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Abstract

Background: The analysis of LC-MS metabolomic datasets appears to be a challenging task in a wide range of
disciplines since it demands the highly extensive processing of a vast amount of data. Different LC-MS data analysis
packages have been developed in the last few years to facilitate this analysis. However, most of these strategies
involve chromatographic alignment and peak shaping and often associate each “feature” (i.e., chromatographic
peak) with a unique m/z measurement. Thus, the development of an alternative data analysis strategy that is
applicable to most types of MS datasets and properly addresses these issues is still a challenge in the metabolomics
field.

Results: Here, we present an alternative approach called ROIMCR to: i) filter and compress massive LC-MS datasets
while transforming their original structure into a data matrix of features without losing relevant information through
the search of regions of interest (ROIs) in the m/z domain and ii) resolve compressed data to identify their
contributing pure components without previous alignment or peak shaping by applying a Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS) analysis. In this study, the basics of the ROIMCR method are
presented in detail and a detailed description of its implementation is also provided. Data were analyzed
using the MATLAB (The MathWorks, Inc., www.mathworks.com) programming and computing environment.
The application of the ROIMCR methodology is described in detail, with an example of LC-MS data generated
in a lipidomic study and with other examples of recent applications.

Conclusions: The methodology presented here combines the benefits of data filtering and compression based on
the searching of ROI features, without the loss of spectral accuracy. The method has the benefits of the application of
the powerful MCR-ALS data resolution method without the necessity of performing chromatographic peak alignment
or modelling. The presented method is a powerful alternative to other existing data analysis approaches that do not
use the MCR-ALS method to resolve LC-MS data. The ROIMCR method also represents an improved strategy compared
to the direct applications of the MCR-ALS method that use less-powerful data compression strategies such as binning
and windowing. Overall, the strategy presented here confirms the usefulness of the ROIMCR chemometrics method for
analyzing LC-MS untargeted metabolomics data.
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Background

The challenge of analyzing data is one of the main con-
cerns of metabolomic liquid chromatography coupled to
mass spectrometry (LC-MS) studies [1]. Several software
packages exist for MS-based metabolomic data analysis,
including proprietary commercial, open-source, and on-
line workflows [2]. Some commercial tools provided by
major vendors of MS and omics high throughput analyt-
ical instruments and equipment include MassHunter
(Agilent Technologies), SIEVE (Thermo Scientific) and
Progenesis QI (Waters). Some of the most frequently
used open-source software packages include XCMS [3,
4] (and XCMS-based Metabox [5], metaX [6]), CAM-
ERA [7], MAIT [8], MetaboAnalyst [9], Workflow4Me-
tabolomics [10], MZmine [11] and MetAlign [12].
However, none of these approaches are highlighted as
the best strategy, and the analysis of LC-MS data re-
mains an unresolved problem in the bioinformatics field
due to the methodological discrepancies existing among
these approaches.

The analysis of high-resolution LC-MS-based metabo-
lomic datasets usually begins with filtering and compres-
sion, which is required to reduce their size into formats
that are manageable with computers (without comprom-
ising the original information) and prevent errors linked
to the restricted memory capacity of the computers. In
addition to compressing data, in this first step, the con-
version of raw data into a matrix representation is also
required to obtain a set of well-structured variables (fea-
tures) to analyze. The generated data matrices (x, y) are
arranged with retention times in the rows (x-direction)
and m/z values in the columns (y-direction). A classical
procedure used for data compression and matrix trans-
formation is binning. Using the binning procedure,
high-resolution raw mass spectra are converted into a
matrix representation by dividing the m/z axis into parts
with a specific bin size that is generally set to a multiple
of the mass accuracy of the mass spectrometer. How-
ever, a significant disadvantage of binning is the compli-
cation related to the proper choice of the bin size for a
specific dataset, and the selection of the m/z bin size
strongly correlates with the recovery of the proper elu-
tion profile peak shape. If the selected bin size is exces-
sively small, chromatographic peaks fluctuate between
bins and therefore are unable to be determined because
of the chromatographic shape of the peak is not visible.
If the bin size is excessively large, various peaks may
occur in the same bin, and tiny peaks might disappear
due to the elevated noise level [13]. Moreover, peak
splitting might occur for equidistant binning, regardless
of the bin size. One major drawback of binning is the re-
duction in spectral accuracy originating from the com-
pression of data in the m/z-mode dimension, which
hinders the final identification of metabolites. Moreover,
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in most cases, the compression performed with binning
is not sufficient and further windowing (i.e., independ-
ently selecting continuous regions in the rows (time) or
the columns (m/z) to be analyzed) is necessary. Never-
theless, when performing windowing, the whole process
is more tedious and time-consuming, since one sample
must be analyzed in several parts.

