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Abstract

Background: Large-scale datasets of protein structures and sequences are becoming ubiquitous in many domains of
biological research. Experimental approaches and computational modelling methods are generating biological data at
an unprecedented rate. The detailed analysis of structure-sequence relationships is critical to unveil governing
principles of protein folding, stability and function. Computational protein design (CPD) has emerged as an important
structure-based approach to engineer proteins for novel functions. Generally, CPD workflows rely on the generation of
large numbers of structural models to search for the optimal structure-sequence configurations. As such, an important
step of the CPD process is the selection of a small subset of sequences to be experimentally characterized. Given the
limitations of current CPD scoring functions, multi-step design protocols and elaborated analysis of the decoy
populations have become essential for the selection of sequences for experimental characterization and the
success of CPD strategies.

Results: Here, we present the rstoolbox, a Python library for the analysis of large-scale structural data
tailored for CPD applications. rstoolbox is oriented towards both CPD software users and developers, being
easily integrated in analysis workflows. For users, it offers the ability to profile and select decoy sets, which
may guide multi-step design protocols or for follow-up experimental characterization. rstoolbox provides
intuitive solutions for the visualization of large sequence/structure datasets (e.g. logo plots and heatmaps) and
facilitates the analysis of experimental data obtained through traditional biochemical techniques (e.g. circular
dichroism and surface plasmon resonance) and high-throughput sequencing. For CPD software developers, it
provides a framework to easily benchmark and compare different CPD approaches. Here, we showcase the
rstoolbox in both types of applications.

Conclusions: rstoolbox is a library for the evaluation of protein structures datasets tailored for CPD data. It
provides interactive access through seamless integration with IPython, while still being suitable for high-
performance computing. In addition to its functionalities for data analysis and graphical representation, the
inclusion of rstoolbox in protein design pipelines will allow to easily standardize the selection of design
candidates, as well as, to improve the overall reproducibility and robustness of CPD selection processes.
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Background
The fast-increasing amounts of biomolecular structural
data are enabling an unprecedented level of analysis to un-
veil the principles that govern structure-function relation-
ships in biological macromolecules. This wealth of
structural data has catalysed the development of computa-
tional protein design (CPD) methods, which has become a
popular tool for the structure-based design of proteins
with novel functions and optimized properties [1]. Due to
the extremely large size of the sequence-structure space
[2], CPD is an NP-hard problem [3]. Two different ap-
proaches have been tried to address this problem: deter-
ministic and heuristic algorithms.
Deterministic algorithms are aimed towards the search

of a single-best solution. The OSPREY design suite,
which combines Dead-End Elimination theorems com-
bined with A* search (DEE/A*) [4], is one of the most
used software relying on this approach. By definition, de-
terministic algorithms provide a sorted, continuous list
of results. This means that, according to their energy
function, one will find the best possible solution for a
design problem. Nevertheless, as energy functions are
not perfect, the selection of multiple decoys for experi-
mental validation is necessary [5, 6]. Despite notable
successes [7–9], the time requirements for deterministic
design algorithms when working with large proteins or
de novo design approaches limits their applicability,
prompting the need for alternative approaches for CPD.
Heuristic algorithms, such as those based on Monte

Carlo (MC) sampling [10], use stochastic sampling
methods together with scoring functions to guide the
structure and sequence exploration towards an opti-
mized score. These algorithms have the advantage of
sampling the sequence-structure space within more rea-
sonable time spans, however, they do not guarantee that
the final solutions reached the global minimum [11].
Heuristic CPD workflows address this shortcoming in
two ways: I) extensive sampling generating large decoy
sets; II) sophisticated ranking and filtering schemes to
discriminate and identify the best solutions. This general
approach is used by the Rosetta modelling suite [12],
one of the most widespread CPD tools.
For Rosetta, as with other similar approaches, the

amount of sampling necessary scales with the degrees of
freedom (conformational and sequence) of a particular
CPD task. Structure prediction simulations such as ab
initio or docking may require to generate up to 106 de-
coys to find acceptable solutions [13, 14]. Similarly, for
different design problems the sampling scale has been
estimated. Sequence design using static protein back-
bones (fixed backbone design) [15] may reach sufficient
sampling within hundreds of decoys. Protocols that
allow even limited backbone flexibility, dramatically in-
crease the search space, requiring 104 to 106 decoys,

