Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279
https://doi.org/10.1186/5s12859-019-2821-6

BMC Bioinformatics

RESEARCH Open Access

Multi-allelic positional Burrows-Wheeler
transform

Ardalan Naseri', Degui Zhi? and Shaojie Zhang'"

Check for
updates

From 7th |EEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2017)
Orlando, FL, USA. 19-21 October 2017

Abstract

Background: Recent advances in whole-genome sequencing and SNP array technology have led to the generation
of a large amount of genotype data. Large volumes of genotype data will require faster and more efficient methods
for storing and searching the data. Positional Burrows-Wheeler Transform (PBWT) provides an appropriate data
structure for bi-allelic data. With the increasing sample sizes, more multi-allelic sites are expected to be observed.
Hence, there is a necessity to handle multi-allelic genotype data.

Results: In this paper, we introduce a multi-allelic version of the Positional Burrows-Wheeler Transform (mPBWT)
based on the bi-allelic version for compression and searching. The time-complexity for constructing the data structure
and searching within a panel containing t-allelic sites increases by a factor of t.

Conclusion: Considering the small value for the possible alleles t, the time increase for the multi-allelic PBWT will be
negligible and comparable to the bi-allelic version of PBWT.

Keywords: PBWT, Multi-allelic, Haplotype matching

Background

The enormous amount of genotype data generated by
the whole-genome sequencing or SNP arrays present a
challenge to store and analyze them. Detection of large
consecutive matches in a panel of genotype data is of great
interest. A genotype panel is comprised of a set of alleles
for multiple individuals. The long matches may repre-
sent Identical by Descent (IBD) segments which are the
identical segments that have been passed by a common
ancestor. IBD detection has a wide range of applications in
genetics [1].

Genotype data in diploid organisms include the genetic
information from both parents. Haplotype sequences con-
tain the genotype information and the sequences from
each parent have been separated. The naive approach
for finding exact matches in a haplotype panel will
require quadratic time complexity in terms of number of

*Correspondence: shzhang@cs.ucf.edu

Department of Computer Science, University of Central Florida, 32816
Orlando, FL, USA

Full list of author information is available at the end of the article

sequences. However, there are important distinct proper-
ties in haplotype panels compared to normal strings. The
haplotype sequences are aligned, and also the amount of
information in each location may vary due to abundance
of locations with low minor allele frequencies. Further-
more, there is usually a correlation between the adjacent
sites in the panel.

The Positional Burrows-Wheeler Transform (PBWT)
[2] enables a fast and efficient method for haplotype data
compression and searching for exact matches in a large
panel of haplotype sequences linear to the number of
sequences. The PBWT takes advantage of the properties
of the haplotype panel and provides a linear search pro-
cedure and an efficient compression approach. PBWT is
able to 1) find exact matches greater than a given length
between all pairs of haplotypes in a panel, 2) find maxi-
mal substring matches of any haplotype in the panel and 3)
search for a given query in a compressed haplotype panel.
However, the presented algorithms by Durbin [2] only
work for bi-allelic sites.

A bi-allelic site is a specific location in a chromosome
that contains two observed values (alleles). Bi-allelic site

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2821-6&domain=pdf
mailto: shzhang@cs.ucf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279

can be represented as a binary sequence (containing 0’s
and 1’s) where 0 denotes the reference allele (e.g. G) and
1 denotes the other observed allele (e.g. C). A multi-allelic
site is a specific location in a chromosome that contains
three or more alleles.

The most common type of genetic variation among
individuals is Single Nucleotide Polymorphisms (SNP).
SNPs are identified by the presence of a different DNA
nucleotide from the reference allele at a specific location.
Besides SNPs, structural variations are also common in
the human genome. The structural variations deletions,
insertions and duplications are referred as copy number
polymorphisms (CNPs) and account for 4.8 — 9.5% of the
human genome [3].

Multi-allelic SNPs have not been observed very fre-
quently in the human genome. For example the fraction of
tri-allelic SNPs in the human genome was estimated to be
about 2% [4]. However, as more individual genomic data
are becoming available, the fraction of estimated multi-
allelic SNPs may change [5]. The number of multi-allelic
sites among all variant sites is expected to increases non-
linearly with the growing number of samples [5]. In a panel
of 100,000 individuals, it is predicted that 6% of the variant
sites would be multi-allelic [5].

