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Abstract

Background: Microbiome profiles in the human body and environment niches have become publicly available due
to recent advances in high-throughput sequencing technologies. Indeed, recent studies have already identified
different microbiome profiles in healthy and sick individuals for a variety of diseases; this suggests that the
microbiome profile can be used as a diagnostic tool in identifying the disease states of an individual. However, the
high-dimensional nature of metagenomic data poses a significant challenge to existing machine learning models.
Consequently, to enable personalized treatments, an efficient framework that can accurately and robustly differentiate
between healthy and sick microbiome profiles is needed.

Results: In this paper, we propose MetaNN (i.e., classification of host phenotypes from Metagenomic data using
Neural Networks), a neural network framework which utilizes a new data augmentation technique to mitigate the
effects of data over-fitting.

Conclusions: We show that MetaNN outperforms existing state-of-the-art models in terms of classification accuracy
for both synthetic and real metagenomic data. These results pave the way towards developing personalized
treatments for microbiome related diseases.
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Background
Due to recent advances in modern metagenomic sequenc-
ing methods, several studies have characterized and iden-
tified different microbiome profiles in healthy and sick
individuals for a variety of microbiome related diseases.
For example, for the inflammatory bowel disease (IBD)
which affects approximately 1.8 million Americans, it
has been shown that individuals have about (30-50)%
less biodiversity of commensal bacteria (e.g., Firmicutes
and Bacteroidetes) compared to healthy individuals [1].
Another example is the Type 2 diabetes (T2D) which
affects approximately 29.1 million Americans and costs
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the healthcare system about 245 billion dollars annu-
ally. T2D patients show significant changes in the 190
operational taxonomic units (OTUs) (OTU is defined as
groups of closely related microbes.), particularly a high
abundance of Enterobacteriaceae compared to a healthy
control group [2]. As a consequence, such differences in
the microbiome profiles can be used as a diagnostic tool
to differentiate the disease states of an individual. Being
able to accurately differentiate the disease states for an
individual can ultimately pave the way towards precision
medicine for many microbiome related diseases.

A common and widely used approach to character-
ize the human microbiome profile relies on using the
16S rRNA gene as the taxonomic maker. Indeed, based
on this profiling technique, previous studies have used
unsupervised learning techniques such as clustering and
principal coordinates analysis (PCoA) to perform classical
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hypothesis testing in order to classify microbial samples
[3]. However, these methods are limited in their ability
to classify unlabeled data or extract salient features from
highly complex or sparse data; consequently, many super-
vised learning methods have been designed specifically for
such classification purposes. For instance, several studies
have shown that one can successfully identify differences
in the microbiome profile or function of different host
phenotypes such as body site, subject, and age [4, 5].

In terms of classification methods, machine learning
(ML) models are powerful tools for identifying patterns
in highly complex data, including human metagenomic
data. In particular, supervised learning methods have been
widely used for classification tasks in different areas such
as image, text, and bioinformatics analyses [5]. For a typi-
cal supervised classification task, each training data point
(sample) consists of a set of input features (e.g., relative
abundance of taxa) and a qualitative dependent variable
giving the correct classification for that data point. For
example, microbial samples from human body sites may
be labeled as gut, mouth, or skin [6]. The goal of super-
vised learning is then to develop predictive models (or
functions) from training data that can be used to assign
the correct class (or category) labels to new samples.

Challenges of host phenotypes classification stem from
the very nature of the high dimensionality of the metage-
nomic data. For instance, a typical dataset may contain
few hundred samples, but thousands of OTUs (i.e., fea-
tures); this large number of features can greatly challenge
the classification accuracy of any method and compound
the problem of choosing the important features to focus
on. Although several ML-based supervised classification
algorithms, such as random forest [7], have been success-
ful at classifying microbial samples [5], their classification
accuracy remains poor, at least for some datasets [4]. As a
consequence, new ML models are needed to improve the
classification accuracy.

Recent advances in deep learning have shown signifi-
cant improvements on several supervised learning tasks
such as image classification and object detection [8].
Neural networks (NNs) consist of multiple (non-linear)
hidden layers which make them expressive models that
can learn complicated relationships between the system
inputs and outputs. However, NNs usually require a large
amount of training instances to obtain a reasonable classi-
fication accuracy and prevent over-fitting of training data.
For instance, we need at least tens of thousands of images
for a typical image classification task like ImageNet [8].
To the best of our knowledge, we are the first to propose
NN models that can be used to classify metagenomic data
with small (e.g., in the order of hundreds) microbial sam-
ple datasets; this is a challenging problem as the low count
of samples can cause data over-fitting, hence degradation
of the classification accuracy.

To overcome the problem of data over-fitting, we first
consider two different NN models, namely, a multilayer
perceptron (MLP) and a convolutional neural network
(CNN), with design restrictions on the number of hid-
den layer and hidden unit. Second, we propose to model
the microbiome profiles with a negative binomial (NB)
distribution and then sample the fitted NB distribution
to generate an augmented dataset of training samples.
Additionally, we adopt the dropout technique to randomly
drop units along with their connections from NNs during
training [9]. Data augmentation and dropout can effec-
tively mitigate data over-fitting as we demonstrate in our
experiments and analyses.

Finally, to assess the performance of different ML mod-
els, we propose a new simulation method that can gener-
ate synthetic microbial samples based on NB distributions
which are commonly used to model the microbial count
data [10]. As a result, the generated samples consist of
distinct microbiome profiles and particular class labels
associated with them. To account for the noise in real
microbial data, we consider several sources of measure-
ment errors; this can be used to compare the performance
of different ML models and identify scenarios that may
degrade the classification accuracy significantly.