depending on the number of residues for which se-
quence design will be performed. Due to the large decoy
sets generated in the search for the best design solution,
as well as the specificities of each design case, re-
searchers tend to either generate one-time-use scripts or
analysis scripts provided by third parties [16]. In the first
case, these solutions are not standardized and its logic
can be difficult to follow. In the second case, these
scripts can be updated over time without proper
back-compatibility control. As such, generalized tools to
facilitate the management and analysis of the generated
data are essential to CPD pipelines.
Here, we present rstoolbox, a Python library to man-

age and analyse designed decoy sets. The library presents a
variety of functions to produce multi-parameter scoring
schemes and compare the performance of different CPD
protocols. The library can be accessed by users within three
levels of expertise: a collection of executables for designers
with limited coding experience, interactive interfaces such
as Ipython [17] for designers with basic experience in data
analysis (i.e. pandas [18]), and a full-fledge API to be used
by developers to benchmark and optimize new CPD proto-
cols. This library was developed for direct processing of Ro-
setta output files, but its general architecture makes it easily
adaptable to other CPD software. The applicability of the
tools developed expands beyond the analysis of CPD data
making it suitable for general structural bioinformatics
problems (see extended_example notebook in the code’s re-
pository). Thus, we foresee that rstoolbox may provide
a number of useful functionalities for the broad structural
bioinformatics community.

Implementation
rstoolbox has been implemented extending from
pandas [18], one of the most established Python libraries
for high-performance data analysis. The rstoolbox li-
brary architecture is composed of 4 functional modules
(Fig. 1): I) rstoolbox.io - provides read/write func-
tions for multiple data types, including computational de-
sign simulations and experimental data, in a variety of
formats; II) rstoolbox.analysis - provides functions
for sequence and structural analysis of designed decoys;
III) rstoolbox.plot – plotting functionalities that in-
clude multiple graphical representations for protein se-
quence and structure features, such as logo plots [19],
Ramachandran distributions [20], sequence heatmaps and
other general plotting functions useful for the analysis of
CPD data; IV) rstoolbox.utils – helper functions
for data manipulation and conversion, comparison of de-
signs with native proteins and the creation of amino acid
profiles to inform further iterations of the design process.
Additionally, rstoolbox contains 3 table-like data

containers defined in the rstoolbox.components
module (Fig. 1): I) DesignFrame - each row is a designed
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decoy and the columns represent decoy properties, such as,
structural and energetic scores, sequence, secondary struc-
ture, residues of interest among others; II) Sequence-
Frame - similar to a position-specific scoring matrix
(PSSM), obtained from the DesignFrame can be used for
sequence and secondary structure enrichment analysis; III)
FragmentFrame - stores fragment sets, a key element in
Rosetta’s ab initio folding and loop closure protocols. De-
rived from pandas.DataFrame [18], all these objects
can be casted from and to standard data frames, making
them compatible with libraries built for data frame analysis
and visualization.
The DesignFrame is the most general data structure

of the library. It allows fast sorting and selection of

decoys through different scores and evaluation of sequence
and structural features. It can be filled with any tabulated,
csv or table-like data file. Any table-formatted data can be
readily input, as the generation of parsers and integration
into the rstoolbox framework is effortless, provid-
ing easy compatibility with other CPD software pack-
ages, in addition to Rosetta. Currently, rstoolbox
provides parsers for FASTA files, CLUSTALW [21]
and HMMER [22] outputs, Rosetta’s json and silent
files (Fig. 1).
The components of the library can directly interact

with most of the commonly used Python plotting li-
braries such as matplotlib [23] or seaborn [24].
Additional plotting functions, such as logo and

Fig. 1 rstoolbox library architecture. The io module contains functions for parsing the input data. The input functions in io generate one of
the three data containers defined in the components module: DesignFrame for decoy populations, SequenceFrame for per-position
amino acid frequencies and FragmentFrame for Rosetta’s fragments. The other three modules analysis, utils and plot, provide all the
functions to manipulate, process and visualize the data stored in the different components
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Ramachandran plots, are also present to facilitate spe-
cific analysis of CPD data. As mentioned, this library
has been developed primarily to handle Rosetta out-
puts and thus, rstoolbox accesses Rosetta functions
to extract structural features from designed decoys (e.
g. backbone dihedral angles). Nevertheless, many of
the rstoolbox’s functionalities are independent of a
local installation of Rosetta. rstoolbox is config-
ured with a continuous integration system to guaran-
tee a robust performance upon the addition of new
input formats and functionalities. Testing covers more
than 80% of the library’s code, excluding functions
that have external dependencies from programs like
Rosetta [12], HMMER [22] or CLUSTALW [21]. To
simplify its general usage, the library has a full API
documentation with examples of common applications

and can be directly installed with PyPI (pip
install rstoolbox).