Besides multi-allelic sites in SNPs, the possible alleles
for CNP could be variable and in many cases there are
more than two alleles. In one study nearly 1000 genes were
identified with different segmental copy numbers rang-
ing from 0 to 48 at 3 kb resolution [6]. The importance
of multi-allelic CNPs cannot be replaced by only looking
at their adjacent SNPs as their proxies. It has been shown
that although bi-allelic CNPs show a strong correlation
of copy number with flanking SNPs, a significant amount
of multi-allelic CNPs residing in segmental duplications
are not in linkage disequilibrium with nearby SNPs [7].
Hence, capturing the multi-allelic CNPs is also of interest.
In addition, the complexity of the multiple copy num-
bers can be reduced by discretization of the numbers
(e.g. integer values for the copy number or definition of
ranges).

The number of multi-allelic sites could be much more
than expected and sufficiently common in the human
genome, so that the support for multi-allelic sites is nec-
essary for any genomic tool or database [5]. Neverthe-
less, most genomic tools and repositories have ignored
the multi-allelic sites. Those sites have either been dis-
carded or converted into bi-allelic sites by assigning a
possibly wrong allele to the sequences and ignoring the
rare variants. PBWT algorithm is not an exception and
it assumes that the haplotype panel is bi-allelic. How-
ever, as mentioned by Durbin [2], the bi-allelic version
of PBWT can be modified to handle multi-allelic sites.
In this paper, we present PBWT algorithms for multi-
allelic sites (mPBWT). We assume that the number of

Page 58 of 103

possible alleles is limited and known. In the next section,
we describe the construction of the data structure that
enables a strong compression of the panel and also pro-
vides fast and efficient search approaches in terms of time
and space, followed by two algorithms for finding long
matches and longest matches between all the sequences
within the panel. Finally, we describe the approach to
compress the haplotype panel and recover the original
panel for multi-allelic sites.

Methods

Prefix and divergence arrays

Durbin [2] presented a set of algorithms to construct posi-
tional prefix array data structures for bi-allelic sequences
that can be used for time and space efficient sequence
matching and compression of aligned sequences. The
basic idea of the Positional Burrows-Wheeler Transform
(PBWT) is to sort the sequences by their reversed pre-
fixes. Given a sequence s = s1,52,53,..SN, the reversed
prefix of s at a position k is sk = Sk—11Sk—2ySk—35+ - »S1.
The first step is to create the positional prefix arrays in a
given panel. At each position, the positional prefix array
contains the indices of the sequences that are sorted by
their reversed prefix order. For the multi-allelic version of
the PBWT (mPBWT), we use similar notations as Durbin.
Given a panel of M sequences and N variant sites with an
alphabet of size ¢, we generate the positional prefix array
ai+1 at the position k + 1 by using the a; and xy values,
where x contains the variant sites from M sequences at
the position k. The prefix array a;; which is a permuta-
tion of the values {0..M — 1} contains the indices of the
sequences sorted by the reversed prefix at the position k.

For the bi-allelic version of PBWT, two auxiliary arrays
a and b (for 0 and 1’s) were used to sort the sequences at
each position efficiently. To extend it to t-allelic, we use
a two dimensional array a. Algorithm 1 shows the pro-
cedure for computing the prefix array ax4q from ay. The
array u keeps track of the number for each allele at the
position k.

The time complexity of creating prefix arrays for multi-
allelic sequences is similar to the bi-allelic. Counters for
t possible alleles are initialized in the first loop and the
arrays a[j] are concatenated at the end. The time com-
plexity for creating the prefix arrays in a t-allelic panel
will be O(N (¢t + M)). Assuming a fixed alphabet size, the
complexity of creating prefix arrays will be O(NM).

