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Abstract

Background: Numerical chromosomal variation is a hallmark of populations of malignant cells. Identifying the factors
that promote numerical chromosomal variation is important for understanding mechanisms of carcinogenesis.
However, the ability to quantify and visualize differences in chromosome number between experimentally-
defined groups (e.g. control vs treated) obtained from single-cell experiments is currently limited by the lack
of user-friendly software.

Results: Aneuvis is a web application that allows users to determine whether numerical chromosomal variation
exists between experimental treatment groups. The web interface allows users to upload molecular cytogenetic
or processed single cell whole-genome sequencing data in a cell-by-chromosome matrix format and automatically
generates visualizations and summary statistics that reflect the degree of numeric chromosomal variability.

Conclusions: Aneuvis is the first user-friendly web application to help researchers identify the genetic and environmental
perturbations that promote numerical chromosomal variation. Aneuvis is freely available as a web application at https://
dpiqueshinyapps.io/aneuvis/ and the source code for the application is available at https://github.com/dpique/aneuvis.
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Background

Alterations in chromosome number are a hallmark of
cancer [1]. Within a population of single cells, increased
numerical chromosomal variation may reflect underlying
whole chromosomal instability (W-CIN) [2], which pro-
motes chemotherapy resistance [3]. The process of iden-
tifying numerical chromosomal variation in single cells is
thus important, among other reasons, for understanding
how cancers become resistant to chemotherapy. This
process can be divided into two steps. The first step is to
quantify the number of chromosomes per cell. Multiple
experimental techniques and computational tools exist for
completing this step, and the final output is often a
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spreadsheet or text file that contains chromosomal copy
number information for all nuclei analyzed [4]. The
second step is to quantify the degree of numerical
chromosomal variation. Existing approaches, such as
AneuFinder, estimate the degree of numerical aneuploidy
from single cell whole genome sequencing (sc-WGS) data
but require knowledge of the R programming language
[5]. In addition, existing approaches do not allow speci-
fication and comparison of experimental treatment
groups. Furthermore, no freely-available software exists
for the processing of chromosomal count data derived
from locus specific fluorescent in situ hybridization (FISH)
or spectral karyotyping (SKY).

Here, we introduce aneuvis, a user-friendly web appli-
cation for visualizing and summarizing numerical chromo-
somal variability in populations of single cells belonging to
experimentally-defined treatment groups. Aneuvis operates
downstream of existing experimental and computational
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approaches that generate a matrix containing the estimated
chromosomal copy number per cell. Users upload both a
copy number matrix along with a key that links individual
cells with experimental groups. Aneuvis is the first
freely-available, user-friendly application to automatically
calculate metrics and generate graphics that reflect numer-
ical chromosomal variation between experimental treat-
ment groups. Aneuvis is available to be used as a
stand-alone web application [6].

Results

Aneuvis design and workflow

Aneuvis facilitates the analysis of numerical chromo-
somal variation between experimental treatment groups
and works downstream of existing approaches that
quantify copy number changes in single cells (Fig. 1).
The aneuvis workflow begins with the upload of one of
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three types of data (sc-WGS, FISH, or SKY) via a graphical
user interface (Fig. 2). File formatting guidelines are pro-
vided for each data type (see Fig. 2 for an example of the
specifications for processed single cell WGS data). Upon
clicking the submit button, aneuvis automatically gener-
ates output that is divided into three sections — table sum-
mary, visualization, and hypothesis testing — that are listed
along the navigation bar within aneuvis (Fig. 2, top sec-
tion). The user is first taken to the “Table Summary” sec-
tion. The purpose of the table summary section is to
quantify the degree of chromosomal variability per experi-
mental group using six different literature-derived statis-
tics (see Table 1 for a description of the statistics). The
table summary is divided into two parts — aggregate and
chromosome-level summaries per group. The same statis-
tics (except for the ploidy proportion and instability index,
which are features of population of cells) are calculated at
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Fig. 1 Overview of the aneuvis workflow for analyzing numerical chromosomal variation. a An experiment begins with the quantification of
number of chromosomes per cell using either FISH, SKY, or sc-WGS. b Next, the number of chromosomes per cell within each treatment group is
stored as a cell x chromosome matrix, where the entries indicate the number of inferred copies of a chromosome in a cell. ¢ Aneuvis
incorporates information from the experimental design as well as from chromosomal copy number matrices to determine whether differences
exist between treatment groups. A table of descriptive statistics summarized by group and by chromosome is automatically generated and
available for download. Visual representations of the relationship in aneuploidy between different groups are also automatically generated.
A permutation-based approach allows the user to conclude whether there is a statistically significant difference in the ploidy characteristics
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the level of the treatment group (aggregate) as well as at
the chromosomal level to identify chromosomes that are
the most perturbed within and between each group. The
user interface to the summary table is dynamic and
searchable, and the data is downloadable. Figure 3 shows
a screenshot of the table summary output.