Results
Analysis of protein backbone features
A typical metric to assess the quality of protein back-
bone conformations is by comparison of the backbone
dihedral angles with those of the Ramachandran distri-
butions [20]. Such evaluation is more relevant in CPD
strategies that utilize flexible backbone sampling, which
have become increasingly used in the field (e.g. loop
modelling [25], de novo design [26]). A culprit often ob-
served in designs generated using flexible backbone sam-
pling is that the modelled backbones present dihedral
angles in disallowed regions of the Ramachandran distri-
butions, meaning that such conformations are likely to

Fig. 2 Ramachandran plots and fragment quality profiles. Assessment of fragments generated using distinct input data and their effect on Rosetta ab
initio simulations. With the exception of the panel identifiers, the image was created with the code presented in Table 1. a Ramachandran distribution
of a query structure. b Fragment quality comparison between sequence- and structure-based fragments. The plot shows a particular region of the
protein for which sequence-based fragments present much larger structural deviations than structure-based fragments in comparison with the query
protein. c Rosetta ab initio simulations performed with sequence- (left) or structure-based (right) fragments. Fragments with a better structural mimicry
relative to the query structure present an improved folding funnel
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be unrealistic. To identify these problematic structures,
rstoolbox provides functions to analyse the dihedral
angles of decoy sets and represent them in Ramachan-
dran plots (Table 1, Fig. 2a).
Furthermore, structural prediction has also become an

integral part of many CPD workflows [27]. Here, one
evaluates if the designed sequences have energetic pro-
pensity to adopt the desired structural conformations. A
typical example where prediction is recurrently used as a

criterion to select the best designed sequences is on de
novo design. To assess the ability of novel sequences to
refold to the target structures, the Rosetta ab initio
protocol is typically used [13]. Importantly, the quality
of the predictions is critically dependent on the fragment
sets provided as input as they are used as local building
blocks to assemble the folded three-dimensional struc-
tures. The local structural similarity of the fragments to
the target structure largely determines the quality of the

Table 1 Sample code for the evaluation of protein backbone dihedral angles and fragment quality

Action Code Sample

Load import rstoolbox as rs
import matplotlib.pyplot as plt
import seaborn as sns

Read # With Rosetta installed, a single structure is scored. The
# function will return multiple score terms, sequence,
# secondary structure and phi/psi angles.
ref = rs.io.get_sequence_and_structure(‘1kx8_d2.pdb’)

# Loading Rosetta fragments
seqfrags = rs.io.parse_rosetta_fragments(‘seq.200.9mers’)
# With Rosetta, structural similarity of the fragments can be measured
seqfrags = seqfrags.add_quality_measure(None, ‘mota_1kx8_d2.pdb’)
strfrags = rs.io.parse_rosetta_fragments(‘str.200.9mers’)
strfrags = strfrags.add_quality_measure(None, ‘mota_1kx8_d2.pdb’)

# Loading ab initio data
abseq = rs.io.parse_rosetta_file(‘abinitio_seqfrags.minsilent.gz’)
abstr = rs.io.parse_rosetta_file(‘abinitio_strfrags.minsilent.gz’)

Plot fig = plt.figure(figsize = (170 / 25.4, 170 / 25.4))
grid = (3, 6)

# There are 4 flavours of Ramachandran plots available depending on the
# targeted residues: GENERAL, GLY, PRE-PRO and PRO.
ax1 = plt.subplot2grid(grid, (0, 0), colspan = 2)
# Ramachandran is plotted for a single decoy (selected as parameter 1).
# As a decoy can contain multiple chains, the chain identifier is an
# ubiquitous attribute in multiple functions of the library.
rs.plot.plot_ramachandran_single(ref.iloc[0], ‘A’, ax1)
ax1 = plt.subplot2grid(grid, (0, 2), fig = fig, colspan = 2)
rs.plot.plot_ramachandran_single(ref.iloc[0], ‘A’, ax1, ‘PRE-PRO’)
ax1 = plt.subplot2grid(grid, (0, 4), colspan = 2)
rs.plot.plot_ramachandran_single(ref.iloc[0], ‘A’, ax1, ‘PRO’)