We test our framework on eight real datasets, i.e., five
benchmarks proposed in [5], one example from HMP [6],
and two diseases, i.e., inflammatory bowel disease [11]
and esophagus [12]. We show that by augmenting the
metagenomic data and using the dropout technique dur-
ing training, the classification performance for the MLP
classifier gets significantly better compared to all other
existing methods for seven (out of eight) real datasets
for two performance metrics commonly used to evaluate
classification models: Area under the receiver operating
characteristics (ROC) curve (AUC), and F1 score of class
label predictions [13].

Taken together, our proposed framework MetaNN
(shown in Fig. 1) brings the following three contributions:

1 First, we propose two NN models (i.e., MLP and
CNN) for metagenomic data classification based on a
new data augmentation method. To the best of our
knowledge, we are the first to consider microbial
sample augmentation using a statistical method and
systematically quantify the performance of NN
models against other existing ML algorithms.

2 Second, we propose a new simulation method to
generate synthetic data that considers several sources
of measurement errors; synthetic data we develop
can be freely used by the research community to
benchmark classification performance of different
ML models.

3 Third, we show that our proposed MetaNN
outperforms other models with significant average
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Fig. 1 Our proposed MetaNN framework for the classification of metagenomic data. Given the raw metagenomic count data, we first filter out
microbes that appear in less than 10% of total samples for each dataset. Next, we use negative binomial (NB) distribution to fit the training data, and
then sample the fitted distribution to generate microbial samples to augment the training set. The augmented samples along with the training set
are used to train a neural network classifier. In this example, the neural network takes counts of three microbes (x1, x2, x3) as input features and
outputs the probability of two class labels (z1, z2). The intermediate layers are hidden layers each with four and three hidden units, respectively. The
input for each layer is calculated by the output of the previous layer and multiplied by the weights (W1, W2, Wo) on the connected lines. Finally, we
evaluate our proposed neural network classifier on synthetic and real datasets based on different metrics and compare outputs against several
existing machine learning models (see Review of ML methods)

gains of 7% and 5% in terms of F1-macro and
F1-micro scores, respectively.

Review of ML methods
We compare and contrast different (multicategory) ML
classification models: Support vector machines (SVM)
[14], regularized logistic regression (LR) [15], gradient
boosting (GB) [16], random forest (RF) [7], multinomial
Naïve Bayes (MNB) [17] because of their wide and suc-
cessful application to many datasets from other genomic
applications and all the above methods are imple-
mented with scikit-learn (http://scikit-learn.org/stable/)
in Python.

Since most of these classifiers are designed for binary
classification (i.e., have only two output classes), we adopt
a one-versus-rest type of approach where we train sep-
arate binary classifiers for each class against the rest of
data and then classify the new samples by taking a vote
of the binary classifiers and choosing the class with the
’strongest’ vote. The one-versus-rest type of approach for
classification is known to be among the best performing
methods for multicategory classification [4].

Support vector machines (SVMs)
SVMs perform classification by separating different
classes in the data using a maximal margin hyperplane
[18]. To learn non-linear decision boundaries, SVMs
implicitly map data to a higher dimensional space by
means of a kernel function, where a separating hyperplane
is then sought. The superior empirical performance of
SVMs in many types of high-throughput biomedical data
can be explained by several theoretical reasons: SVMs are
robust to high variable-sample ratios and large number of
features; they can efficiently learn complex classification
functions and employ powerful regularization principles
to avoid data over-fitting [19].

Regularized logistic regression (LR)
LR is a learning method from the class of general linear
models that learns a set of weights that can be used to
predict the probability that a sample belongs to a given
class [18]. Typically, we can add either a L1 or L2 penalty
to the LR to regularize and select important features. The
weights are learned by minimizing a log-likelihood loss
function. An L2 penalty favors solutions with relatively

http://scikit-learn.org/stable/
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small coefficients, but does not discard any features. An
L1 penalty shrinks the weights more uniformly and can
set weights to zero, effectively performing embedded fea-
ture selection. We consider both regularizations in our
subsequent experiments.

Gradient boosting (GB)
GB is a machine learning technique for regression
and classification problems which produces a prediction
model as an ensemble of weak prediction models, typically
decision trees. It builds the model in a stage-wise fashion
like other boosting methods do, and then generalizes them
by allowing optimization of an arbitrary differentiable loss
function; this is achieved by iteratively choosing a func-
tion (weak hypothesis) that points in the negative gradient
direction.

Random forests (RF)
RF is a classification algorithm that uses an ensemble of
unpruned decision trees, each built on a bootstrap sam-
ple of the training data using a randomly selected subset
of features [7]. The RF algorithm possesses a number of
appealing properties making it well-suited for classifica-
tion of metagenomic data: (i) it is applicable when there
are more predictors (features) than observations; (ii) it
performs embedded feature selection and it is relatively
insensitive to the large number of irrelevant features; (iii)

it incorporates interactions between predictors: (iv) it is
based on the theory of ensemble learning that allows the
algorithm to learn accurately both simple and complex
classification functions; (v) it is applicable for both binary
and multicategory classification tasks; and (vi) according
to its inventors, it does not require much fine tuning of
hyperparameters and the default parameterization often
leads to excellent classification accuracy.

Multinomial naïve bayes (MNB)
MNB classifier is suitable for classification with discrete
features (e.g., word counts for text classification). Hence,
MNB is usually used to classify topics (i.e., class labels)
among sentences. For microbial data, a class can contain
a mixture of OTUs that is shared among samples. There-
fore, we can learn the microbiome mixture conditioned on
the class labels.

