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Abstract

only one structural model is available.

Background: Nearly all cellular processes involve proteins structurally rearranging to accommodate molecular
partners. The energy landscape underscores the inherent nature of proteins as dynamic molecules interconverting
between structures with varying energies. In principle, reconstructing a protein’s energy landscape holds the key to
characterizing the structural dynamics and its regulation of protein function. In practice, the disparate spatio-temporal
scales spanned by the slow dynamics challenge both wet and dry laboratories. However, the growing number of
deposited structures for proteins central to human biology presents an opportunity to infer the relevant dynamics via
exploitation of the information encoded in such structures about equilibrium dynamics.

Results: Recent computational efforts using extrinsic modes of motion as variables have successfully reconstructed
detailed energy landscapes of several medium-size proteins. Here we investigate the extent to which one can
reconstruct the energy landscape of a protein in the absence of sufficient, wet-laboratory structural data. We do so by
integrating intrinsic modes of motion extracted off a single structure in a stochastic optimization framework that
supports the plug-and-play of different variable selection strategies. We demonstrate that, while knowledge of more
wet-laboratory structures yields better-reconstructed landscapes, precious information can be obtained even when

Conclusions: The presented work shows that it is possible to reconstruct the energy landscape of a protein with
reasonable detail and accuracy even when the structural information about the protein is limited to one structure. By
attenuating the dependence on structural data of methods designed to compute protein energy landscapes, the
work opens up interesting venues of research on structure-based inference of dynamics. Of particular interest are
directions of research that will extend such inference to proteins with no experimentally-characterized structures.

Keywords: Protein energy landscape, Structural dynamics, Stochastic optimization

Background

Wet and dry laboratories have demonstrated that pro-
teins switch between three-dimensional (3d) structures
to accommodate different molecular partners in differ-
ent cellular processes [1]. In particular, the structural
rearrangements that a protein molecule undergoes under
physiological conditions (at equilibrium) are both fast
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(and small) and slow (and large). Slow rearrangements
occur on the nanosecond-to-millisecond time scale and
allow a protein to access different functionally-relevant
substates (often several A apart). In the energy land-
scape that organizes the vast space of structures available
to a protein by potential energies, slow structural rear-
rangements constitute paths that connect energy basins
corresponding to different thermodynamically-stable and
semi-stable structural states [2].

Characterizing the equilibrium structural dynamics of a
protein is key to elucidating how protein structure modu-
lates protein function [3]. Due to the diffusion time scales
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involved, it is not possible to probe all stable and semi-
stable structural states or to reveal the detailed structure-
by-structure rearrangements a protein uses to diffuse
among such states in the wet laboratory. In principle, these
issues can be addressed via a detailed characterization of
the energy landscape in silico [2]. In practice, due to the
disparate spatio-temporal scales involved, neither wet nor
dry laboratories can reconstruct the energy landscape of
any protein of interest [4]. Nonetheless, the challenges
continue to spur computational research [3].

Two main challenges have been recognized with com-
putational reconstructions of protein energy landscapes
(and, more generally, biomolecular energy landscapes)
[5]. The first relates to the high dimensionality of the
structure space, which limits the sampling capability of
a computational method. The second relates to inherent
inaccuracies in molecular mechanics-based energy func-
tions that evaluate atomic interactions in a structure and
is known as the local minima (or ruggedness) issue.

While it remains challenging to reconstruct the energy
landscape of a medium-size protein (100 — 300 amino
acids long) that utilizes slow structural rearrangements to
access different functionally-relevant substates, progress
has been made in silico. This has been due to the fun-
damental realization that limited sampling capability is
principally a variable selection issue [6]. Therefore, the
sampling capability of a computational method can be
enhanced via careful selection of the variables constituting
the search space.