# Show RMSD match of fragments to the corresponding sequence for a
# selected region
ax1 = plt.subplot2grid(grid, (1, 0), colspan = 3)
ax2 = plt.subplot2grid(grid, (1, 3), colspan = 3, sharey = ax1)
rs.plot.plot_fragments(seqfrags.slice_region(21, 56),

strfrags.slice_region(21, 56), ax1, ax2)
rs.utils.add_top_title(ax1, ‘sequence-based 9mers’)
rs.utils.add_top_title(ax2, ‘structure-based 9mers’)

# DataFrames can directly work with widely spread plotting functions
ax1 = plt.subplot2grid(grid, (2, 0), colspan = 3)
sns.scatterplot(x = “rms”, y = “score”, data = abseq, ax = ax1)
ax2 = plt.subplot2grid(grid, (2, 3), colspan = 3, sharey = ax1, sharex = ax1)
sns.scatterplot(x = “rms”, y = “score”, data = abstr, ax = ax2)
rs.utils.add_top_title(ax1, ‘sequence-based fragments’)
rs.utils.add_top_title(ax2, ‘structure-based fragments’)

plt.tight_layout()
plt.savefig(‘BMC_Fig2.png’, dpi = 300)

The code shows how to combine structural data obtained from a protein structure file with fragment quality evaluated by Rosetta and ab initio simulations. Code
comments are presented in italics while functions from the rstoolbox are highlighted in bold. Styling commands are skipped to facilitate reading, but can be
found in the repository’s notebook.
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sampling of the ab initio predictions. rstoolbox provides
analysis and plotting tools to evaluate the similarity of
fragment sets to a target structure (Fig. 2b). In Fig. 2c
the impact of distinct fragment sets in ab initio

predictions is shown where a clear folding funnel is vis-
ible for fragments with high structural similarity. This
tool can also be useful for structural prediction applica-
tions to profile the quality of different fragment sets.

Table 2 Sample code to guide iterative CPD workflows

Action Code Sample

Load import rstoolbox as rs
import matplotlib.pyplot as plt
import seaborn as sns

Read # Load design population. A description dictionary can be provided to alter the
# information loaded from the silent file. In this case, we load all the
# sequence information available for all possible chains in the decoys.
df = rs.io.parse_rosetta_file(‘1kx8gen2.silent.gz’, {‘sequence’: ‘*’})

# Select the top 5% designs by score and obtain the residues
# overrepresented by more than 20%
df_top = df[df[‘score’] < df[‘score’].quantile(0.05)]
freq_top = rs.analysis.sequential_frequencies(df_top, ‘A’, ‘sequence’, ‘protein’)
freq_all = df.sequence_frequencies(‘A’) # shortcut to utils.sequential_frequencies
freq_diff = (top - freq)
muts = freq_diff[(freq_diff.T > 0.20).any()].idxmax(axis = 1)
muts = list(zip(muts.index, muts.values))

# Select the best scored sequence that does NOT contain ANY of those residues
pick = df.get_sequence_with(‘A’, muts, confidence = 0.25,

invert = True).sort_values(‘score’).iloc[:1]
# Setting a reference sequence in a DesignFrame allows to use this sequence as
# source for mutant generation and sequence comparison, amongst others.
seq = pick.iloc[0].get_sequence(‘A’)
pick.add_reference_sequence(‘A’, seq)

# Generate mutants based on the identified overrepresented variants:
# 1. Create a list with positions and residue type expected in each position
muts = [(muts[i][0], muts[i][1] + seq[muts[i][0] - 1]) for i in range (len(muts))]
# 2 Generate a DesignFrame containing the new expected sequences
variants = pick.generate_mutant_variants(‘A’, muts)
variants.add_reference_sequence(‘A’, seq)
# 3. Generate the resfiles that will guide the mutagenesis
variants = variants.make_resfile(‘A’, ‘NATAA’, ‘mutants.resfile’)
# 4. With Rosetta installed, we can automatically run those resfiles.
variants = variants.apply_resfile(‘A’, ‘variants.silent’)
variants = variants.identify_mutants(‘A’)

Plot fig = plt.figure(figsize = (170 / 25.4, 170 / 25.4))
grid = (3, 4)