Methods
Acquisition and preprocessing of metagenomic data
In this paper, we utilize the high-quality sequencing reads
in 16S rRNA variable regions. The taxonomy (OTU) iden-
tification of the 16S rRNA is performed using different
pipelines for eight different datasets as summarized in
Table 1. The datasets CBH, CS, CSS, FS, FSH are obtained
from the study of [5] and originate from the work of
[20] and [21]. The HMP dataset is obtained from the

Table 1 Real metagenomic data used in this paper

Dataset # of samples # of features # of classes Classification task

Classification of body sites

Costello et al. (2009) Body Habitat (CBH) 552 1454 6 Classify body habitats: skin (357), oral cavity (46),
External Auditory Canal (44), Hair (14), Nostril
(46), Feces (45)

Costello et al. (2009) Skin Sites (CSS) 357 600 12 Classify skin sites: external nose (14), forehead
(32), glans penis (8), labia minora (6), axilla (28),
pinna (27), palm (64), palmar index finger (28),
plantar foot (64), popliteal fossa (46), velar
forearm (28), umbilicus (12)

Human Microbiome Project (HMP) 1025 323 5 Classify 5 major body sites: anterior nares (269),
buccal mucosa (312), stool (319), supragingival
plaque (313), tongue dorsum (316)

Classification of subjects

Costello et al. (2009) Subject (CS) 140 464 7 Classify 7 subjects: (20, 20, 20, 20, 20, 20, 20)

Fierer et al. (2010) Subject (FS) 104 294 3 Classify 3 subjects: (40, 33, 31)

Fierer et al. (2010) Subject x Hand (FSH) 98 294 6 Classify by subject and left/right hand: (20, 18, 17,
14, 16, 13)

Classification of disease states

Inflammatory Bowel Disease (IBD) 1025 1025 2 Classify disease states: normal (500), IBD (500)

Pei et al. (2013) Diagnosis (PDX) 200 5955 4 Classify disease states: normal (28), reflux
esophagitis (36), Barrett’s esophagus (84),
esophageal adenocarcinoma (52)

We consider three different categories of classification aims: body sites, subjects, and disease states. Number of samples for a particular class is included between the round
brackets. The number of features equals the number of different OTUs (i.e., microbes)
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high-quality sequencing reads in 16S variable regions 3-5
(V35) of HMP healthy individuals with taxonomy identifi-
cation done by the QIIME [22] pipeline. The PDX dataset
is obtained from [4] and originate from the work of [12].

The resulting OTU table can be represented by a matrix
D ∈ N

n×p where N is the set of natural numbers;
n and p represent number of samples and number of
microbes, respectively. di =[ di

1, di
2, . . . , di

p] denote the
p-dimensional row vector of OTU counts from the ith

sample (i = 1, . . . , n). The total cumulative count for the
ith sample can be expressed as si = ∑p

k=1 di
k . To account

for the different sequencing depth of each sample, the raw
count data (di) are typically normalized by the cumulative
count (si) which results in relative abundances (or pro-

files) vector xi =
[

di
1

si , di
2

si , . . . , di
p

si

]

for any sample i. These

relative taxonomy abundances are further rescaled in the
range [0, 1] and serve as input features for the ML mod-
els. Note that the OTU abundance table is constructed
without any knowledge of the classification labels and thus
data preprocessing does not influence the performance of
ML models.

Modeling the microbiome profile
For biological samples, there exist multiple sources (e.g.,
biological replication and library preparation) that can
cause variability of features [10]. In oder to account
for such effects, recent work suggests to use the mix-
ture model to account for the added uncertainty [23].
Taking a hierarchical model approach with the Gamma-
Poisson distribution has provided a satisfactory fit to RNA
sequencing data [24]. A Gamma mixture of Poisson vari-
ables gives a negative binomial (NB) distribution [25]
which is more appropriate for handling data overdisper-
sion (e.g., microbial count data is highly zero inflated). As
a result, we can simulate and generate augmented sam-
ples which consists of unnormalized microbial counts. We
then use the same preprocessing procedure (described
in Acquisition and preprocessing of metagenomic data)
to normalize the augmented samples before training our
classifiers.

To generate a NB sample, we first assume the mean of
the Poisson distribution (λ) to be a Gamma-distributed
random variable �(r, θ) with shape parameter r and scale
θ = p/(1 − p). Note that by construction, the values of r
and θ are greater than zero. Next, we sample the Poisson
mean λ from this Gamma distribution. Finally, we sam-
ple the NB random variable from Pois(u; λ). The compact
form of the mass distribution of a discrete NB random
variable (v) then reads as:

NB(v; r, p) = �(r + v)
v! �(r)

pv(1 − p)r (1)

where � is the gamma function and the data overdis-
persion is controlled by the parameter r. The NB model
reduces to the standard Poisson model for r → ∞.
Note that, samples of a given class are assumed to be
independent and identically distributed (from one NB dis-
tribution). Therefore, we fit a NB distribution for each
class. More specifically, we can estimate the model param-
eters r and θ using the method of moments. Let μi be
the mean of OTU i and σi be the variance of OTU i.
Note that, the mean and variance of the Gamma distri-
bution is rθ and rθ2, respectively. We can compute the
sample mean (μ̂) and sample variance (σ̂ ) from the OTU
table and then relate them with the model parameter r
and θ . We then arrive at two equations: μ̂ = rθ and
σ̂ = rθ2. By solving this two equations, we are able to
estimate r and θ based on the sample mean and sample
variance.

Synthetic data generation
In order to quantitatively evaluate different ML models
for classifying microbial samples, we first generate syn-
thetic microbial data that consider multiple sources of
measurement errors. More specifically, we first determine
the number of classes of interest and then randomly gen-
erate the microbiome profile for each class. Next, we
sample the microbial count data for each class indepen-
dently based on the NB distribution and the previously
generated microbiome profile. To account for the variabil-
ity in the real data, we consider three types of errors in
measuring the 16S rRNA sequencing data:

• Type 1 error (e1): the underlying true count is zero
(d = 0) but the measurement count is non-zero
(d̂ �= 0).