Using the statistics derived from the table summary,
aneuvis automatically generates visualizations that com-
pare experimental groups and that are data type-specific
within the “Visualization” section (see Fig. 1 for overview).
Data visualizations (e.g. scatterplots) shared across all
experimental inputs are further divided into group and
chromosomal level summaries. Group level summaries
include an interactive scatterplot showing the bivariate
relationship between the degree of chromosomal varia-
bility (heterogeneity score) and the severity of numerical
aneuploidy (aneuploidy score) (Fig. 4a). Furthermore,

ternary plots [10] show the proportion of cells that are
diploid, polyploid, and aneuploid (Fig. 4b). Both plots
include experimental groups from all uploaded data types,
thus enabling comparisons between experimental inputs,
such as between FISH and single cell whole genome
sequencing (sc-WGS). The chromosome level summary
includes an interactive scatterplot showing the relation-
ship between heterogeneity and aneuploidy scores. The
visualizations that are data type-specific include summa-
rized copy number heatmaps for SKY and sc-WGS data
and a novel bivariate percentage heatmap for FISH data
(Fig. 5). To our knowledge, the bivariate percentage heat-
map is the first such published visualization of chromo-
somal ploidy from FISH data in a population of cells.
Finally, the visualizations can be downloaded as a pdf file
from aneuvis using the “Download PDF” button, and an
example is shown in Additional file 1.
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Table 1 Scores and indices used to quantify aneuploidy
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Hypothesis testing

Oftentimes, a research question may involve asking
whether two or more treatment groups are different from
each other in terms of their degree of chromosomal
variability. Permutation testing allows researchers to test
statistical hypotheses using an intuitive, distribution-free
approach. Within the application, users can test the null
hypothesis that each group has the same value of the test
statistic relative to all other groups. The user selects the
number of permutations and the test statistic to be
permuted. A threshold for rejecting the null hypothesis is
set at a P-value (or Benjamini-Hochberg adjusted g-value
[11]) of 0.05. Aneuvis generates a summary table of
permutation test statistics, as well as a heatmap re-
presentation of pairwise relationship between different
treatments. To our knowledge, this is the first web-
based platform that allows researchers to perform null

hypothesis significance testing between experimental
treatment groups based on differences in chromosomal
copy number.

Usage scenario

Senescence of mammalian cells is associated with
numerical chromosomal instability in vitro, as assessed by
four-color interphase FISH [12]. To demonstrate the util-
ity of aneuvis, the copy number status of high-passage
IMR90 fibroblasts (i.e. senescent fibroblasts) were com-
pared with low-passage fibroblasts (i.e. young fibroblasts)
using two techniques: four-color interphase FISH and
sc-WGS (see Methods). Automated hypothesis testing
using a permutation-based approach within aneuvis
revealed that senescent fibroblasts were significantly
different from young fibroblasts in terms of the aneu-
ploidy and heterogeneity scores [5] derived from FISH
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Fig. 3 Screenshot of table summary available in aneuvis. Each row displays summary statistics for quantifying numerical chromosome variation
per chromosome, treatment, and experimental type. Tables are interactive and can be filtered, sorted, or downloaded