A better alternative strategy to binning and window-
ing is based on the idea of assuming that analyte sig-
nals are a domain of data points with a high density
arranged in a particular “data void”, as first presented
by Stolt et al. [14] These regions where analytes are
found are called regions of interest (ROIs) and are
searched according to specific criteria (i.e., a particular
threshold intensity, admissible mass error and mini-
mum number of occurrences). Overall, the ROI strat-
egy consists of considering data included in these
regions while rejecting the other data. This strategy
has already been implemented in the centWave algo-
rithm of XCMS software [13]. The result of the search
for ROIs in a sample is a set of mass traces with dis-
tinct dimensions that must ultimately be reorganized
into a data matrix. In contrast to the binning proced-
ure, no reduction in spectral resolution occurs as a re-
sult of the application of the ROI searching procedure,
since the bin size is not fixed. Thus, the ROI strategy
allows researchers to take full advantage of all the ben-
efits of high-resolution MS techniques. Currently,
many of the current metabolomic data analysis soft-
ware tools use ROI compression as a preliminary step
for peak detection and/or integration.

Following the ROI search, data filtering and compres-
sion, the next crucial step in LC-MS-based metabolomic
data analysis is data resolution. Most of the existing
LC-MS data analysis approaches require two steps (i.e.,
chromatographic peak modelling and alignment) before
peak resolution. Alignment methods search for matching
peaks over various chromatographic runs and peak
modelling methods force peaks to have a delimited and
more regular shape, typically through the application of
continuous wavelet transformations (CWT) and optional
Gaussian fitting [15]. Therefore, preliminary peak mod-
elling and alignment appear as an indispensable step in
most of the currently available data analysis packages
and are often linked to an unknown amount of sources
of error. In contrast, neither of the two corrections (i.e.,
peak modelling and alignment) are required when using
Multivariate Curve Resolution-Alternating Least Squares
(MCR-ALS) [3] methods, since no modelling of elution
profiles (peaks) is required (see below) and the aligned
data are only produced in the spectral direction or
mode. MCR methods are particularly powerful for mix-
ture analysis and resolution in the simultaneous analysis
of multirun chromatographic data.
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The main goal of MCR-ALS methods is to resolve
spectra arising from mixtures of the chemical constitu-
ents present in a sample into contributions from the in-
dividual components in the mixtures. Namely,
MCR-ALS seeks to model the underlying physical pro-
cesses that generate the data in terms of the composition
of a sample. MCR-ALS-resolved MS spectra profiles are
then immediately used to identify the chemical identities
of metabolites through a comparison with standards or
by searching a library. In the last few years, MCR-ALS
methods have emerged as highly effective tools to re-
solve the lack of instrumental selectivity and coelution
problems in different application areas, particularly in
LC-MS-based metabolomic datasets.