• Type 2 error (e2): the underlying true count is
non-zero (d �= 0) but the measurement count is zero
(d̂ = 0).

• Type 3 error (e3): the underlying true count is
non-zero (d �= 0) but with a deviation/fluctuation
from the true count (d̂ = d + noise).

We generate synthetic data with random combinations
of error probabilities [ e1, e2, e3]. For example, if e1 =
0.5, e2 = 0.3, e3 = 0.2, we have a probability of 0.5 to add
microbial counts to the zero count entries of the underly-
ing true microbial count data. Similarly, for Type 2 and 3
errors, we set the non-zero count to zero with probabil-
ity of 0.3 and add deviation or fluctuation counts to the
non-zero count data with probability of 0.2, respectively.

As shown in Fig. 2, we can see that three differ-
ent error types can dramatically change the underlying
true count distribution. We evaluate the effects of dif-
ferent combinations of error types on the performance
of ML models, as well as multilayer perceptron (MLP)
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Fig. 2 Synthetic microbial frequency count distribution generated using NB distribution based on microbiome profiles. a The underlying true
distribution which is highly zero inflated (i.e., no presence of certain microbe). b Type 1 error that adds non-zero noise to the zero count entries in
order to change the distribution. c Type 2 error that changes the underlying non-zero entries to zeros. d Type 3 error changes the distribution of
non-zeros counts. Note that all different types of errors are added with probability of 0.5

and convolutional neural network (CNN); results are pre-
sented later in Experiments with synthetic data.

MetaNN framework
As shown in Fig. 1, our proposed framework, MetaNN,
consists of two important components: First, a new model
based on neural networks that is well-suited for classifying
metagenomic data. Second, our proposed data augmen-
tation for the microbial count data and adopted dropout
training technique that can effectively mitigate the prob-
lem of data over-fitting.

Multilayer perceptron (MLP)
We consider MLP [26] models with design restrictions on
the number of hidden layer and hidden unit in order to
prevent over-fitting of the microbial data. To this end, we
consider two or three hidden layers where each hidden
unit is a neuron that uses a nonlinear activation function;

this distinguish MLP from a linear perceptron. There-
fore, it is possible to distinguish data that is not linearly
separable.

More specifically, MLP uses a supervised learning algo-
rithm that learns a function f (·) : Rm → Ro by training on
a dataset, where m is the number of input dimensions and
o is the number of output dimension. Given a set of fea-
tures X = (x1, x2, . . . , xm) and a target Z = (z1, z2, . . . , zo),
MLP can learn a non-linear function approximator for
either classification or regression; this is different from
logistic regression, in that between the input and the out-
put layers, there can exist one or more non-linear layers
(hidden layers).

As shown in Fig. 3a, the leftmost layer, known as the
input layer, consists of a set of neurons X = (x1, x2, x3)
representing the input features. Each neuron in the hid-
den layer transforms the values from the previous layer
with a weighted linear summation H1 = W1X, followed

a b

Fig. 3 Illustration of random dropout where dropout units are shown as blue filled circles. a No dropout. b With dropout. As it can be seen,
connections to the dropout units are also disabled. Since we randomly choose dropout units in NNs, this means we effectively combine
exponentially many different NN architectures to prevent data over-fitting
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by a non-linear activation function g(·) : R → R - like
the Rectifier function (i.e., g(x) = max(0, x)). The output
layer receives the values from the last hidden layer (H2)
and multiplies them with the output weights (Wo) hence
the output values as Z = (z1, z2) = WoH2.

To train the MLP if there exist more than two classes,
the output layer is the softmax function which is written
as:

ẑk = softmax(zk) = exp(zi)
∑k

l=1 exp(zl)
(2)

where ẑk represents the estimated probability of having
class k. Consequently, the predicted label ŷ = maxk ẑk
is the class with the highest probability. The training
objective (loss function) is a cross entropy loss [27] which
is represented by:

J = −
N∑

i

K∑

k
y(i) log ẑ(i)

k (3)

where N is the number of training samples and K is
the total number of classes. y(i) is the true class label
for sample i. z(i)

k is the probability of having class k for
sample i.

Convolutional neural network (CNN)
The rationale of using CNN to extract local patterns of
microbes is that prior studies have found that phylogenet-
ically related microbes interact with each other and form
functional groups [28]. Therefore, we arrange the bacte-
rial species based on their taxonomic annotation, ordered
alphabetically, by concatenating the strings of their tax-
onomy (i.e., phylum, class, order, family, and genus). As
a consequence, CNN is able to extract the evolutionary
relationship based on the phylogenetic-sorting.

The hidden layers of a CNN typically consist of a set
of convolutional layers (Conv), pooling layers (Pool), and

fully connected layers (FC) [27]. As shown in Fig. 4,
convolutional layer computes the output of neurons that
are connected to local regions in the input, each comput-
ing a dot product between their weights and a small region
they are connected to in the input volume (phylogenetic-
sorted). The pooling layer performs a downsampling
operation along the spatial dimensions. The fully con-
nected layer computes the class scores which is the same
as the output layer of MLP. In our implementation, we
consider 1D convolutional and 1D pooling layers since
each microbial sample is one dimensional. The training
objective is the same as (3).

Data augmentation
Data augmentation has been widely used in computer
vision communities [8]. For example, in image classifica-
tion, images are cropped or rotated in order to augment
the training set. Data augmentation is useful because it
directly augments the input data to the model in data
space; this idea can be traced back to augmentation per-
formed on the MNIST set in [29].