(500 permutations, P-value = 0.002) but not from sc-WGS
(500 permutations, P-value >0.05). These results were
supported by the FISH bivariate heatmaps, which show
increased numerical chromosomal variation in senescent
fibroblasts relative to young fibroblasts (Fig. 5). Inconsis-
tencies between FISH and sc-WGS in measuring aneu-
ploidy are recognized, and likely due to a differential
sensitivity of these techniques (FISH is prone to the
detection of false positives and sc-WGS is prone to
false negative CNV detection) [4]. However, the
observed aneuploidy and heterogeneity scores were

higher in senescent versus young fibroblasts for both
FISH and sc-WGS inputs (Fig. 4), highlighting a trend
toward increased numerical chromosomal variability
in senescent fibroblasts that was present across both
FISH and sc-WGS. Existing methods that involve a
graphical user interface for visualizing single cell copy
number data do not support this type of quantitative
and comparative cross-platform analysis (Table 2).
These results highlight the ability of aneuvis to quanti-
tatively integrate results from multiple experimental
platforms and to deliver a multidimensional perspective
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Fig. 4 Screenshot of scatterplot and ternary plot using data generated from the table summary. a The relationship between the aneuploidy score
(x-axis) and the heterogeneity score (y-axis) is shown for data derived from FISH (circles) and sc-WGS (triangles). Senescent fibroblasts are colored
red and young cells are colored turquoise. b A ternary plot showing the percentage of cells that are diploid, polyploid, and aneuploid per
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Fig. 5 Screenshot of the aneuvis bivariate percentage heatmaps from 2-chromosome FISH data. The percentage of (a) young (N =406) or (b)
senescent (N =396) fibroblasts within each chromosomal state is shown. The depth of the red color indicates that more cells exist within the
indicated state. The axes for the diploid state (2 copies of each chromosome) are highlighted in bold

of numerical chromosomal variation in populations of
senescent cells.

Comparison of aneuvis to the existing web-based method
for sc-WGS analysis (Ginkgo)

Next, we wanted to demonstrate how aneuvis compares
against Ginkgo, the only other existing web-based
method for analyzing single-cell WGS data [15]. To do
this, the same set of sc-WGS data from 83 single cells
was run through Ginkgo (see Methods). The main
differences between the Ginkgo and aneuvis output are
described below, and a more detailed description of
Ginkgo outputs is available in the Methods section (also
see Fig. 6a-c). Most notably, Ginkgo quantifies the copy
number state in single cells from aligned sequencing
reads, performs unsupervised analysis (e.g. clustering) of
copy number state, and provides a series of visuali-
zations showing similarities between cells based on the
copy number state (e.g. copy number heatmap, dendro-
gram). However, Ginkgo does not perform comparative

analyses between predefined experimental groups (e.g.
young versus senescent fibroblasts). Aneuvis is designed
to perform comparative analyses between predefined ex-
perimental groups and, in contrast to Ginkgo (which
processes sc-WGS data only), aneuvis summarizes copy
number variability from multiple types of data (e.g.
sc-WGS, FISH, and SKY) (Fig. 1). Within the dendro-
grams and copy number heatmaps generated by Ginkgo,
the copy number differences between the 27 young and
56 senescent fibroblasts were difficult to appreciate
(Fig. 6a-b). Furthermore, Ginkgo does not provide users
with statistical testing to determine whether experimental
treatment groups have significantly different copy number
profiles. In contrast, aneuvis provides statistical testing
within the application using a rigorous permutation-based
approach. As with Ginkgo, the quantitative summaries
from aneuvis between treatment groups are available in a
user-friendly format for download and include both
graphical visualizations and data tables. In summary,
aneuvis provides users with a set of unique visualizations