# Visualize overrepresented residues in the top 5%
ax = plt.subplot2grid(grid, (0, 0), colspan = 4, rowspan = 4)
cbar_ax = plt.subplot2grid(grid, (4, 0), colspan = 4, rowspan = 1)
sns.heatmap(freq_diff.T, ax = ax, vmin = 0, cbar_ax = cbar_ax)
rs.utils.add_top_title(ax, ‘Top scoring enrichment’)

# Compare query positions: initial sequence vs. mutant generation
ax = plt.subplot2grid(grid, (5, 0), colspan = 2, rowspan = 2)
key_res = [mutants[0] for mutants in muts]
rs.plot.logo_plot_in_axis(pick, ‘A’, ax = ax, _residueskr)
ax = plt.subplot2grid(grid, (5, 2), colspan = 2, rowspan = 2)
rs.plot.logo_plot_in_axis(variants, ‘A’, ax = ax, key_residues = kr)

# Check which mutations perform better
ax = plt.subplot2grid(grid, (7, 0), colspan = 2, rowspan = 3)
sns.scatterplot(‘mutant_count_A’, ‘score’, data = variants, ax = ax)
# Show distribution of best performing decoys
ax = plt.subplot2grid(grid, (7, 2), fig = fig, colspan = 2, rowspan = 3)
rs.plot.logo_plot_in_axis(variants.sort_values(‘score’).head(3), ‘A’, ax = ax, key_residues = kr)
plt.tight_layout()
plt.savefig(‘BMC_Fig3.png’, dpi = 300)

This example shows how to find overrepresented residue types for specific positions in the top 5% scored decoys of a design population, and use those residue
types to bias the next design generation, thus creating a new, enriched second generation population. Code comments are presented in italics while functions
from rstoolbox are highlighted in bold. Styling commands are skipped to facilitate reading, but can be found in the repository’s notebook.
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Guiding iterative CPD workflows
Many CPD workflows rely on iterative approaches in
which multiple rounds of design are performed and each
generation of designs is used to guide the next one.

The rstoolbox presents a diversity of functions that
aid this process and perform tasks from selecting decoys
with specific mutations of interest, to those that define
residue sets for instance based in position weight matrices

Fig. 3 Guiding iterative design pipelines. Information retrieved from decoy populations can be used to guide following generations of designs.
With the exception of the panel identifiers, the image was directly created with the code presented in Table 2. a Mutant enrichment from
comparison of the design on top 5% by score and the overall population. Positions 34, 35, 46 and 47 present a 20% enrichment of certain
residue types over the whole population and are selected as positions of interest. b Residue types for the positions of interest in the decoy
selected as template of the second generation. c Upon guided mutagenesis, we obtain a total of 16 decoys including the second-generation
template. We can observe that the overrepresented residues shown in A are now present in the designed population. Upper x axis shows the
original residue types of the template. d Combinatorial targeted mutagenesis yields 16 new designs, three of which showed an improved total
score relative to the second-generation template (mutant_count_A is 0). e The three best scoring variants show mutations such as P46G which
seem to be clearly favorable for the overall score of the designs. Upper x axis shows the original residue types of the template
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(generate_mutants_from_matrix()). When rede-
signing naturally occurring proteins, it also presents a
function to generate reversions to wild-type residues
(generate_wt_reversions()) to generate the best
possible design with the minimal number of mutations.
These functions will directly execute Rosetta, if installed
in the system, but can also be used to create input files to
run the simulations in different software suits. Code ex-
ample for these functionalities is shown in Table 2. The
result of the code is depicted on Fig. 3.
rstoolbox allows the user to exploit the data ob-

tained from the analysis of designed populations in order
to bias following design rounds. When using rstool-
box, this process is technically simple and clear to other
users, which will improve the comprehension and repro-
ducibility of iterative design pipelines.

Evaluation of designed proteins
Recently, we developed the Rosetta FunFolDes protocol,
which was devised to couple conformational folding and

sequence design [28]. FunFolDes was developed to insert
functional sites into protein scaffolds and allow for
full-backbone flexibility to enhance sequence sampling. As
a demonstration of its performance, we designed a new
protein to serve as an epitope-scaffold for the Respiratory
Syncytial Virus site II (PDB ID: 3IXT [29]), using as
scaffold the A6 protein of the Antennal Chemosensory
system from Mamestra brassicae (PDB ID: 1KX8 [30]).
The designs were obtained in a two-stage protocol, with
the second generation being based on the optimization of
a small subset of first-generation decoys. The code pre-
sented in Table 3 shows how to process and compare the
data of both generations. Extra plotting functions to rep-
resent experimental data obtained from the biochemical
characterization of the designed proteins is also shown.
The result of this code is represented in Fig. 4.

