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Abstract

Background: The advent of single cell RNA sequencing (scRNA-seq) enabled researchers to study transcriptomic
activity within individual cells and identify inherent cell types in the sample. Although numerous computational
tools have been developed to analyze single cell transcriptomes, there are no published studies and analytical
packages available to guide experimental design and to devise suitable analysis procedure for cell type
identification.

Results: We have developed an empirical methodology to address this important gap in single cell experimental
design and analysis into an easy-to-use tool called SCEED (Single Cell Empirical Experimental Design and analysis).
With SCEED, user can choose a variety of combinations of tools for analysis, conduct performance analysis of
analytical procedures and choose the best procedure, and estimate sample size (number of cells to be profiled)
required for a given analytical procedure at varying levels of cell type rarity and other experimental parameters.
Using SCEED, we examined 3 single cell algorithms using 48 simulated single cell datasets that were generated for
varying number of cell types and their proportions, number of genes expressed per cell, number of marker genes
and their fold change, and number of single cells successfully profiled in the experiment.

Conclusions: Based on our study, we found that when marker genes are expressed at fold change of 4 or more,
either Seurat or SIMLR algorithm can be used to analyze single cell dataset for any number of single cells isolated
(minimum 1000 single cells were tested). However, when marker genes are expected to be only up to fold change
of 2, choice of the single cell algorithm is dependent on the number of single cells isolated and rarity of cell types
to be identified. In conclusion, our work allows the assessment of various single cell methods and also aids in the
design of single cell experiments.
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Background
The greater precision afforded by single cell sequencing
has increased the scope of the average sequencing study.
Unlike conventional bulk sequencing methods that pro-
file aggregate of hundreds of thousands of cells, the sin-
gle cell sequencing methods made it possible to isolate a
single cell and perform different types of omics profiling
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including genomics, transcriptomics, epigenomics and
proteomics [1]. One prominent technique that measures
gene expression at single-cell level is single cell mRNA
sequencing (scRNA-seq) [1, 2]. It, unlike bulk sequen-
cing, unmasks the fundamental, widespread heterogen-
eity in gene expression among cells in a tissue or cells
considered to be of same type based on canonical
markers [3, 4]. Hence, rather than simply examining dif-
ferential expression between two samples, we can iden-
tify the cell types and expressed genes within each cell
type as a first step before differential expression analysis
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[4, 5]. Not only does this first step provide valuable in-
sights into the transcriptomic profiles of individual cell
types and states, but it also provides a deeper context
for the subsequent differential expression analysis.
However, the effectiveness of cell type identification is

a multi-step process which led to the explosion of new
single cell software applications, referred to as a “cottage
industry” [6]. According to Awesome Single Cell (https://
github.com/seandavi/awesome-single-cell), a site that
compiles a list of new single cell analysis methods, 118
methods have recently been created for analyzing single
cell sequencing data (normalization, dimensionality re-
duction, clustering and differential expression), including
plethora of methods required for cell type identification.
Hence, it is necessary to comparatively assess the dif-

ferent tool combinations (aka pipelines) to determine
which is the best at cell type identification. Comparative
analyses have been published on sequencing [7, 8],
normalization [9] and clustering [10, 11]. Yet, there has
not been a comprehensive study, assessing whole pipe-
lines and addressing broader issues of experimental de-
sign in cell type identification.
We developed a computational method to address this

important gap. We developed an easy to use tool as an
R-package SCEED (Single Cell Experimental Design and
Analysis). The package has functionality to simulate
scRNA-seq data with user provided statistical character-
istics: total number of cells, genes, cell type proportions,
marker genes and fold change (fC) of marker genes. The
simulated dataset with known cell types can be analyzed
using published cell-type identification algorithms by in-
corporating them in SCEED. Systematic comparison of
Fig. 1 Schematic representation of SCEED pipeline. (Left to right) First a sim
with input parameters mentioned under “Data simulation”. Next, the simula
To test the performance of each single-cell algorithm, F1score which is a m
cutoff chosen by user, the best analysis procedure and the number of cells
the results of the analysis pipeline to the known true la-
bels using F1score (for details see methods) that provide
the ability to identify the optimal single cell analysis pro-
cedures for the dataset and will also help to identify the
number of cells required for adequate power for the de-
tection of the cell-types.

Methods
The schematic of SCEED is shown in Fig. 1. Each step in
SCEED is described below.