Existing metagenomic datasets have fewer samples than
the number of observed taxa (features); this makes it dif-
ficult to model complex interactions between taxa and
differentiate the microbiome profiles [30, 31]. In order
to deal with such problems, we propose to augment the
microbial data with new samples generated from a known
distribution. More specifically, we first use the NB distri-
bution defined in Modeling the microbiome profile to fit
the model parameters of the microbiome profile of each
class. Next, we use the fitted NB distribution to generate
augmented samples for each class. The samples gener-
ated by the NB distribution can be viewed as variations
in the data space that effectively mitigate the problem of
data over-fitting. Note that we only fit the NB distribution
to the training set of each split, and then feed both aug-
mented and training datasets to our newly proposed NN
classifiers.

Fig. 4 A regular convolutional neural network (CNN). The input consists of S samples and P features. The 1D filter with kernel size of K and L channels
is used for convolving data with the input. By pooling (downsampling) with kernel size of 2, the resulting tensor now becomes approximately of size
S × P/4 × L. The fully connected layer considers all the features in every channels and output the probability of class labels (C) for each sample
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Dropout
Dropout is a technique proposed to addresses data over-
fitting [9], and provides a way of approximately combining
exponentially many different neural network architectures
efficiently. The term “dropout" refers to temporary drop-
ping out units (hidden and visible) in the NNs, along with
all its incoming and outgoing connections, as shown in
Fig. 3b.

The choice of which units to drop is random. In the
simplest case, each unit is retained with a fixed prob-
ability q independent of all other units, where q can
be simply set at 0.5. In our experimental settings, we
use dropout at the input layer for both MLP and CNN
with a dropout probability of 0.5, which is commonly
used and close to optimal for a wide range of networks
and tasks [9].

Results
Experiments with synthetic data
To show the applicability of MLP and CNN models, we
compare our model against several supervised classifica-
tion ML models (as described in Review of ML methods).
This set of experiments serves as a proof of concept
of quantifying the performance of each model by simu-
lating synthetic data that account for different levels of
measurement error in the real data.

Experimental setup
Hyperparameter configurations for MLP and CNN are
described in Table 2. To train the model, we use softmax
function (Eq. (2)) as the output layer and the cross entropy
loss (Eq. (3)) for both MLP and CNN. We implement
our MLP and CNN models in Pytorch (http://pytorch.
org/) and use Adam [32] as our gradient optimizer with
a default learning rate of 0.001 in the subsequent exper-
iments. We fix the training epoch (i.e., one forward and
one backward pass over all training instances) to 100 and
200 for MLP and CNN to avoid data over-fitting, respec-
tively. Note that for the synthetic experiments, we do not
apply any training techniques (i.e., data augmentation and
dropout) during model training. The number of hidden
units is selected based on the number of feature of the
input data. For example, if the number of features is 512
then we choose the number of hidden units in the range of
[1024, 512, 256]. The hyperparameters for MLP and CNN
are reported in Table 2.

For SVM (see Support vector machines (SVMs)), we
first select either a linear and radial basis function (RBF,
also known as Gaussian kernel) and then select the best
regularization parameter and width parameter in the
range of [ 10−2, . . . , 102, 103] and [ 10−5, . . . , 101], respec-
tively, using a 3-fold cross-validation approach. For GB
(see Gradient boosting (GB)), we set up a higher max-
imum depth equal to 10; minimum samples split equal
to 5 as a compromise between over-fitting and under-
fitting the training set. For RF (see Random forests (RF)),
we set up the number of estimators equal to 200 (default
is 10) to have a better estimation and then select the
depth, sample splits, and number of leaves using 3-fold
cross-validation. For MNB (see Multinomial naïve bayes
(MNB)), we fit a prior distribution to the number of OTUs
in each class; this acts as a smoothing constant. For other
ML methods and hyperparameters, we use the default
values implemented in scikit-learn.

Classification performance metrics
We consider a few metrics as follows:

• Area under the Curve (AUC): We compute the area
under receiver operating characteristic (ROC) curve
where a larger area means a better classification
model.

• F1-micro: We estimate F1-micro as the true positives
plus the true negatives divided by the total number of
samples; this is same definition of classification
accuracy as widely used in binary classification
problems.

• F1-macro: We estimate F1-macro by calculating the
F1-micro for each class and then find their
unweighted mean; this does not take label imbalance
into account.

• Performance Gain: We calculate the performance
gain as the F1 score of the best NN model minus the
F1 score of the best ML models divided by the F1
score of the best ML models.

Classification performance comparisons
We consider eight classes each with different microbiome
profiles (the generation process of synthetic data is dis-
cussed in Synthetic data generation). For example, con-
sider the case when the number of microbes is p = 100
for each class. For a particular microbiome profile (e.g.,

Table 2 Model configurations for MLP and CNN

Synthetic CBH CSS HMP CS FS FSH IBD PDX

MLP (256, 256) (1024, 512) (512, 256) (512, 256) (512, 512) (512, 512) (512, 256) (512, 256, 128) (512, 256, 128)

CNN Conv1D(8, 3) → Dropout → ReLu → MaxPool1D(2) → Conv1D(8, 3) → ReLu → MaxPool1D(2) → FC

Number in the round bracket represents the number of hidden units. Conv1D is the one-dimensional convolution layer. ReLu is the non-linear rectifier layer. MaxPool1D
represents the one-dimensional max pooling layer. Dropout and FC represent dropout and fully connected layers, respectively. Details of each dataset are described in Table 1

http://pytorch.org/
http://pytorch.org/
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m = (30, 40, 30) microbes), we sample three different
overdispersion parameters (e.g., r = (0.1, 1, 10)) for the
NB distribution, respectively. Next, we use r and sample
the microbial counts based on Eq. (1) and then alter the
counts by adding different sources of errors with specific
probabilities.

We report the results for eight classes where each class
has d = 100 samples and p = 100 microbes. As shown
in Table 3, when we fix the probability of Type 1 errors
(e1) to 0.5 and 0.0 and vary the probability of Type 2 (e2)
and Types 3 (e3) errors, we find that the Type 3 errors are
more severe than the Type 2 errors; this is because the
Type 3 errors can dramatically change the microbial count
distribution as shown in Fig. 2. We also find that the Type
1 errors have a moderate impact on the performance of
each classifier.