After sorting the sequences by the reversed prefix order,
each sequence will be adjacent to the sequence with the
longest match. The divergence array dy at the site k keeps
tracks of the starting position of each match. di[i] at
each site k stores the position where the match between
x[ar[i]] and x[ax[i — 1]] begins. Divergence arrays for
multi-allelic panels can also be constructed similar to the
bi-allelic panel. The divergence array at the position k for

Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279

Page 59 of 103

Algorithm 1 Computation of prefix array ay; from ay

procedure BUILDPREFIXARRAY (xg, £, ay)

t-allelic variant sites at the position k.
create empty array a[¢] [] and u[t]

> xj contains

forj = 0 to t—1do
uljl <0

end for

fori = 0 to M—1do

allele < x| ap[i]]
alallele] [ulallele] | < ay| i]
ulallele] < ulallele] +1
end for
ai4+1 < concatenation of a[j] for j in {0..£ — 1}
end procedure

the index i should be set to zero if x[ay[i]] # x[a[i — 1]].
The bi-allelic version of the PBWT to construct the diver-
gence array di4) from di uses two auxiliary variables p
and ¢ (for O’s and 1’s). Here, we use an array p[] to update
the divergence array at the indices where the first value of
each allele appears in the sorted order. Table 1 summarizes
the differences in data types between PBWT and mPBWT
for computing prefix and divergence array. As shown in
Algorithm 2, the procedure for creating prefix and diver-
gence array contains two additional loops for ¢ possible
variant sites and also two concatenations at the end. The
first loop only initializes the variables, and the second loop
is for each sequence. As a results, the time complexity of
computing prefix and divergence arrays will be O(¢ZNM).

Figure 1 shows an example of a panel with three possible
alleles. The array y¥[k] contains the values of x; in their
reversed prefix order: y¥[k] = xx[ax]. The maximal match
for each sequence is indicated by bold underline and the
starting position of each bold underline equates the value
of the divergence array for each sequence at the position
k. And the prefix and divergence arrays will be updated
when moving from position k to k + 1.

Finding all matches greater than a given length L

Sorting the sequences based on the reversed prefix order
enables a fast search method to find all pairs of the
sequences which share a long identical sequence. The
bi-allelic version of the PBWT can find all matches
greater than a given length in terms of number of sites
in O(max(NM, #matches)). The algorithm provided by

Table 1 Comparison of data types used in PBWT and mPBWT

Prefix array
all, ol uv
altl[] ult]

Divergence array

dl],el] p.q

PBWT
mPBWT

Algorithm 2 Computation of prefix array ax,; and diver-

gence array dy1 from ay and dj

procedure PREFIXANDDIVERGENCE(xy, £, ak, di, k)
create empty arrays a[z] [], d[t] [], p(t] and u[¢]

forj = 0 to t—1do
plil < k+1
uljl <0

end for

fori = 0 to M—1do

allele < xy[ay[i]]
alallele] [ulallele] | < x[ax[i]]

forj = 0 to t—1do
if di[i] > plj] then
Pl = dylil
end if
end for

dlallele] [ulallele] | < plallele]
plallele] < 0
ulallele] < ulallele] +1
end for
ajp41 < concatenation of a[i] for i in {0..t — 1}
di41 < concatenation of d[i] for i in {0..£ — 1}
end procedure

Durbin reports matches only if a mismatch occurs by def-
inition. For example, two identical sequence will not be
reported since the match will not terminate. While the
majority of matches in a large panel will terminate at some
point, the algorithm will fail in reporting some matches
by the definition especially at the end of panel. Here, we
extend the algorithm to handle multi-allelic data and also
provide a solution to report all matches regardless of the
terminating position. To count the matches greater than L
which do not end at the panel, we handle the last variant
site differently than the preceding sites.

Similar to bi-allelic search, we sweep though the panel
and report the matches if a mismatch occurs. Algorithm 3
shows the algorithm for finding all matches greater than
L sites that end at the position k. After sorting the
sequences, all similar sequences will be placed in the same
block separated by a sequence with di[i] > k — L. We iter-
ate over the sequences at the position k and start reporting
the matches if the starting index of the longest match for
a sequence i is greater than k — L and we have already
observed sequences with different alleles at the position k.
The algorithm is different than the presented algorithm in
[2] but similar to its implementation. The corresponding
algorithm in [2] does not account for the starting position
of the match, but in the implementation a slightly differ-
ent approach had been used which was adapted in our
algorithm. The additional array m[] for the multi-allelic
version keeps track of occurrences of different alleles at

Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279

Page 60 of 103

17111110110102201121011202120012010121101010010001
15111110110102001121011202220002010121101010020001
19111110110102101121001202220012010121101010020001
12]11110110102001121011202220012010121101010020001
13111110110102001121011202220012010121101010020001
16111110110102101121011202220012010121101010020001
9 111110110102201121011202220012010121101010020001
18111110110102201121011202220012010121101010021001
2 111110110002201111011202220012020011012001202001
1 102001102001112001202001102001102001112001202001
11102001102101112001102001102001102002112021202001
0 102001102001101111012001202001102001101111012001
14111110110102001121011202220012010121101010020101

Yk+1[k+1]

4 100002210002121000210021012110101211211010121101
10100002210102121000210021012110101211211010121101
3 101111012001201111012001201201101211211010121101

101012201012221100010021000100210121101010010021
[12001211110121100010021012110210121101010010021

oy U1 0

<

[10002110002121000210021012110101211211211010121
[12001211010121100010021012110101211211201010122

HF R PR OOMNMNMNNMNNERNDNDNDNDNDNDDNDDNDDND

O OO OFNNNRERF P

prefix order

Reversed Sorted Prefixes at k

Fig. 1 A multi-allelic panel (with three possible alleles) sorted based on the reversed prefix at the position k (not including k). The set of values at the
position k is isolated and the right side shows how the order is derived at the position k + 1. The array y[k] contains the sequences in their reversed

the position k. A variable report triggers reporting the
matches if a mismatch occurs which is detected when any
two pairs of the entries of the array m have been set to
true. To prevent comparing every two entries of the array
m, we can simply iterate over all the entries of the m and
increase a counter s. When the value of s is greater or equal
to 2, we can start reporting the matches since a mismatch
has occurred. At each block we report the matches from
ig to i, where iy stores the last i where there was a block
of matches greater than L. Finally, the block of matches
may have not been separated by any sequence with d[i]
> k — L. This case can happen for the last block. The final
sequences will be reported at the end for the case that the
block of similar sequences is not separated by a sequence
i. Here, we omitted the details for simplicity but the
same variables s, report and iy are used to report the last
block.

Algorithm 4 shows the routine for reporting all matches
longer than L where k is the last site in the panel. Here,
we search for matches greater than L — 1, hence the block
of similar sequences is separated by a sequence with d[]
> k — L + 1. Furthermore, we check the values of last site
to make sure that the length is at least L. The reason is to
cover the cases where a match occurs in [N — L, N — 1].
The time complexity of the algorithm for finding all
matches greater than L will be O(max(tNM, #matches)),
since for each site the array m with ¢ elements is initialized
and investigated.

Finding set maximal matches

A maximal match from a sequence s and a panel X at each
position k is the longest match for s. The maximal match
for s at the position k contains the sequence x; if there
is a match between s and the sequence x; in the panel
including [k;, k), the match cannot be further extended,
and there is no match with any other sequence x; from the
panel X including [k, k) where k' < k, or k' = k; where
x1[k] = s[k] .

The algorithm for finding the set of maximal matches
in multi-allelic version is similar to the bi-allelic version
with the only difference in generating the divergence and
prefix arrays. The positional prefix arrays and divergence
array can be updated as we sweep through the panel as it
was described before. The time complexity of generating
divergence array is O(¢(NM). As a result, the time complex-
ity for finding all set maximal matches will be O(¢(NM).
The space complexity of the multi-allele version will be
O(M + ¢) for a t-allelic panel. Furthermore, the algorithm
provided by Durbin in [2], does not report a maximal
match that does not end at the position N —1 by definition.
Similar to long matches, we handle the case for the last
k differently. Algorithm 5 shows the algorithm for finding
set maximal matches at the position k, where k = N — 1.
The algorithm for finding set maximal matches at the
position k # N — 1 is very similar to the bi-allelic version
except the divergence and prefix array update, hence it is
shown here.

Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279

Page 61 of 103

Algorithm 3 Finding all matches greater than L ending at
the position k

procedure FINDLONGMATCHES(xg, £, ag, d, k, L)

forj = 0 to t—1do
mlj] < false

end for

io(—O

fori = 0 to M—1do

if di[i] > k — L then
if m[q] and m[r] for q,r € {0..t—1} and g #r then
report < true
end if
if report then
fori, = iy to ido
dmin «~0
fori, = i;+1 to ido
if di[i_b] > d,,;, then
Apmin < diip]
end if
if xlaklia]] # xklaxlip]] then
report match from d,,;;, to k
end if
end for
end for
end if
i() <~
forj = 0 to t—1do
mlj] < false
end for
end if
allele < xp|ay[i] |; mlallele] < true
end for
if m[q] and m(r] for g¢,r € {0..t — 1} and g #r then
report match between remaining sequences
end if
end procedure

Compression

Assuming the existence of linkage disequilibrium between
the sites in a panel, sorting the sequences by reversed
order will make the original panel more compressible.
The reason is that if there is a local correlation between
adjacent sites (linkage disequilibrium) and assuming a
structure in the panel, then sequences with similar pre-
fix values in the reversed prefix order would proba-
bly have the same value in the next variant site. As a
result, the transformed panel will be more run-length
compressible. The matrix y[i] and additional arrays
which are similar to FM-index [8] in BWT [9] are com-
pressed and stored. The array yx[i] in PBWT contains
the values for the sequences at the position k which are
sorted by the reversed prefix order (not including k). In

Algorithm 4 Finding all matches greater than L for k ==

N-1
procedure FINDLONGMATCHESLASTK (xy, ¢, ag, dy, L)
i() <~ 0
fori = 0 to M—1do
ifdili] > k — L + 1 then
fori, = ip to ido
dmin <0
fori, = i;+1 to ido
if dy ip] > dyuin then
Amin < dk [ih]
end if
if wgaxlia]] == xr[axlip]] then
report match from d,;;;, to k + 1
else
if kK — d,; > L then
report match from d,,;,, to k
end if
end if
end for
end for
i() <~
end if
end for

if m[q] and m(r] for ¢,r € {0..t — 1} and g #r then
report match between remaining sequences
end if
end procedure

order to recover the original panel from the arrays yj
efficiently, we need to store the positional prefix arrays
or additional matrices to compute the positional prefix
arrays. The additional matrix Occ in PBWT corresponds
to the matrix in BWT that stores the number of occur-
rences of each character c in the prefix L[1..k], where L
denotes the last column in the lexicographically sorted
rows of the rotations of the original sequence in BWT.
The matrix Occll] [i] contains the number of occurrences
of the allele [up to the i-sequence in the prefix sorted
order.

We define an array c(¢) for each k which corresponds
to the matrix in BWT that for each character ¢, stores the
number of occurrences of lexically smaller characters. We
also define an extension function w() similar to the bi-
allelic version: wy (i,) = Occy[l] [i] +CC(I — 1), where [€
{0..t — 1} and CC denotes the accumulative function of the
number of alleles up to / — 1 at the position k:

l

CcC() = Z (i)

i=0

One difference between the multi-allelic and bi-allelic
version of PBWT for compression is that for the bi-allelic

Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279

Page 62 of 103

Algorithm 5 Finding set maximal matches fork==N — 1

procedure SETMAXIMALMATCHESLASTK (xg, ay, di)
diM] <~ k+1 > sentinel
fori = 0 to M—1do

m=i—1,n=i+1
if di|i] < di[i + 1] then
while d[m + 1] < di[i] do
m<—m—1
end while
end if
if di[i] > di[i + 1] then
while dj[n] > di[i + 1] do
n<n—+1
end while
end if
end for
forj = m+1 to i—1do
if di[i] < k then
report match from di[i] to k
end if
end for
forj = i+1 to n—1do
if di[i + 1] < k then
report match from dg[i + 1] to k
end if
end for
end procedure

PBWT only the number of zeros for each site is stored, but
here we have to store the number for all possible alleles
except the allele £—1 in a t-allelic panel. The array Occ also
replaces the arrays u and v in the bi-allelic version. Using
the extension function, we can compute a1 from a; or
vice versa: ag41[wr(i, yi[k])] = ag[i]. As a result, we only
need to store a subset of prefix arrays and we can compute
the remaining arrays efficiently. Algorithm 6 shows the
computation of FM-index for the position k41 as we move
from k to k + 1. Please note that for the first variant site
k = 0:the PBWT array y is yx[i] = %[{]] and the positional
prefix array is ai[i] = i. Once the arrays y is computed, the
same compression algorithm for bi-allelic can be used to
compress the data. The matrix Occ is also run-length com-
pressible. In this work, we did not introduce the search for
a given query sequence in a compressed panel. However,
to search for a query in a panel, the divergence arrays need
to be stored as well. The compression of divergence arrays
will be similar to the bi-allelic version.