Recent efforts in silico have demonstrated that insight
on variables underlying the slow dynamics of a pro-
tein is key to defining both a low-dimensional search
space amenable to exploration and effective variation
operators to obtain samples (new structures) under the
umbrella of stochastic optimization [7-13]. In particu-
lar, proteins at the center of proteinopathies (such as
many human cancers and neurological disorders), are
avidly studied by many wet laboratories that report on
stable and semi-stable states of healthy and diseased
variants. The growing number of structures on such
proteins presents an opportunity to make inferences
on equilibrium structural dynamics. Recent successful
algorithms leverage the growing number of structures
deposited in public databases for healthy/wildtype (WT)
and diseased/mutated forms of a protein. They extract
the extrinsic modes of motion via Principal Component
Analysis (PCA) of atomic displacements compiled from
known structures of a protein. The extracted principal
components (PCs) are utilized as variables/axes of the
variable space. The space is then explored one sam-
ple at a time via iterative applications of selection (to
select an existing sample) and variation (to obtain a new
one) operators [11] under the umbrella of stochastic
optimization.
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This line of work has revealed precious insights on
known and novel functionally-relevant states, the rear-
rangements between states, and the mechanisms via
which mutations alter dynamics to cause dysfunction [7, 9,
13, 14]. However, the demand on sulfficient prior structure
data to define relevant variables limits broader appli-
cability to proteins that are not as well studied in wet
laboratories.

The key issue addressed in this paper is whether it
is possible and to what extent one can reconstruct the
energy landscape of a protein in the absence of sufficient,
experimentally-available structural data. A complemen-
tary line of work in characterizing the slow dynamics of
proteins presents an opportunity. Since the late 90s, nor-
mal mode (NM) analysis (NMA) has been established as
an expedient technique via which to extract the intrinsic
modes of motion (NMs) from a single structure [15, 16].
The low-frequency eigenvectors (slow modes) have been
utilized to connect two structures (e.g., open/unbound
and closed/bound) of a protein in algorithms seeking to
elucidate a specific structural rearrangement between two
known structures [17-20].

Here, we assess the extent to which the slow modes
allow reconstructing the energy landscape of a pro-
tein (effectively, obtaining many structures out of one).
We utilize a stochastic optimization framework, SoPriM
[7], which allows plugging different variables of interest.
While in prior work we have assessed the effectiveness
of PCs as variables, here we assess the employment of
the slow (NMA-extracted) modes for reconstruction of a
protein energy landscape. We refer to the former algorith-
mic realization as SoPriM-PCA [7] and to the latter one,
described and evaluated in this paper, as SoPriM-NMA.
The objective is to assess in detail and in a controlled envi-
ronment (on a protein that has been well studied by us
and others) the landscape reconstructed when exploiting
the dynamics encoded in only one structure (of the pro-
tein under investigation) versus the landscape that can be
reconstructed when exploiting the dynamics encoded in a
set of structures (caught for various forms of the protein
under investigation).

We describe the proposed SoPriM-NMA in the
“Methods” section, after summarizing the main algo-
rithmic components of SoPriM (and SoPriM-PCA). We
present a detailed evaluation in the “Results” section and
conclude the paper with a summary and discussion of
future directions of work.

Methods

SoPriM

The input to SoPriM is a set Qg of known structures of a
protein and a matrix Usgy sk encoding the variable space
(each column encodes an axis, and k encodes the num-
ber of amino acids in the protein under investigation); Qg
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contains many structures, as in SoPriM-PCA, or a sin-
gle structure, as in SoPriM-NMA. The structure(s) in Qg
are projected onto the employed axes to obtain an initial
population Q¢ of conformations, with each conformation
being a point in the selected variable space. Q¢ initializes
the desired population C of conformations. The SoPriM
framework adds onto C via iterative application of a selec-
tion and a variation operator for a user-defined number
of iterations (with iterations corresponding to the desired
size of C).

At every iteration, the selection operator selects a con-
formation from C. The selection penalizes selecting con-
formations from over-populated or high-energy regions
per a defined weighting function (over conformations and
cells of a grid over two selected variables, as detailed
in Ref. [7]). The selected conformation is then sub-
jected to a variation operator that utilizes the variable
axes (described below for the two different realizations
SoPriM-PCA and SoPriM-NMA). Prior to adding a con-
formation resulting from an application of the variation
operator to C, the conformation is transformed into an
all-atom structure. The transformation occurs over vari-
ous scales. First, the conformation is converted to a CA
trace (CA atoms), then to a backbone trace, then side
chains are packed, and finally the resulting all-atom struc-
ture is minimized via the sander protocol with the Amber
ff14SB force field. Details of this transformation protocol
are available in Ref. [7]. The resulting structure is pro-
jected back into the variable axes to obtain the improved
conformation for addition to the growing population C.