We find that MLP and MNB achieve the best (and com-
parable) performance in all scenarios we considered; this
is due to the fact that MLP is able to better deal with the
sparse features since NNs can extract higher level features
by utilizing hidden units in hidden layers. MNB fits the
prior distribution for the microbiome profile of each class;
this can largely improve performance since each class is
generated based on the NB distribution which complies
with the underlying assumptions of MNB. Overall, MLP
is suitable to deal with different sources of errors. On the
contrary, CNN is not able to deal with sparse features
since the convolution layer considers spatial relationships
among features; this results in its poor performance for
the synthetic datasets.

Experiments on real data
We utilize several datasets (see Acquisition and prepro-
cessing of metagenomic data) to examine the perfor-
mance of different ML models in real scenarios. Datasets
can be classified into three categories based on their
properties: (1) Classification of body sites, (2) classifica-
tion of subjects, and (3) classification of disease states.
The total number of samples and features (i.e., OTUs)
are summarized in Table 1. We also list the model

hyperparameters for MLP and CNN in Table 2. In our
experimental settings, the number of augmented sam-
ples is set equal to the number of training samples, the
dropout rate (q) is set to 0.5. We use the same set of hyper-
parameters for the other ML methods, as described in
Section 1.

Performance of ML models on real data
The performance of all the ML methods introduced
in Review of ML methods is summarized in Table 4. As it
can be seen, SVM and RF have better performance com-
pared to other remaining methods in terms of F1-score.
Since SVM and RF have better performance over other
ML methods, we choose these two methods to compare
with our NN models in Table 5.

We first show the classification performance of MLP
and CNN on different datasets using ROC curves. As
shown in Fig. 5, MLP shows better performance than
CNN; this implies that MLP is a better model since the
activation function at the output layer is able to learn a
better decision boundary. Additionally, we find that dis-
ease datasets (i.e., IBD and PDX) are more difficult to clas-
sify. In the following sections, we present the experiment
results for datasets in different categories.

Classification of body sites
In this set of experiments, we consider a total of three
datasets: two came from [20] and one from HMP (see
Table 1). As discussed in [5] and shown in Table 5 and
Fig. 5, CSS is the most difficult dataset since the micro-
biome profiles are generally non-differentiable between
different skin sites. For the other two datasets (i.e., CBH
and HMP), the microbiome profiles tend to be highly dif-
ferentiated between different body sites; therefore, ML
models do obtain a better classification performance. In
practice, classification of body sites would not require the
use of a predictive model for classification since we would
most likely know the site of sampling. However, it is still
valuable to use this category to evaluate the performance
of different ML methods.

Table 3 Performance comparison of different ML and NN models for different types of error (e1, e2, e3)

(e1, e2, e3) SVM GB RF MNB LR1 LR2 MLP CNN

F1-micro

(0.5, 0.1, 0.4) 0.96 0.79 0.98 0.98 0.30 0.98 0.98 0.75

(0.5, 0.4, 0.1) 0.99 0.82 1.00 1.00 0.43 1.00 1.00 0.81

(0.3, 0.1, 0.4) 0.98 0.87 0.98 0.99 0.54 0.99 0.99 0.74

(0.0, 0.7, 0.2) 0.99 0.83 1.00 1.00 0.66 1.00 1.00 0.86

(0.0, 0.2, 0.7) 0.89 0.58 0.81 0.91 0.51 0.87 0.91 0.59

We consider several existing supervised ML methods, as well as NN models (i.e., MLP and CNN). For each experiment, we use 10-fold cross-validation. We use F1-micro to
quantify the performance as defined in Classification performance metrics. Bold values represent the best results
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Table 4 Performance comparison of ML models on eight real datasets described in Table 1

Dataset SVM RF GB MNB LR1 LR2

F1-macro

CBH 0.78(0.03) 0.73(0.03) 0.74(0.04) 0.66(0.03) 0.41(0.04) 0.17(0.01)

CSS 0.63(0.07) 0.58(0.08) 0.48(0.05) 0.49(0.03) 0.26(0.03) 0.24(0.02)

HMP 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01)

CS 0.88(0.05) 0.87(0.05) 0.74(0.06) 0.76(0.04) 0.16(0.04) 0.19(0.06)

FS 0.94(0.03) 1.00(0.01) 0.91(0.06) 0.98(0.01) 0.60(0.05) 0.58(0.04)

FSH 0.68(0.04) 0.63(0.08) 0.55(0.06) 0.50(0.04) 0.17(0.01) 0.17(0.00)

IBD 0.68(0.04) 0.57(0.02) 0.65(0.02) 0.43(0.01) 0.47(0.02) 0.43(0.01)

PDX 0.29(0.13) 0.28(0.09) 0.35(0.05) 0.18(0.03) 0.15(0.01) 0.15(0.01)

F1-micro

CBH 0.93(0.02) 0.91(0.02) 0.89(0.02) 0.88(0.02) 0.76(0.02) 0.68(0.00)

CSS 0.71(0.03) 0.67(0.03) 0.57(0.04) 0.58(0.03) 0.48(0.03) 0.48(0.03)

HMP 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01)

CS 0.88(0.06) 0.88(0.04) 0.75(0.05) 0.75(0.05) 0.23(0.05) 0.28(0.07)

FS 0.94(0.03) 1.00(0.01) 0.91(0.06) 0.98(0.01) 0.68(0.03) 0.67(0.03)

FSH 0.70(0.08) 0.69(0.05) 0.58(0.06) 0.62(0.03) 0.33(0.01) 0.33(0.01)