Results and discussion

Table 2 shows the time complexity differences between
PBWT and mPBWT.The time complexity of PBWT for
multi-allelic version increases by a factor of ¢, where ¢

Algorithm 6 Computation of FM-index at the position

k+1

procedure BUILDFMINDEX (xy, ¢, ax)

t-allelic variant sites at the position k.
create empty array a[¢] [], u[t] and Occ[t] [M]

> Xj contains

forj = 0 to t—1do
uljl <0

end for

fori = 0 to M—1do

allele < xy|ayli]]
alallele] [ulallele] | < ay[i]
ulallele] < ulallele] +1

forl] = 0 to t—1do
Occll] [{] < u[l]
end for
end for

Yk+1 < concatenation of xi[a[j]] for jin {0..£ — 1}
store g1, ulj] for j in {1..£ — 1} and Occ
end procedure

denotes the possible alleles in each site. The space com-
plexity for searching the long matches or set maximal
matches is O(M + t) compared to the O(M), where M
denotes the number of haplotypes.

We tested our implementation with a panel of bi-allelic
data with 4000 haplotypes and 94992 variant sites, gen-
erated by MaCS simulator [10]. The time for computing
all long matches in our implementation was similar to the
original PBWT for bi-allelic data. We also transformed the
panel into tri-allelic and 10-allelic by converting the 0’s or
1’s in 30% of the variant sites. Table 3 shows the running
time values for different cases. In general, the running
time for finding matches is mainly impacted by the num-
ber of matches and not the number of possible alleles.
Please note that the number of short matches is signifi-
cantly higher in a real haplotype panel. Table 4 shows the
running time for finding set maximal matches with the
increasing number of haplotypes. As shown in the table,
the running time increases linearly with the increasing
number of sequences.

All of the presented algorithms cannot handle geno-
type error as the original PBWT. Genotype errors often
interrupt long matches into multiple short fragments. One

Table 2 Time complexity comparison between PBWT and

mPBWT

PBWT mPBWT
Prefix array O(NM) O(N(t + M))
Divergence array O(NM) O(tNM)
Long matches O(NM, #matches) O(tNM, #matches)
Set max matches O(NM) O(tNM)

Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279

Table 3 Time to find matches in seconds using different
minimum lengths in terms of the number of sites

Minimum length 2000 1000 500

PBWT 5496s 7443 s 37999 s
mPBWT 55285 73145 36.796 s
mPBWT (tri-allelic) 6.103 s 83295 38.247 s
mPBWT (t=10) 13.740 14.534 38.742s

solution to handle genotype errors is to search for short
seed matches. However, this approach would require an
appropriate mechanism to identify seed length since the
number of short seed matches may be very high in a geno-
type panel. Another approach is to consider a top-down
approach as was used in [11]. In this approach, multi-
ple PBWTs are generated on random projections of the
original panels. Basically, we search for exact matches in
multiple sub-samples of the panel. For the estimation of
the sub-sampling rate, a multinomial distribution can be
considered instead of the binomial distribution. The pro-
vided algorithms also do not account for missing data.
However, the missing values can be coded as an inte-
ger value and the panel can be compressed even with its
missing values. mPBWT does not provide a direct solu-
tion to handle the missing values in a panel. However, it
could make it easier to implement heuristics based on cer-
tain assumptions. If we define a new allele for missing
data, in the sorted prefix order the block with the missing
value at their last prefix position would be at the bottom.
Assume that there are no consecutive missing values, we
can update the missing value to generate longer matches
for each sequence considering the length of the match by
including the immediately preceding and following sites
of the missing site.