Benchmarking design protocols
One of the main novelties of FunFolDes was the ability
to include a binding partner during the folding-design

Table 3 Sample code for the evaluation of a multistep design pipeline

Action Code Sample

Load import rstoolbox as rs
import matplotlib.pyplot as plt

Read # With Rosetta installed, scoring can be run for a single structure
baseline = rs.io.get_sequence_and_structure(‘1kx8.pdb’, minimize = True)
slen = len(baseline.iloc[0].get_sequence(‘A’))
# Pre-calculated sets can also be loaded to contextualize the data
# 70% homology filter
cath = rs.utils.load_refdata(‘cath’, 70)
# Length in a window of 10 residues around expected design length
cath = cath[(cath[‘length’] > = slen - 5) & (cath[‘length’] < = slen + 5)]
# Designs were performed in two rounds
gen1 = rs.io.parse_rosetta_file(‘1kx8_gen1.designs’)
gen2 = rs.io.parse_rosetta_file(‘1kx8_gen2.designs’)
# Identifiers of selected decoys:
decoys = [‘d1’, ‘d2’, ‘d3’, ‘d4’, ‘d5’, ‘d6’]
# Load experimental data for d2 (best performing decoy)
df_cd = rs.io.read_CD(‘1kx8_d2/CD’, model = ‘J-815’)
df_spr = rs.io.read_SPR(‘1kx8_d2/SPR.data’)

Plot fig = plt.figure(figsize = (170 / 25.4, 170 / 25.4))
grid = (3, 4)
# Compare scores between the two generations
axs = rs.plot.multiple_distributions(gen2, fig, (3, 4), values = [‘score’, ‘hbond_bb_sc’, ‘hbond_sc’,

‘rmsd’], refdata = gen1, violins = False, showfliers = False)

# See how the selected decoys fit into domains of similar size
qr = gen2[gen1[‘description’].isin(decoys)]
axs = rs.plot.plot_in_context(qr, fig, (3, 2), cath, (1, 0), [‘score’, ‘cav_vol’])
axs[0].axvline(baseline.iloc[0][‘score’], color = ‘k’, linestyle = ‘--’)
axs[1].axvline(baseline.iloc[0][‘cavity’], color = ‘k’, linestyle = ‘--’)

# Plot experimental validation data
ax = plt.subplot2grid(grid, (2, 0), fig = fig, colspan = 2)
rs.plot.plot_CD(df_cd, ax, sample = 7)
ax = plt.subplot2grid(grid, (2, 2), fig = fig, colspan = 2)
rs.plot.plot_SPR(df_spr, ax, fitcolor = ‘black’)

plt.tight_layout()
plt.savefig(‘BMC_Fig4.png’, dpi = 300)

The code shows how to combine the data from multiple Rosetta simulations and assess the different features between two design populations in terms of
scoring as well as the comparison between the final designs and the initial structure template. Code comments are presented in italics while functions from the
rstoolbox are highlighted in bold. Styling commands are skipped to facilitate reading, but can be found in the repository’s notebook.

Bonet et al. BMC Bioinformatics          (2019) 20:240 Page 8 of 13



simulations. This feature allows to bias the design simu-
lations towards productive configurations capable of
properly displaying the functional motif transplanted to
the scaffold. To assess this new feature, we used as a

benchmark test the previously computationally designed
protein BINDI, a 3-helix bundle that binds to BHRF1
[32]. We performed simulations under four different
conditions: no-target (binding-target absent), static