IBD 0.79(0.02) 0.78(0.02) 0.77(0.02) 0.76(0.02) 0.76(0.02) 0.76(0.02)

PDX 0.44(0.07) 0.43(0.07) 0.40(0.05) 0.42(0.04) 0.42(0.04) 0.42(0.04)

We consider several existing supervised ML methods. For each experiment, we consider 10-fold cross-validation and use F1-macro and F1-micro scores to quantify
performance as defined in Classification performance metrics. For each fold, we perform five simulation runs with standard deviations shown between round brackets

Table 5 Performance comparison of SVM, RF and NN models on eight real datasets described in Table 1

Dataset SVM SVM+A RF RF+A MLP+D CNN+D MLP+D+A CNN+D+A Gain (%)

F1-macro

CBH 0.78 (0.03) 0.82 (0.03) 0.73 (0.03) 0.75 (0.03) 0.85 (0.03) 0.77 (0.04) 0.86 (0.03) 0.82 (0.03) 5

CSS 0.63 (0.07) 0.65 (0.06) 0.58 (0.08) 0.61 (0.06) 0.66 (0.06) 0.59 (0.06) 0.67 (0.06) 0.62 (0.06) 3

HMP 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0

CS 0.88 (0.05) 0.88 (0.05) 0.87 (0.05) 0.87 (0.05) 0.92 (0.05) 0.87 (0.06) 0.93 (0.05) 0.88 (0.05) 6

FS 0.94 (0.03) 0.95 (0.02) 1.00 (0.01) 1.00 (0.01) 0.97 (0.03) 0.90 (0.15) 0.98 (0.02) 0.97 (0.02) -2

FSH 0.68 (0.08) 0.70 (0.08) 0.63 (0.08) 0.68 (0.08) 0.74 (0.06) 0.66 (0.07) 0.74 (0.05) 0.72 (0.07) 6

IBD 0.68 (0.04) 0.72 (0.02) 0.57 (0.02) 0.60 (0.02) 0.75 (0.02) 0.67 (0.03) 0.78 (0.02) 0.70 (0.02) 8

PDX 0.29 (0.13) 0.43 (0.02) 0.28 (0.09) 0.34 (0.07) 0.51 (0.00) 0.44 (0.05) 0.56 (0.03) 0.45 (0.08) 30

F1-micro

CBH 0.93 (0.02) 0.93 (0.01) 0.91 (0.02) 0.92 (0.02) 0.94 (0.01) 0.89 (0.02) 0.94 (0.01) 0.92 (0.02) 1

CSS 0.71 (0.03) 0.72 (0.04) 0.67 (0.03) 0.68 (0.03) 0.72 (0.03) 0.67 (0.04) 0.74 (0.03) 0.68 (0.04) 3

HMP 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.97 (0.01) 0.96 (0.01) 0.97 (0.01) 0.97 (0.01) 0

CS 0.88 (0.06) 0.89 (0.05) 0.88 (0.04) 0.88 (0.05) 0.92 (0.04) 0.87 (0.06) 0.94 (0.04) 0.89 (0.05) 6

FS 0.94 (0.03) 0.95 (0.02) 1.00 (0.01) 1.00 (0.01) 0.97 (0.03) 0.91 (0.12) 0.98 (0.02) 0.97 (0.02) -2

FSH 0.70 (0.08) 0.71 (0.07) 0.69 (0.05) 0.72 (0.06) 0.75 (0.05) 0.68 (0.06) 0.76 (0.05) 0.75 (0.07) 6

IBD 0.79 (0.02) 0.79 (0.02) 0.78 (0.02) 0.79 (0.02) 0.82 (0.01) 0.77 (0.02) 0.84 (0.01) 0.78 (0.02) 6

PDX 0.44 (0.07) 0.48 (0.03) 0.43 (0.07) 0.44 (0.06) 0.53 (0.01) 0.49 (0.05) 0.56 (0.03) 0.50 (0.06) 17

+D and +A means dropout and data augmentation, respectively. For each experiment, we consider 10-fold cross-validation and use F1-macro and F1-micro scores to
quantify performance as defined in Classification performance metrics. For each fold, we perform five simulation runs with standard deviations shown between round
brackets. Performance gains are shown for the best NN and the best ML models. Bold values show the best results
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a b

Fig. 5 ROC curves and AUCs for (a) multilayer perceptron (MLP) and (b) convolutional neural network (CNN). True positive rates are averaged over
10-fold cross-validation each with 5 independent random runs. We show the ROC curves and AUCs for the real datasets considered in this paper

Classification of subjects
In this set of experiments, we consider three benchmark
datasets where two come from [21] and one from [20]. As
shown in Table 5 and Fig. 5, this category is more challeng-
ing than classifying body sites since the samples of certain
subject may be collected at different time points. For the
CS dataset, authors in [20] observed significant variations
of microbiome profile for individuals over time and most
ML models cannot achieve a high accuracy. On the con-
trary, for the FS dataset, individuals have clear differences
since samples are collected at approximately the same
time point. FSH dataset is more challenging compared to
FS since we need to additionally classify the right and left
hand for each individual.

Classification of disease states
In this set of experiments, we consider IBD and PDX
datasets from [11] and [12], respectively. As shown in
Tables 1 and 5, PDX is a challenging dataset, since it
contains four classes and the microbiome profiles are
similar among these classes. Indeed, existing ML models
can only achieve up to 40% accuracy (F1-micro score) of
the PDX set.

Classification performance comparisons
As shown in Table 5, MLP with dropout and data aug-
mentation (MLP+D+A) achieves the best performance
in terms of F1-macro and F1-micro scores among all
other ML methods, except the FS dataset. CNN with
dropout and data augmentation (CNN+D+A) also pro-
vides comparable performance with other ML mod-
els. Note that without using data augmentation, MLP

(MLP+D) still achieves the best performance against other
ML models; this is because MLP can extract higher
level features and automatically select the important
features.