SoPriM-PCA

The selected variables are PCs; Usy 3k is the set of eigen-
vectors obtained from a matrix A prepared as follows:
Structures for the sequence under investigation (and vari-
ants no more than 3 mutations different) are collected
from the PDB. The CA atoms are extracted from the n
structures and stored in a matrix Asziy, (we refer to a
chain of CA atoms as a trace), and an average trace is com-
puted. A is centered (by subtracting the average trace from
each column of A) so that it encodes internal structural
fluctuations rather than rigid-body motions in 3d. A sin-
gular value decomposition yields 1//n — 1-A = U-Z- VT,
While further details can be found in Ref. [12], in sum-
mary, U.; contains the coordinates of PC;, and the singular
values X;; are square roots of eigenvalues e; that mea-
sure the variance of the data (traces) when projected onto
PC;. The order of the PCs in U is from high-to-low cor-
responding eigenvalues. A cumulative variance analysis
allows selecting the top m PCs that cumulatively cap-
ture a threshold of structural variance (typically, 80%) as
coordinate/variable axes. For many proteins with multiple
functional states, even the top two PCs capture more than
50% of the variance.
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Given C as a point in the space of the top m PCs, the
variation operator computes a new conformation Cy,, =
C + g where g = (g1...gn) is a “global motion vector”
that specifies displacements along each PC; gi = s; - §;,
where s; is sampled uniformly at random in {—1,+1}, é;
is a user-defined parameter, and §; = §; - e;/e; (for each
i > 1) to ensure that displacements are proportionate with
the variations captured by each PC.

SoPriM-NMA

In this setting, the NMs extracted from an NMA off a
single structure are selected as variables. The reader is
directed to seminal work in [15] for background and foun-
dations of NMA in statistical mechanics. In practice, we
employ the utilities in Bio3D [21] to extract the matrix
Uskxsk of the NMs off a single structure. Unlike PCA,
the first 6 NMs capture rigid-body motions, so we dis-
card them. From now on, NM7 through NMs_¢ are of
interest for variable selection, and they are ordered by
their associated frequencies (low to high, with low corre-
sponding to slow modes). Let us renumber and refer to
these frequency-ordered NMs of interest as NM; through
NMy (d = 3k — 6). Prior to plugging them into SoPriM
to obtain SoPriM-NMA, two questions need answering:
(i) what m << d to select as axes of the space; and (ii)
how to utilize the selected m NMs to compute the global
motion vector used by the variation operator. The first can
be addressed by balancing between low dimensionality of
the variable space and accurate reconstruction of known
structures.

™~
o
5 € —— Mean
£ Medi
L ealian
S0 |
5o
=
S
D <
5o
@]
()
T o
o
N
o I T T T T
0 100 200 300 400 500
NMs
Fig. 1 Loss Analysis: Mean and median Irmsds estimate the
reconstruction error when using i < d frequency-ordered NMs to
recover CA traces of experimentally-known structures
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Suppose that many structures are available for a protein
of interest (as is the case for an enzyme employed here for
this analysis), even though the NMs are extracted off a sin-
gle selected structure. The CA traces of all structures are
projected onto NMyj, ..., NMy to obtain a corresponding
d-dimensional point/conformation C for each trace. For
a given i €[d], for each of the conformations C, we can
drop the other d — i coordinates (thus arbitrarily reduc-
ing the dimensionality of the space) to obtain a “reduced”
conformation C;. For instance, if i = 1, C; contains only 1
coordinate (along NM; in a 1-dim variable space); if i = d,
all coordinates are retained. The transformation operation
described above then allows reconstructing a CA trace
from a conformation C;, and the least root-mean-squared-
deviation (Irmsd) [22] between the reconstructed and the
original trace can be recorded (for each of the struc-
tures). The mean and median Irmds can then be reported
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for a given value of i, as Fig. 1 does over known struc-
tures of the H-Ras enzyme, as i varies from 1 to d on
the x axis.