Table 2 Active applications for analyzing and visualizing copy number variation data with graphical user interfaces (GUI)

Application Reference &/or URL Application Type Data type Qbv
CNVinspector [13,14] Web application Array CGH No
Ginkgo [15, 16] Web application sc- WGS No
GenomeCAT [17,18] Java application Array CGH, WGS No
SNPitty [19, 20] Docker container WGS No
Aneuvis [6] Web application sc-WGS?, SKY, FISH Yes

Each row contains data for a separate application, and columns specify features of each application. The URL for the application or source code, application type,
and data type used are listed for each application. The capacity of the application to quantify the degree of numerical chromosomal variation (QDV) within and

between treatment groups is also listed
“Requires preprocessing from aligned .bam or .bed files into a copy number state matrix by an application such as Ginkgo



Piqué et al. BMC Bioinformatics (2019) 20:336

Page 7 of 10

a GF) View results
* Tree

Access your reslts later at the following
address:

— Fs22
— Fsis

538 http://gb.cshl.edu/ginkgo?
qeresults/cutdaQT£5QubRADCGX

44 Genome: hg19
- Binning: variable bins of 2500kb size
h (bowtie/150bp reads)

s ‘Segmentation: using normalized read
il counts

Clustering: ward linkage, euciidean
distance

i
:

# Tree display

+ Normalized read counts (newick | xml
| paf1ipeg)

Copy-number (newick | xm | pdf |
Ipeg)

Correlations (newick | xm | pdf | jpeg)

i Download processed data

Statistics: Bin count statistics for each
cell (5 KB).

Breakpoints: Matrix that encodes
whether a cell has a breakpoint at a bin
position; 1 = breakpoint present, 0 = no
f breakpoint at that position; rows = bins,
¥ columns = cells (197 KB).

Fs21 Copy Number: Integer coopy-number
15 state for each cell at every bin position;
e rows = bins, columns = cells (197 KB).

Normalized Counts: Normalized bin
counts for each cell at every bin position;
rows = bins, columns = cells (1.48 MB).

Normalized and Segmented Counts:
n Normalized and segmented bin counts for
each cell at every bin position; rows =
bins, columns = cells (1.49 MB).

i

Copy number events: List of regions with
copy number events (7 KB).

Copy number regions: List of regions of
amplifications (+1) and deletions (-1) (5
KB).

Fig. 6 Screenshots of Ginkgo visualization and output from sc-WGS input from 83 single cells. a Dendrogram representation based on unsupervised
hierarchical clustering using Ward linkage and the Euclidian distance of copy number states between individual cells. The lower right side of panel A
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and summary statistics for processed sc-WGS copy
number matrices that complement the analyses in
existing web-based applications. Aneuvis works together
with Ginkgo’s copy number output, among other data
types, to provide a user-friendly and comprehensive web
interface for quantifying differences in chromosomal copy
number between experimental groups.

Discussion

Copy number changes in both somatic and germline
cells are thought to be important drivers in cancer,
aging, environmental health, and reproductive develop-
ment [2]. For example, older mothers are more likely to
have a child with a trisomy disorder (e.g. Down syn-
drome), and this is thought to be due to an increase in
chromosomal segregation errors within aging oocytes
[21]. Understanding the factors that lead to accelerated
rates of chromosomal missegregation in individual cells
could have important implications for human health and
policy. For example, previous studies have found associa-
tions between environmental chemicals (e.g. pesticides)
and increased rates of chromosomal missegregation [22].

To identify additional stressors, study designs that
incorporate predefined exposure groups will be needed
to identify whether an exposure alters chromosomal
copy number. However, no user-friendly platforms exist
to facilitate such a comparison. Aneuvis is the first
web-based application to address the need for per-
forming quantitative comparisons of chromosomal copy
number variation between defined experimental groups.