Data simulation
Our procedure to simulate a single cell dataset is shown
in Fig. 2. In step 1, gene by cell expression matrix is sim-
ulated using Splatter package [12], which simulates m
cell types of given rarity/prevalence with n cells. In step
2, each cell type will express specific number of marker
genes g with specific fold change levels fC. The mean ex-
pression level of each marker gene gi in group k was
simulated by taking the product of a group-specific fold
change level (sampled from a negative binomial distribu-
tion with shape = fCi and rate = 1) and the mean expres-
sion level of gi in all cells that are not part of k. For each
cell in k, the final expression level of marker gene gi was
the product of the simulated mean of gi and a library
size that was simulated using Splatter [12]. The
remaining steps are stated in Fig. 2.

Analyses
Single cell analysis steps
A standard single cell analysis procedure includes data
normalization, dimensionality reduction and clustering
ulated dataset is generated using SCEED “generateDataset” function
ted dataset is analyzed using different single cell analysis procedures.
easure of test’s accuracy is computed. Finally, based on the F1score
required to perform the single cell experiment are selected
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Fig. 2 Schematic representation showing generation of simulated dataset using SCEED. (Left to right) A blank matrix is provided as an input
where initially (1) mean expression of all the genes and (2) number of marker genes at a desired foldchange cutoff are simulated, followed by
adjustment of (3) biological and (4) technical noises. Finally, (5) single cell count is simulated and provided as an output matrix
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[13]. Normalization is a crucial step for any single cell
analysis that adjusts for unwanted technical or biological
variations that may otherwise affect the gene expression
analysis. With larger datasets like single cell, dimension-
ality reduction is also an important step that transforms
data into lower dimensional space, allowing significant
reduction in data complexity and also makes data
visualization easier. Finally, single cells with similar tran-
scriptome profiles are clustered together to deduce puta-
tive (sub)populations, aka cell types.

Incorporation of single cell methods into SCEED package
SCEED package allow users to add any single cell ana-
lysis package of interest into its pipeline using function
“sceed_AlgorithmName” for example sceed_seurat. In
the current implementation of SCEED, Kmeans, SIMLR
and Seurat (details in results section) are available. Al-
though we have added only three single cell algorithms,
SCEED package is completely flexible and any number
of single-cell algorithms can be added for testing as per
user’s requirements.

Performance assessment
The performance of an analysis procedure is assessed by
computing F1score of a cluster. F1score is a balancing
measures of recall (sensitivity) and precision of cell clas-
sification. Higher F1score shows better performance of
the algorithm tested. User can choose F1score threshold
suitable to annotate the clusters for cell types and hence
best single cell analysis algorithm as well as sample size.

F1score ¼ 2 Precision x Recallð Þ= Precisionþ Recallð Þð

Results
We used SCEED to test 3 popularly known single cell al-
gorithms for cell type identification: Kmeans, SEURAT
and SIMLR. For Kmeans clustering approach, k was set
equal to the number of cell types simulated. For Seurat
and SIMLR algorithms, default parameters mentioned
by the authors were used. In Seurat, while using
“FindClusters” function, k.param was set to the number
of cell types simulated. We generated 27 datasets of
varying choices of parameters.

Generating simulated single-cell datasets
In a single cell experiment, discovering rare cell popula-
tions is of utmost importance. Stressing on the rarity of
cell populations, we simulated single cell datasets where
five cell types were partitioned into unequal proportions
such that one of them has low proportion or represent-
ing rare population, ranging from 2 to 10%. For instance,
we defined a single-cell category having 5 cell types in
proportions of 0.1, 0.2, 0.2, 0.2 and 0.3. In each cell type,



Table 1 Properties of different of simulated single cell datasets generated

Cell type proportions No. of cell types (m) No. of Genes No. of Marker genes No. of cells simulated (n) Fold change (fC) of marker genes