Fig. 4 Multi-stage design, comparison with native proteins and representation of experimental data for 1kx8-based epitope-scaffold. Analysis of the
two-step design pipeline, followed by a comparison of the distributions obtained for native proteins and the designs and plotting of biochemical
experimental data. With the exception of the panel identifiers, the image was directly created with the code presented in Table 3. a Comparison
between the first (orange) and the second (blue) generation of designs. score – shows the Rosetta energy score; hbond_bb_sc – quantifies the
hydrogen bonds between backbone and side chain atoms; hbond_sc - quantifies the hydrogen bonds occurring between side chain atoms; RMSD
– root mean square deviation relative to the original template. Second-generation designs showed minor improvements on backbone hydrogen
bonding and a substantial improvement in overall Rosetta Energy. b Score and cavity volume for the selected decoys in comparison with structures of
CATH [31] domains of similar size. The vertical dashed black line represents the score and cavity volume of the original 1kx8 after minimization,
highlighting the improvements relative to the original scaffold. c Circular Dichroism and Surface Plasmon Resonance data for the best design shows a
well folded helical protein that binds with high affinity to the expected target
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(binding-target without conformational freedom), pack
(binding-target with side-chain repacking) and packmin
(binding-target with side chain repacking and backbone
minimization) and evaluated the performance of each
simulation. Specifically, we analysed how the design

populations performed regarding energetic sampling
(Fig. 5a) and the mimicry of BINDI’s conformational
shift from the original scaffold (Fig. 5a). In addition,
we quantified the sequence recovery relative to the
experimentally characterized BINDI sequence (Fig. 5b

Fig. 5 Comparison and benchmarking of different design protocols. Representation of the results obtained using four different design protocols.
With the exception of the panel identifiers, the image was directly created with the code presented in Table 4. a Representation of four scoring
metrics in the design of a new protein binder. score – shows the overall Rosetta score; RMSD – root mean square deviation relative to BINDI;
ddG –Rosetta energy for the interaction between two proteins; bb_clash - quantifies the backbone clashes between the binder and the target
protein; b BLOSUM62 positional sequence score for the top design of the no_target (blue) and pack (green) design populations showcases how
to analyse and compare individual decoys. The higher the value, the more likely two residue types (design vs. BINDI) are to interchange within
evolutionary related proteins. Special regions of interest can be easily highlighted, as for instance the binding region (highlighted in salmon). c
Population-wide analysis of the sequence recovery of the binding motif region for no_target and pack simulations. Darker shades of blue indicate
a higher frequency and green frames indicate the reference residue type (BINDI sequence). This representation shows that the pack population
explores more frequently residue types found in the BINDI design in the region of the binding motif
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and c). Table 4 exemplifies how to easily load and combine
the generated data and create a publication-ready com-
parative profile between the four different approaches
(Fig. 5).

Discussion
The analysis of protein structures is an important ap-
proach to enable the understanding of fundamental bio-
logical processes, as well as, to guide design endeavours

where one can alter and improve the activity and stability
of newly engineered proteins for a number of important
applications. In the age of massive datasets, structural data
is also quickly growing both through innovative experi-
mental approaches and more powerful computational
tools. To deal with fast-growing amounts of structural
data, new analysis tools accessible to users with
beginner-level coding experience are urgently needed.
Such tools are also enabling for applications in CPD,

Table 4 Sample code for the comparison between 4 different decoy populations

Action Code Sample

Load import pandas as pd
import rstoolbox as rs
import matplotlib.pyplot as plt

Read df = []
# With Rosetta installed, scoring can be run for a single structure
baseline = rs.io.get_sequence_and_structure(‘4yod.pdb’)

experiments = [‘no_target’, ‘static’, ‘pack’, ‘packmin’]
scores = [‘score’, ‘LocalRMSDH’, ‘post_ddg’, ‘bb_clash’]
scorename = [‘score’, ‘RMSD’, ‘ddG’, ‘bb_clash’]
for experiment in experiments:

# Load Rosetta silent file from decoy generation
ds = rs.io.parse_rosetta_file(experiment + ‘.design’)
# Load decoy evaluation from a pre-processed CSV file.
# Casting pd. DataFrame into DesignFrame is as easy as shown here.
ev = rs.components. DesignFrame(pd.read_csv(experiment + ‘.evals’))
# Different outputs for the same decoys can be combined through
# their ‘description’ field (decoy identifier)
df.append(ds.merge (ev, on = ‘description’))
# Tables can be joined together into a single working object
df = pd.concat(df)
# As we are comparing over BINDI’s sequence, that is our reference.
df.add_reference_sequence(‘B’, baseline.iloc[0].get_sequence(‘B’)[:-1])

Plot fig = plt.figure (figsize = (170 / 25.4, 170 / 25.4))
grid = (12, 4)
# Show the distribution for key score terms
axs = rs.plot.multiple_distributions(df, fig, grid, values = scores, rowspan = 3,

labels = scorename, x = ‘binder_state’, order = experiments, showfliers = False)