Conclusion

In this paper, we presented a series of algorithms to gen-
erate positional prefix arrays and divergence arrays for
multi-allelic data based on the original PBW T for bi-allelic
data. Furthermore, we presented algorithms for finding
long matches and set-maximal matches in the panel. The
multi-allelic PBWT is time and space efficient and also
would be comparable to the bi-allelic version as long as
the number of allele sites is not very high. Particularly, the

Table 4 Time to find set maximal matches in seconds using
different number of haplotypes

Number of haplotypes 1000 2000 4000

PBWT 4141 s 7873s 15.053 s
mPBWT 3756 7.882s 14.185s
mMPBWT (tri-allelic) 42135 8.780s 15602 s
mPBWT (t=10) 4.219s 10.190 s 19.533 s

Page 63 of 103

time complexity of mPBWT is increased by a factor of ¢,
where ¢ denotes the number of possible alleles.

In our implementation, we assumed a constant ¢ for
the entire panel. However, the number of possible alle-
les across a chromosome may vary. As we iterate over
the sites, we can use different values for ¢ indepen-
dently. This would be useful, especially if the number
of sites with many possible alleles is low. As a result,
searching for maximal matches or long matches would
be more efficient and the average memory consump-
tion would be lower as we sweep through the panel to
report the matches and update the prefix and divergence
arrays.

Acknowledgements
We would like to thank Mark Vetro for testing the software during the
development of the paper.

Funding

This work is supported by National Institutes of Health (NIH) grants RO1
HG010086 and RO1T HG008115. Publication charges for this article have been
funded by NIH grant R01 HG010086.

Availability of data and materials
mPBWT is available at http://genome.ucf.edu/mpbwt.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 20
Supplement 11, 2019: Selected articles from the 7th IEEE International Conference
on Computational Advances in Bio and Medical Sciences (ICCABS 2017):
bioinformatics. The full contents of the supplement are available online at
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-
20-supplement-11.

Authors’ contributions

AN, DZ and SZ conceived the idea and designed the algorithm. AN
implemented the algorithm. AN, DZ, and SZ drafted the manuscript. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

! Department of Computer Science, University of Central Florida, 32816
Orlando, FL, USA. 2School of Biomedical Informatics, University of Texas Health
Science Center at Houston 77030 Houston, TX, USA.

Published: 6 June 2019

References

1. Thompson EA. Identity by descent: variation in meiosis, across genomes,
and in populations. Genetics. 2013;194(2):301-26.

2. Durbin R. Efficient haplotype matching and storage using the positional
Burrows-Wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266-72.

3. Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation
map of the human genome. Nat Rev Genet. 2015;16(3):172-83.

http://genome.ucf.edu/mpbwt
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-11
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-11

Naseri et al. BMC Bioinformatics 2019, 20(Suppl 11):279 Page 64 of 103

4. Hodgkinson A, Eyre-Walker A. Human triallelic sites: Evidence for a new
mutational mechanism? Genetics. 2010;184(1):233-41.

5. Campbell IM, Gambin T, Jhangiani SN, Grove ML, Veeraraghavan N,
Muzny DM, Shaw CA, Gibbs RA, Boerwinkle E, Yu F, Lupski JR.
Multiallelic positions in the human genome: Challenges for genetic
analyses. Hum Mutat. 2016;37(3):231-4.

6. Sudmant PH, Kitzman JO, AntonacciF, Alkan C, Malig M, Tsalenko A,
Sampas N, Bruhn L, Shendure J, Eichler EE. Diversity of human copy
number variation and multicopy genes. Science. 2010,330(6004):641-6.

7. Campbell CD, Sampas N, Tsalenko A, Sudmant PH, Kidd JM, Malig M,
VU TH, Vives L, Tsang P, Bruhn L, Eichler EE. Population-genetic
properties of differentiated human copy-number polymorphisms. Am J
Hum Genet. 2011;88(3):317-32.

8. Ferragina P, Manzini G. Opportunistic data structures with applications.
In: Proceedings 41st Annual Symposium on Foundations of Computer
Science; 2000. p. 390-8.

9. Burrows M, Wheeler DJ. A block-sorting lossless data compression
algorithm. Technical Report 124. Palo Alto: Digital Equipment
Corporation; 1994.

10. Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of dna
sequence data. Genome Res. 2009;19(1):136-42.

11. Naseri A, LiuX, Zhang S, Zhi D. Ultra-fast identity by descent detection
in biobank-scale cohorts using positional burrows-wheeler transform.
bioRxiv. 2017;103325.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Prefix and divergence arrays
	Finding all matches greater than a given length L
	Finding set maximal matches
	Compression

	Results and discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