Oftentimes, multiple experimental techniques are used
for quantifying copy number changes in cells in response
to a stressor. This may be necessary to demonstrate
experimental rigor and to provide a complementary
approach whereby the shortcomings of one method (e.g.
low genome coverage of FISH) are addressed by the
strengths of another (e.g. the whole genome coverage of
sc-WGS). Tools with a user-friendly interface that in-
tegrate chromosome copy number information from
multiple methods are lacking. In the present study,
aneuvis both highlighted differences in the results ob-
tained from different methods (FISH vs. sc-WGS) and
demonstrated a cross-platform trend toward increased
numerical chromosomal variation in senescent cells
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relative to non-senescent cells. Existing methods for copy
number analysis (e.g. Ginkgo) are unable to integrate copy
number information from multiple sources.

Conclusions

Aneuvis is the first web-based application developed to
automatically summarize numerical chromosomal vari-
ation in single cells between experimental treatment
groups. We demonstrate the utility of aneuvis by analyzing
the chromosomal copy number status of young and senes-
cent fibroblasts obtained using two techniques: four-color
interphase FISH and sc-WGS. The results from aneuvis
show that the differences in W-CIN between treatment
groups depend on the experimental method used, and that
an integrated framework like aneuvis can highlight trends
between complimentary experimental methods performed
on the same experimental treatments. Aneuvis is also the
first web-based tool to quantify and visualize numerical
chromosomal variation from multiple data types. Aneuvis
provides a comprehensive approach to visualizing and
quantifying copy number variation between experimental
treatment groups, the first time that such a tool has been
made available. In summary, aneuvis is a user-friendly,
web-based, and open-source tool that will enable
researchers to identify novel mechanisms underlying
the generation of numerical chromosomal variation.

Methods

Indices for measuring numerical chromosomal variation
The instability index (I) is a metric that calculates the
percentage of cells that contain a chromosomal aberra-
tion [7]. This metric does not directly depend on the
number of chromosomes; however, measuring more
chromosomes may increase the likelihood of detecting
at least one chromosome that contains an abnormal
number of copies.

The Average Number of Copy Number Alterations
(ANCA) score has been applied in the context of
colorectal and cervical cancer in an attempt to quantify the
relationship between tumor aggressiveness and genomic
instability [8, 9]. Previous studies have uncovered that
more aggressive tumors have a higher ANCA score. How-
ever, one limitation of the ANCA score is that it does not
account for the number of chromosomes examined.
Within aneuvis, we introduce a derivative of the ANCA
score, called the Normalized ANCA score, which accounts
for the number of chromosomes measured and enables
comparisons of this metric between experiments that
utilize different numbers of probes.

The aneuploidy (D) and heterogeneity (H) scores were
derived from Bakker et al. and represent a pair of statis-
tics that account for the number of cells and chromo-
somes tested for [5]. The aneuploidy score increases
with an increased chromosome copy number — the only
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score to take the actual number of chromosomes into
account. The heterogeneity score increases with the
number of distinct chromosomal states observed, and is
maximized when each cell has a distinct state. In
contrast to the aneuploidy score, the heterogeneity score
does not incorporate the chromosomal copy number.
These statistics were derived for summarizing copy
number data from whole genome single cell sequencing,
though their flexible formulation enables them to be
applied to other datasets.

In a cell, there are three possible states that a set of
chromosomes can assume. Diploidy refers to the
presence of two copies of each autosome in a cell, and is
the physiologic state of most non-cancerous human
cells. Polyploidy refers to an integer-valued increase in
the number of chromosomes, often resulting from
whole-genome duplication. Aneuploidy occurs when the
copy number of 1 or more chromosomes differs from
the others and is a feature of many cancers.