# Sequence score for a selected decoys with standard-matrix weights
ax = plt.subplot2grid(grid, (3, 0), fig = fig, colspan = 4, rowspan = 4)
qr = df[df[‘binder_state’] == ‘no_target’].sort_values(‘score’).iloc[0]
rs.plot.per_residue_matrix_score_plot(qr, ‘B’, ax, ‘BLOSUM62’, add_alignment = False, color = 0)
qr = df[df[‘binder_state’] == ‘no_pack’].sort_values(‘score’).iloc[0]
rs.plot.per_residue_matrix_score_plot(qr, ‘B’, ax, ‘BLOSUM62’, add_alignment = False, color = 2,

selections = [(‘43–64’, ‘red’)])
# Small functions help edit the plot display
rs.utils.add_top_title(ax, ‘no_target (blue) - pack (green)’)

# Evaluate the variability of residue types in the binding region
ax = plt.subplot2grid(grid, (7, 0), fig = fig, colspan = 2, rowspan = 4)
qr = df[df[‘binder_state’] == ‘no_target’]
rs.plot.sequence_frequency_plot(qr, ‘B’, ax, key_residues = ‘43–64’, cbar = False, clean_unused = 0.1,
xrotation = 90)
rs.utils.add_top_title(ax, ‘no_target’)
ax = plt.subplot2grid(grid, (7, 2), fig = fig, colspan = 2, rowspan = 4)
ax_cbar = plt.subplot2grid(grid, (11, 0), fig = fig, colspan = 4)
rs.plot.sequence_frequency_plot(df[df[‘binder_state’] == ‘pack’], ‘B’, ax, key_residues = ‘43–64’,

cbar_ax = ax_cbar, clean_unused = 0.1, xrotation = 90)
rs.utils.add_top_title(ax, ‘pack’)

plt.tight_layout()
plt.savefig(‘BMC_Fig5.png’, dpi = 300)

The code shows how to join data from multiple Rosetta experiments to assess the key difference between four design populations in terms of different scoring
metrics and sequence recovery. Code comments are presented in italics while functions from the rstoolbox are highlighted in bold. Styling commands are
skipped to facilitate reading, but can be found in the repository’s notebook.
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where large amounts of structural and sequence data are
routinely generated. Here, we describe and exemplify the
usage of rstoolbox to analyse CPD data illustrating
how these tools can be used to distil large structural data-
sets and produce intuitive graphical representations.
CPD approaches are becoming more popular and

achieving important milestones in generating proteins
with novel functions [1]. However, CPD pipelines remain
technically challenging with multiple design and selec-
tion stages which are different for every design problem
and thus often require user intervention. Within the ap-
plications of rstoolbox, several functionalities can aid
in this process, by providing an easy programmatic inter-
face to perform selections, comparisons with native pro-
teins, graphical representations and informing follow-up
rounds of design in iterative, multi-step protocols. The tools
presented here were devised for Rosetta CPD calculations,
nevertheless the table-like data structure used allows for
the easy creation of parsers for other protein modelling and
design tools. This is especially relevant in other modelling
protocols that require large sampling such as protein dock-
ing [33]. Importantly, rstoolbox can also be useful for
structural bioinformatics and the analysis of structural fea-
tures which have become more enlightening with the
growth of different structural databases (e.g. PDB [34],
SCOP [35], CATH [31]).

Conclusion
Here, we present the rstoolbox, a Python library for
the analysis of large-scale structural data tailored for
CPD applications and adapted to a wide variety of user
expertise. We endowed rstoolbox with an extensive
documentation and a continuous integration setup to
ensure code stability. Thus, rstoolbox can be
accessed and expanded by users with beginner’s level
programming experience guaranteeing backward
compatibility. The inclusion of rstoolbox in design,
protocol development and structural bioinformatics
pipelines will aid in the comprehension of the
human-guided decisions and actions taken during the
processing of large structural datasets, helping to ensure
their reproducibility.

Availability and requirements
Project name: rstoolbox.
Project home page: https://lpdi-epfl.github.io/rstoolbox
Operating system(s): Tested on Linux and macOS.
Programming language: Python.
Other requirements: python2.7 or python3.4+. Non-

standard Python libraries required are automatically in-
stalled during setup with pip.
License: MIT.
Any restrictions to use by non-academics: None.

Abbreviations
CPD: Computational protein design; FunFolDes: Rosetta functional folding
and design; RMSD: Root Mean square deviation
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