Figure 1 shows that, as expected, the more NMs used,
the lower the reconstruction error. This analysis also
shows that the reconstruction error is less than 0.6A even
when less than 10 NMs are employed as variable axes, sup-
porting studies showing that relatively few, low-frequency
NMs can identify the direction of global motions required
to achieve state-to-state transitions [19]. Such an analy-
sis can be employed to select m << d NMs as variables
if many structures of a protein are available. When this
is not the case, there is no general non-parametric rule
for an optimal value for m besides the rule of thumb to
keep the dimensionality low. In “Results” section we ana-
lyze in greater detail the relationship between NMs and
PCs, focusing on a well-studied protein, H-Ras, and select
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Fig. 2 Comparison of NMs to PCs: Dot products are computed and shown color-coded between each of the top 100 PCs and 100 NMs (derived
from 1QRA on the top panel and from 4Q21 on the bottom panel). The heatmap corresponding to the top 10 PCs and NMs is zoomed in.
Low-to-high pairwise vector similarity is conveyed via a blue-to-red color scheme
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Fig. 3 Comparison of NMs: Dot products are computed and shown
color-coded between each of the top 100 NMs derived from TQRA (x
axis) and the top 100 NMs derived from 4Q21 (y axis). Low-to-high
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pairwise vector similarity is conveyed via a blue-to-red color scheme

m to be the same value whether employing PCs or NMs as
variable axes.

Global motion vector
The global motion vector g is adapted from Ref. [19]: g =
8-4/2/m- ;11 S’ﬁ%, where § is a user-defined parameter,
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s; is a sign sampled uniformly at random in {—1, 41} for
each NM; (so that displacements can be defined in the
positive or negative direction along the principal axis of
motion represented by an NM), and the scaling ]%l is so
as to achieve a greater magnitude of displacement along
lower-frequency NMs than along the higher-frequency
modes under the same fixed energy (with frequencies
corresponding to singular values of associated eigenvec-
tors/NMs). This equation is based on the principle that
displacements in the direction of each NM must produce
a constant-valued energy when averaged over the result-
ing path, and the reader is directed to Ref. [19] for the
underlying theory and derivation.

Implementation details and experimental setup

A detailed analysis is conducted on a well-studied, 166-
amino acid long enzyme, H-Ras, that populates vari-
ous states. SoPriM-PCA utilizes 87 structures collected
from the PDB for H-Ras WT and other variants. Three
production runs are used to compute 45,000 structures
(6 € {1,2,3}). A detailed analysis in prior work shows
these step sizes to balance between exploration and
exploitation. SoPriM-NMA utilizes the NMs extracted
from a single structure, instead. Two setups are consid-
ered, NMs extracted from the Amber ff14SB-minimized
structure corresponding to H-Ras PDB entry 1QRA (a

N
- \\\‘/7

from 1QRA along NMS8

structure. The switch | and Il functional regions are highlighted in red

from 1QRA along NM7

Fig. 4 Visualization of Deformations of GDP-bound Structure: A few structures are generated by deforming the GDP-bound (off) representative
structure (PDB id TQRA) along a principal component or a normal mode. The structures are superimposed over the GDP-bound representative
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representative of the H-Ras GDP-bound/off state) and to
H-Ras PDB entry 4Q21 (a representative of the GTP-
bound/on state). Three production runs are employed
under each setting to compute 45,000 structures (using
8 € {0.25,0.5,0.75}; an analysis on optimal values of § is
not shown here in the interest of space).

Results

Comparison of intrinsic to extrinsic motions

PCs are compared directly to NMs via dot-products NM; -
PC; with i,j in [3k] (k being the number of CA atoms).
Absolute values are used to color-code a heatmap. Figure 2
is limited to the top 100 PCs and top 100 NMs for ease
of visualization; the PCs are ordered by their eigenvalues
(high to low), and the NMs are ordered by their frequen-
cies (low to high). The highest-similarity pairs are found
among the top ten PCs and top ten NMs, as zoomed in
on the right of the top and bottom panels of Fig. 2. Two
setups are considered. The top panel of Fig. 2 analyzes
the NMs derived from the (Amber ff14SB-minimized) off
state representative structure (PDB id 1QRA). The bottom
panel of Fig. 2 analyzes the NMS derived from the (Amber
ff14SB-minimized) on state representative structure
(PDB id 4Q21).
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Figure 2 shows that each of the top ten PCs, which
capture more than 80% of the structural variance among
known structures of H-Ras, is covered by at least one
of the top ten NMs in each setting. In particular, PC1
and PC2 (which cumulatively capture more than 50% of
the variance) are best captured by 1QRA-derived NM8
and NM7, respectively, and 4Q21-derived NM4 and NM1,
respectively. These results support studies showing that
highest-variance PCs correspond better to low-frequency
NMs derived from closed (such as 4Q21) than open struc-
tures (1QRA). In addition, there is strong correspondence
between the NMs derived from 1QRA and those derived
from 4Q21, as shown in Fig. 3.