Other than MLP and CNN, SVM and RF also show bet-
ter performance; this is because SVM and RF are able
to distinguish features even in high dimensional settings
while being robust to random features. However, MLP can
still have significant average gains of 7% and 5% against
the best ML method in terms of F1-macro and F1-micro,
respectively. If we take a closer look at the disease datasets,
we can see that the MLP+D+A has a dramatic increase in
terms of F1-macro scores (8% and 30% gains) compared
to other ML methods for both IBD and PDX datasets; this
indicates that MetaNN can accurately differentiate and
better classify various disease states.

As shown in Table 5, data augmentation can improve
the classification performance not only for NN models
but also for ML models. More specifically, we can have
an average of 2-3% improvement compared to the one
without using data augmentation; this shows that data
augmentation in the training sets can truly leverage the
high dimensionality of metagenomic data.

In terms of classification performance of ML meth-
ods listed in Table 5, we can see that ML methods can
achieve up to 80-100% F1 scores for most of the datasets.
For example, both MLP and RF can achieve up to 98%
classification accuracy for the FS dataset. However, other
challenging datasets, such as PDX and CSS have non-
differentiable microbiome profiles. To support this claim,
we utilize the (1) Q-Q (quantile-quantile) plot to quantify
two distributions against each other, and (2) scatter plot
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to show the consistency of microbiome profiles between
different classes.

Q-Q plot is generated based on the quantiles of two dis-
tributions, where quantile can be obtained by sorting the
microbial counts. For example, Fig. 6b shows the quan-
tile distributions of subject 1 (S1) against subject 2 (S2).
On the contrary, the scatter plot is generated based on the
(unsorted) microbiome profile. For example, a point on
Fig. 6d represents a certain microbe (e.g., E. coli) found in
both S1 and S2 samples but with different counts.

For the FS dataset, we first notice that subject 1 (S1)
within-class distribution and profile are similar (Fig. 6a,
c) as opposed to between-class case (Fig. 6b, d); these
distinct differences make the FS dataset easy to classify.
However, for the PDX dataset, we can see that the dis-
tribution and profiles of PDX dataset show completely
different behaviors compared to the FS dataset. Micro-
biome distributions and profiles for Barrett’s esophagus
(BE) and esophageal adenocarcinoma (EA) patients are
shown to be very similar (adjusted R squares up to 0.97).
Additionally, the scatter plots (profiles) also show that BE
and EA profiles (Fig. 6g, h) are more similar than sam-
ples from BE (Fig. 6e, g). As a consequence, ML models
are unable to distinguish these two classes which results
in their poor performance.

Neural network visualization
Visualization of the last hidden layer of the test data can
further show that neural network can learn meaningful

feature representations. By projecting the activation func-
tion of the last hidden layer using t-SNE [33] on a two-
dimensional space, we can observe there are obvious
distinctions among different classes for HMP and IBD
datasets (see Fig. 7a, b); this shows that neural network
provides a non-linear transformation of data that can
identify different body sites and subjects diagnosed with
IBD. However, for the PDX dataset, there is no clear dis-
tinction between different classes which results in poor
performance for every ML-based classifiers.

Discussion
Advances of high-throughput sequencing techniques
enable researchers to gather metagenomic data from dif-
ferent environment and human niches. The available
high-throughput experimental data, however, are high-
dimensional in nature; this makes it challenging for
researchers to identify and disentangle the underlying
microbiome profiles that relate to different human pheno-
types such as body sites and disease states.

Although several existing ML models have been
proposed for classifying metagenomic data, their
performance is mostly unsatisfactory. To boost the
classification accuracy, we have proposed a new neural
network based pipeline that is suitable for classifying
metagenomic datasets. However, the high-dimensional
nature and limited number of microbial samples can
make such models easily over-fit the training set and thus
result in poor classification of new samples. To remedy
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a b c

Fig. 7 Visualization of (a) HMP, (b) IBD, and (c) PDX datasets using t-SNE projection [33]. We project the activation function of the last hidden layer of
the test data onto a 2D space, where different colors represent different classes. For instance, the red and green colors represent samples collected
from anterior nares and stools, respectively. As it can be seen, HMP and IBD samples show a clear separation between classes, while PDX samples
are hard to be distinguished

the data over-fitting problem, we have proposed data
augmentation and dropout during training.

Our analysis on real datasets has revealed that ML
methods can achieve high classification accuracy when
datasets have distinct distributions among different
classes. On the contrary, challenging datasets like PDX
show similar distributions for different classes; therefore,
the existing ML classifiers are unable to distinguish in
such situations, while our proposed MetaNN has signif-
icant improvements on the classification accuracy. Ulti-
mately, an ideal classifier needs good feature selection
mechanisms to select a subset of features that is the most
representative for a particular class. In this respect, NNs
are well-suited for automatic feature selection and engi-
neering; this makes NNs better than other ML models for
classifying metagenomic data.

Experimental results show that the new data aug-
mentation can effectively improve the classification
performance for both NN models and ML models. More
importantly, when using the augmented training set, the
classification results are as good as or better than that of
the best non-augmented model; this shows that data aug-
mentation can truly leverage the high dimensionality of
metagenomic data and effectively improve the classifica-
tion accuracy.

Conclusion
In this paper, we have shown that our proposed MetaNN
outperforms all other existing methods for both synthetic
and real data. For the synthetic experiments, we have
evaluated several combinations of measurement errors to
demonstrate the applicability of MetaNN to different con-
ditions. For real datasets, our MetaNN has average gains
of 7% and 5% in terms of F1-macro and F1-micro scores,
respectively. Overall, MetaNN has shown very promising
results and better performance compared to existing ML
methods.
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