Bivariate percentage heatmap

The bivariate percentage heatmap is used for visualizing
the covariation between the counts of two chromosomes
in a population of single cells. Each square within the
grid represents the percentage of cells observed with a
certain number of chromosomes listed on the X and Y
axes. This approach is appropriate for FISH data, where
the ploidy of cells is inferred from chromosome-specific
fluorescent probes. For FISH data that include measure-
ments from > 2 chromosomes, multiple bivariate plots are
produced in aneuvis to account for all possible pairwise
combinations of chromosomes. For example, a population
of cells where 4 chromosomes were measured would gen-
erate (3) = 6 bivariate percentage plots.

Permutation testing

Permutation testing between all pairwise comparisons for
a user-selected summary statistic is performed by ran-
domly shuffling the labels associated with each observed
cell across all groups. Permutation testing is set to 500
permutations by default but can be adjusted by the user.

Spectral karyotyping (SKY)

Copy number information is extracted from SKY data
hosted within Microsoft Excel files in ISCN format using
regular expressions.

Single cell whole genome sequencing

Within aneuvis, copy number output in browser ex-
tensible data (BED) format is converted to a whole-
chromosome summary copy number computed using a
weighted average, where the inferred copy number at each
bin along a chromosome contributes proportionally to the
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size of each bin (in base pairs). The weighted average is
rounded to the nearest integer to obtain the chromosome
copy number.

For the usage scenario, low-coverage single cell whole
genome sequencing (sc-WGS) (0.01x) was generated from
27 young and 56 senescent IMR90 cells (for a total of 83
cells) across two sequencing runs. IMR90 cells were ob-
tained from American Type Culture Collection (ATCC)
(CCL-186). BAM files generated from the Torrent Suite
software were converted to .bed files using the bedtools2
bamToBed function. Bed files were uploaded into
Ginkgo’s user interface [16] with variable bin sizes of
approximately 2.5 megabases (MB) and based on simu-
lations of 150 bp reads with global segmentation [15]. The
copy number matrix output from Ginkgo was used as
input into aneuvis. Ginkgo copy number output and bed
files are available at a Ginkgo-generated permalink [23].

Experimental cell culture and four-color interphase FISH
Young and senescent IMR90 cells were generated and
analyzed by four-color interphase FISH, as described
previously [12]. Images representing nuclei were ran-
domly acquired and saved as .tiff composite files for both
young (N =406) and senescent (N=396) cells. Images
were visually inspected and FISH signals manually
counted blindly for both chromosomes 9 and 12 within
a nucleus, as described previously [12].

Example data

Example data using three treatment groups for each type
of experimental input (FISH, SKY, and sc-WGS) are avail-
able through the aneuvis web application. Example FISH
and SKY datasets represent ploidy counts that were
manually generated to show varying degrees of severity
across treatments. The example sc-WGS dataset is a
breast cancer single cell dataset taken from Ginkgo [15,
24]. Artificial labels (Control, Treatment A, Treatment
B) were added to all three example datasets to simulate
treatments of varying severity.

Summary of ginkgo output

Bed files from 83 cells were uploaded into ginkgo and
processed as described in the “Single cell whole genome
sequencing’ section above. Screenshots were taken from
each of the four sections of the Ginkgo output, described
below. First, a “tree-display” within Ginkgo showcases a
dendrogram of all cells based on genome-wide copy
number status similarity (Fig. 6a, left side). Second, the
“processed-data” section (Fig. 6a, right side) contains
summarized copy number data in various formats that
are available for download. The integer “copy number”
state file from this section can be used as input into
Aneuvis for further statistical analysis and visualization,
particularly if different treatment groups were a part of
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the experimental design. Third, a series of heatmaps
displays the copy number state or the number of reads
from each cell at each bin in the genome (Fig. 6b).
Fourth, a “summary” section shows a copy number
scatterplot for each input .bed or .bam file alongside
quality control summaries, such as the number of reads
per file (Fig. 6c). Graphical outputs from selected files
can also be generated from these copy number or quality
control metrics. All visualizations are available in their
original format at a Ginkgo-generated permalink [23].

Additional file

Additional file 1: Aneuvis pdf output of graphics from the “Visualizations”
tab. (PDF 95 kb)
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