0.1, 0.2, 0.2, 0.2, 0.3 5 10,000 50 1000, 2000 and 3000 2, 4 and 8

0.05, 0.2, 0.2, 0.2, 0.35 5 10,000 50 1000, 2000 and 3000 2, 4 and 8

0.02, 0.2, 0.2, 0.2, 0.38 5 10,000 50 1000, 2000 and 3000 2, 4 and 8
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50 genes were simulated as marker genes that were ei-
ther 2-, 4- or 8-fold upregulated when compared to rest
of the cell types. For the same proportions of cell types
while keeping the other parameters same, we simulated
single cell data sets of 2000 or 3000 cells. More details
of each dataset are shown in Table 1. In summary, we
created 27 simulated single-cell datasets. Notably, in
SCEED package, all these parameters (such as number
of cell types, single cells per cell type, genes per cell,
marker genes per cell type and fold change cutoffs) can
be adjusted as per user’s requirements.
Fig. 3 Performance of different single cell algorithms at different cell propo
and 0.1 containing 2 foldchange upregulated marker genes for 1000, 2000
proportions while y-axis represents F1score
Testing the performance of single-cell algorithms and
estimation of sample size required
All these datasets were analyzed using three single cell
algorithms, Kmeans, Seurat and SIMLR and tested for
their performance using F1score. At lowest fold change
(fC) of 2 of marker genes, irrespective of number of sin-
gle cells collected, Seurat provided the best performance
in F1score for rarity of 0.1. However, for fC of 2, we may
need at least 1000 cells to achieve F1score of > 0.9. As
fC increases, the other algorithms also offered increased
performance, Additional files 1 and 2. Next, we
rtions. F1score was calculated at cell rarity proportions of 0.02, 0.05
and 3000 single cells datasets. X-axis represents the cell rarity
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compared these algorithms to detect even rarer cell type,
with a proportion of 0.05 (the cell type proportions are
0.05, 0.35, 0.2, 0.2 and 0.2), Fig. 3. At fC = 2, Seurat
reached the F1 score of 0.93 but only when number of
single cells > = 2000. In line with previous observation,
the other algorithms also showed increased performance
with increase in fC at 0.05 proportion. However, when
we reduced the rarer cell type proportion further down to
0.02, SIMLR outperformed the remaining two algorithms
with F1 score of 0.69 for number of single cells > = 1000.
Separately, we also estimated the minimum sample size
required at a given F1 score. For instance, SIMLR could
attain F1score > 0.7 for proportions of 0.1 and 0.05 for
sample size (number of single cells) of 1000 while Seurat
required sample sizes of 1000 and 2000 for cell propor-
tions of 0.1 and 0.05 respectively. We see similar results
for fC of 4 and 8, see Additional files 1 and 2.

Discussion and conclusion
We proposed SCEED method as an easy-to-use package
to help the researchers in designing a single cell experi-
ment (estimate the number of cells required to identify
novel cell types) and optimal analysis procedure. The
package takes into account all technical and biological
parameters that characterize typical single cell RNA-seq
data. Using SCEED package, we simulated 27 single cell
datasets that account for varying sample sizes, rarity of
cell types and fold change of expression of marker genes.
Such a simulation is significant. For example, when re-
searchers are planning to analyze cell types similar to
beta cells from islets of Langerhans in the pancreas
where marker genes such as insulin are expressed in far
greater concentrations than rest of the genes. In con-
trast, they are interested in identifying sub classes of
established cell types where marker genes are expressed
in moderately higher concentrations than the rest of the
genes. Using SCEED package, researchers can generate
simulated datasets that bear statistical properties similar
to that of the expected data and test various single cell
algorithms. Our package not only suggests the best
method among the tested algorithms but also suggest
the number of cells required to achieve the required re-
sults. As single cell transcriptome analysis field is rapidly
growing field, SCEED package facilitates easily adding
more single cell algorithms for testing.
In our study, we have compared the performance of

three popularly used single cell algorithms. Though our
simulations are limited, our study clearly shows that
even popularly used algorithms do not perform best over
ranges of cell population rarity and fold change in ex-
pression of marker genes. Based on these results, we
demonstrated that SCEED package fills an important
gap in the single cell analysis field. However, we need to
conduct extensive study to identify optimal analysis
procedures for a variety of experimental settings and
statistical properties of data. Such a study needs to ac-
count not only for the 3 parameters we tested up on, it
needs to account for the variation in the other statistical
parameters (can be selected in SCEED package) and ad-
dressing the experimental designs of scRNA-seq
experiments.

Additional files

Additional file 1: Performance of different single cell algorithms at
different cell proportions. F1score was calculated at cell rarity proportions
of 0.02, 0.05 and 0.1 containing 4 foldchange upregulated marker genes
for 1000, 2000 and 3000 single cells datasets. X-axis represents the cell
rarity proportions while y-axis represents F1score. (PDF 5 kb)

Additional file 2: Performance of different single cell algorithms at
different cell proportions. F1score was calculated at cell rarity proportions
of 0.02, 0.05 and 0.1 containing 8 foldchange upregulated marker genes
for 1000, 2000 and 3000 single cells datasets. X-axis represents the cell
rarity proportions while y-axis represents F1score. (PDF 5 kb)
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