in the sense that most
of the estimators are perfectly restricted to the boundary
set, leading to more stable and reliable results.
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Table 1 Heritability of height and the volume of neuroanatomical structures estimated from the IMAGEN project

Phenotype
SpaR Toro GCTA

Heritability Standard error Heritability Standard error

Height 0.48 0.18 0.53 0.23

Acc 0.30 0.11 0.52 0.23

Amy 0.43 0.21 0.45 0.23

Ca 0.06 0.15 0.16 0.23

Hip 0.70 0.19 0.53 0.23

Pa 0.21 0.14 0.31 0.23

Pu 0.50 0.19 0.54 0.23

Th 0.29 0.10 0.22 0.24

“SpaR” is used to denote results obtained by our two-stage strategy, and “Toro GCTA" is used to stand for results obtained in [17] by GCTA

Discussion
In this paper, we compared the fixed and random
effect assumption in detail from both theoretical and
practical aspects. In the theoretical aspect, we proved
that the definitions of heritability are equivalent under
mild conditions for both the fixed and random effect
assumptions. In the practical aspect, our results demon-
strated that both assumptions worked well, and produced
similar estimators. However, when there exist correlations
between the SNPs and the problem dimension n is high
(e.g., n = 100000), the performance of the estimator
ĥfixed is quite undesirable. Therefore, we recommended
that ĥrand. should be used in the real data analysis.
In modern GWASs, it has been pointed out in

[18, 19, 35] that the sparsity structure usually exists in
the ultrahigh dimensional genomic data. And our results
on simulated data demonstrated that when the sparsity
is considered, the standard errors of the heritability esti-
mators had been greatly reduced (Fig. 2d). Therefore, it
is quite necessary to take the sparsity structure into con-
sideration and remove the redundant SNPs which are not
related to the phenotype in heritability analyses. In prac-
tice, the set of causal SNPs is usually unknown, one needs
to approximate the sparsity pattern as close as possible
before variance estimation.
We proposed a two-stage strategy by first perform-

ing sparse regularization using cross-validated elastic net
to select the model, and then applying certain variance
estimation methods on the reduced model. Due to the
fact that in the context of GWASs, there always exists a
strong correlation between the explanatory variables (i.e.,
the SNPs) [36], attention is needed to the potential cor-
relation structure between the SNPs when selecting the
model. The elastic net [24] is especially powerful in the
case where the pairwise correlations between variables
may be high, and is more flexible to different sparsity lev-
els. Moreover, the special structure of its regularization

term, which is a linear combination of the Lasso [23] and
the ridge [25] regression, enables one to simultaneously
consider and balance two competing hypotheses that are
usually used for explaining the underlying genetic archi-
tecture of human complex traits: common disease-rare
variant hypothesis and common disease-common variant
hypothesis [37], which address that, for some complex
traits heritability may be explained by a small number of
rare variants each with a large effect, while for other traits
it may be explained by a large number of common vari-
ants with small effects. In a word, the elastic net can jointly
balance the very sparse case and the more polygenic case.
Results from simulated data implied that our strategy

produced estimators with considerably smaller standard
errors than those obtained via methods without consider-
ing the sparsity (Fig. 3), leading to more reliable results for
explanations. Moreover, we found that the performance of
our strategy is more impressive when the sparsity level is
high, in the sense that estimators obtained by our strat-
egy behaves as well as the oracle estimators (Fig. 3a and b).
This result points out a new prospect to analyse the com-
plex genetic structure of some diseases that are caused by
a few SNPs. Results from real data achieved estimations
for the heritability of human height as well as the volumes
of some neuroanatomical structures, which are consis-
tent with former works [10, 17, 32] with smaller standard
errors. In contemporary genomics, the sample size is usu-
ally limited due to physical or economical constraints,
which is especially the case for brain imaging phenotypes.
Therefore, our results show the promising future that reli-
able estimations can still be obtained with even a relatively
restricted sample size.
While we are working on this paper, we became aware of

an independent work [38]. Our contributions are substan-
tially different from theirs, in that we perform variance
estimation on a sample set independent of that used for
model selection so as to avoid overestimation, while their
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variable selection and variance estimation steps are done
on the same sample set. In addition, our sparse regular-
ization technique is the elastic net, which is applicable
in both the very sparse case and the more polygenic
scenario, whereas they perform the variable selection
through the sure independence screening approach fol-
lowed by a Lasso criterion, resulting in a highly sparse
model.

Conclusion
We have considered the potential sparse structure of
GWAS data, and proposed a two-stage strategy to pro-
duce reliable heritability estimations. Results on simulated
data and real data demonstrate the promising future of
our strategy for ultrahigh dimensional heritability analy-
ses with even a relatively restricted sample size. Due to the
fact that model selection consistency cannot be achieved
unless certain strong conditions are satisfied (see, e.g.,
[39, 40]), the estimated heritability is actually the genetic
variance attributed to the selected SNPs, and thus is
indeed a lower bound for SNP heritability. Future direc-
tions of research may generalize our strategy to more
precise models that can capture other underlying sophis-
ticated structures of human complex traits, such as gene-
gene and gene-environment interactions, to provide bet-
ter estimations for heritability. In addition, it would be
interesting to use our strategy in gene discovery and
prediction analyses of complex traits.

Additional file

Additional file 1: Additional estimation results using the proposed
strategy. (PDF 242 kb)
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