The PCs-NMs correspondence is further visualized by
drawing structures obtained along a selected axis (PC
or NM). Instead of adding all the (properly-scaled) PCs
or NMs in the global motion vector, only one PC or
NM is selected over and over to produce 10 conforma-
tions at § - i units away along the selected axis, with
i €[10] and using either the Amber ff14SB-minimized
structure corresponding to PDB entry 1QRA or that to
PDB entry 4Q21 as the selected start structure. The trans-
formation summarized in Methods is utilized to obtain
all-atom structures. Figure 4 shows 10 structures obtained

from 4Q21 along NM4

structure. The switch | and Il functional regions are highlighted in red

Fig. 5 Visualization of Deformations of GTP-bound Structure: A few structures are generated by deforming the GTP-bound (on) representative
structure (PDB id 4Q21) along a principal component or a normal mode. The structures are superimposed over the GTP-bound representative

from 4Q21 along NM1
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by accumulating structural variations captured by PC1 or
PC2 starting from 1QRA and 10 structures obtained by
accumulating structural variations captured by NM8 or
NM?7 starting from 1QRA. Figure 5 shows 10 structures
obtained by accumulating structural variations captured
by PC1 or PC2 starting from 4Q21 and 10 structures
obtained by accumulating structural variations captured
by NM4 or NM1 starting from 4Q21. Figures 4 and 5
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visually support the comparison related in Fig. 2 that NMs
encode similar spatial displacements and affect the same
functional regions, switch I and II (highlighted in red),
of H-Ras.

These results suggest that one structure encodes sim-
ilar information on the slow dynamics to what can be
extracted when one has access to many known structures.
While the top ten NMs contain the slow dynamics

0
NM8
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- 1-6530
(Inactive)
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Off (Inactive) -6410
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Fig. 6 Comparison of Projections: WT-minimized, known structures of H-Ras are projected onto PC1 and PC2 in (a) and onto 1QRA-derived NM8 and
NM7 in (b). The projections are colorcoded based on all-atom Amber ff14SB energies. PDB ids are shown alongside projections of selected
structures. Annotations indicate known states and substates relevant for function
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of interest, the first few (slowest) modes are more
likely to capture this dynamics if extracted off a closed
structure.

In Fig. 6a-b we compare the NMs to PCs via the
organization they induce of experimentally-known struc-
tures of a protein. Specifically, Fig. 6a shows projections
of crystallographic structures of H-Ras (stripped to CA
atoms) on the top two PCs, PC1 and PC2. Figure 6b
shows projections of these structures on 1QRA-derived
NMS8 and NM7 (similar results are obtained using the
4Q21-derived slowest NMs). Figure 6 shows that the NMs
also encode the organization of the underlying, unknown
energy landscape. The annotations in Fig. 6a-b synthesize
wet- and dry-laboratory knowledge on H-Ras states and
substates.

Altogether, Fig. 6 shows that the NM-based projec-
tions preserve the separation of the On and Off states,
together with the co-localization of known structures
corresponding to the T (tardy) versus the R+T* (reac-
tive and hydrolyzed tardy) substates. Deformations are
present; e.g., the R and T* states are not separable by NM8
and NM?7, and smaller substates are also penetrated by
projections of structures of other substates. These results
support the premise that the NMs can serve as variable
axes along which to “fill in” the unknown energy land-
scape. Based on the constraint to keep the dimensionality
low, the rest of the analysis is on structures obtained
from SoPriM-NMA with the top ten (m = 10) NMs as
variable axes.

Comparison of ensembles generated with SoPriM-PCA and
SoPriM-NMA

Below we relate results obtained when using the 1QRA-
derived NMs but seeding the initial population of struc-
tures with all known PDB structures (threaded onto the
WT and Amber ff14SB minimized); many other set-
tings are analyzed but not shown here in the interest
of space (such as using only the structure from which
NMs are derived in the initial population, using 4Q21-
derived NMs, etc.). Figures 7, 8 and 9 show the com-
puted 2D energy landscape by drawing 2D projections of
computed structures onto the top two axes and color-
coding the projections by the Amber ff14SB energies of
the corresponding structures. Figure 7 shows the PC1-
PC2 landscape and serves as the baseline, showing the
ability of SoPriM-PCA to reproduce the main On and Off
states and even substates probed in the wet laboratory (as
related in prior work). Figures 8 and 9 show the NM1-
NM2 and NM8-NM?7 landscapes, respectively, obtained
when projecting SoPriM-NMA computed structures. The
smaller substates are not as well populated as when using
the top ten PCs as variables. However, the main On and
Off states are captured well, particularly in Fig. 9, which
separates these states, reproducing the presence of an
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-6410
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-6530
-6590
-6650
-10 0 10 20
PC1
Fig. 7 Landscape Probed with SoPriM-PCA: Structures obtained with
SoPriM-PCA are projected onto PC1 and PC2. The projections are
color-coded based on Amber ff14SB energies. Projections of known
structures are also shown, and selected ones are annotated with their
PDB ids to allow visualization of the known functional states

energy barrier also reported in other studies based on
Molecular Dynamics [23].

Better results are obtained when using the 4Q21-
derived NMs (data not shown here). When the initial
population is seeded to contain only one structure, the
exploration capability of SoPriM-NMA suffers (data not
shown), as more time is needed to expand to other regions
of the structure space.
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Fig. 8 Landscape Probed with SoPriM-NMA (on NM1 and NM2):
Structures obtained with SoPriM-NMA are projected onto NM1 and
NM2. The projections are color-coded based on Amber ff14SB
energies. Projections of known structures are also shown, and
selected ones are annotated with their PDB ids to allow visualization
of the known functional states
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Fig. 9 Landscape Probed with SoPriM-NMA (on NM8 and NM7):
Structures obtained with SoPriM-NMA are projected onto NM8 and
NM7. The projections are color-coded based on Amber ff14SB
energies. Projections of known structures are also shown, and
selected ones are annotated with their PDB ids to allow visualization
of the known functional states

Discussion

This study shows that much information can be inferred
on the slow dynamics and the energy landscape even
when only one structure is available for a protein under
investigation. The SoPriM framework allows leveraging
the normal modes extracted off a structure via normal
mode analysis to build a sample-based representation
of the underlying energy landscape that reveals func-
tional states and substates and separating barriers. The
presented results show that there is sufficient informa-
tion encoded in the top ten normal modes about the
equilibrium dynamics of a protein. Deformations of the
landscape are present and cannot be corrected with infor-
mation on only one structure. As demonstrated, the major
states of a protein can be recovered, but not all substates
can be separated. The presented work has highlighted
that separability of functional states may only emerge on
specific pairs of normal modes. While these modes are
expected to be among the top few when extracted off a
“closed” structure, they may not be so when extracted off
an “open” structure. However, even a landscape recon-
structed with informaton extracted off one structure can
provide precious insight for function and function modu-
lation. Moreover, the landscape may provide guidance on
which regions of the structure space need to be further
characterized in the wet laboratory.

Conclusion

While the availability of more wet-laboratory structural
data is desired for a protein under investigation, the study
presented here opens further lines of enquiry onto how to
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reconstruct energy landscapes in the absence of such data.
For instance, in the absence of any experimentally-known
structural model on a protein of interest, structures of
members in a protein’s superfamily can be leveraged.
Issues regarding differences in lengths among members,
particularly in gaps resulting from multiple sequence
alignment, have to be resolved so that modes of motion
can be defined for the protein of interest. Leveraging
members of a protein’s superfamily constitutes a promis-
ing direction that we will investigate in future work.
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