In this study, we describe a new data analysis strategy,
ROIMCR, designed to filter, compress and resolve LC-MS
metabolomic datasets. Data filtering and compression are
performed without losing spectral accuracy by searching
ROIs, and chromatographic elution profiles (peaks) are re-
solved through the application of an MCR-ALS analysis.
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The main steps involved in data compression and data
resolution are presented in Fig. 1. As shown in the figure,
after a first data compression step through the search of
ROIs, the obtained profiles are evaluated to determine
whether they properly agree with original data features.
ROI searching is performed on a single LC-MS sample
(one dataset) or on multiple LC-MS samples (multiple
datasets), generating column-wise augmented ROI data
matrices in the latter case (i.e., matrices containing distinct
submatrices related to distinct samples attached sequen-
tially). The generated augmented ROI matrices are further
analyzed using MCR-ALS. Finally, the ultimate step is the
statistical evaluation of the resolved MCR-ALS compo-
nents to discover potential biomarkers. A distinct feature
of the proposed ROIMCR strategy is its current imple-
mentation in the powerful MATLAB computing and
visualization environment, which is frequently used in the
chemometrics field and in scientific and technological
software development with all its advantages and large
number of toolboxes already incorporated.
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Fig. 1 Schematic representation of the different stages of the ROIMCR approach. Initially, raw data are filtered and compressed through the
search of regions of interest (ROI) and the obtained mass traces are reorganized into a matrix representation. Then, ROI profiles are evaluated: if
they do not fit original data, the ROI search is repeated but changing initial criteria; on the contrary, if they properly fit original data the obtained
ROI matrix is resolved by MCR-ALS. When having more than one sample, following individual ROl searches, column-wise augmented ROI data
matrices can be generated and finally analyzed by MCR-ALS. Results of MCR-ALS analysis can be subsequently evaluated by statistical tests to find
more significant components in the differentiation among sample groups (i.e, stressed groups vs. control groups)
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Moreover, in this study, we provide an example of the
performance of the ROIMCR strategy on analyzing a
lipidomic LC-MS dataset. The illustrated lipidomic data
set was generated in an experiment performed in a pre-
vious study by the authors [16] in which a human pla-
cental chroriocarcinoma cell line (JEG-3) was exposed to
the endocrine disruptor chemical tributyltin (TBT). Ex-
amples of other recent applications to more complex
systems have been recently published [17-22] and are
briefly described in “Applications of the ROIMCR pro-
cedure” section of this manuscript. Researchers inter-
ested in the ROIMCR procedure can test this strategy
using the example data and the MATLAB functions for
ROI compression, both of which are provided in a
protocol written by the authors [22]. That protocol,
which is available at https://www.nature.com/protoco-
lexchange/protocols/4347, provides a step-by-step de-
scription of the implementation of the ROIMCR
procedure. In the present study, a detailed description of
the basics and fundamentals of the methodology is
presented.

Methods

A description of the ROI methodology is provided here.
In addition, a brief description of the MCR-ALS method
is presented below to facilitate the understanding of the
whole ROIMCR procedure. MCR-ALS solves the MCR bi-
linear model (see Egs. (1) and (2) below) using an alternat-
ing least squares optimization algorithm. The MCR-ALS
method is already a well-stablished chemometric method
and its principles and basis have been described in previ-
ous studies [23-25]. Its software implementation in the
MATLAB computing and visualization language (The
MathWorks Inc., https://www.mathworks.com) and other
details are found on its official webpage: www.mcrals.info.

ROI search in one LC-MS sample

The aim of the ROI searching procedure is to scan
for regions containing interesting mass traces, i.e., re-
gions that include data at a relevant MS intensity
(greater than a threshold value, Fig. 2a), enclosed
within a specific mass accuracy or mass error toler-
ance (Fig. 2b) and constituted of a minimum number
of occurrences (Fig. 2c).

These three parameters are the input variables re-
quired for one ROI search, together with a vector listing
the retention times at which the instrument records the
measurements (variable “time” in Fig. 3a) and a cell
array (i.e, array containing data of varying types and
sizes in the MATLAB environment) containing the m/z
values and MS intensities at each retention time (vari-
able “peaks” in Fig. 3a). Interestingly, the m/z values
(and their corresponding MS intensities) measured by
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the mass spectrometer at each retention time do not fol-
low a regular pattern (i.e., the m/z measurements are
not equidistant and may differ among mass spectra) and,
therefore, the generated vectors enclosed in the cell
array containing this information have distinct lengths.
Figure 3a shows a representation of the pairs of vectors
(i.e, one vector of the pair containing m/z values and
the other containing MS intensities) including informa-
tion from one LC-MS sample. Notably, the length of
these vectors varies at distinct retention times, indicating
that the mass spectrometer acquires distinct m/z values
during each scan.

Once the input parameters are introduced, the ROI al-
gorithm performs the ROI search using the following
steps:

1. Search for m/z values associated with MS intensities
greater than a signal threshold value (e.g. 0.1-1% of
the mean/maximum signal intensity) in the first scan.

2. Search for clusters of m/z values enclosed within a
specific mass error tolerance in the same scan.


https://www.nature.com/protocolexchange/protocols/4347
https://www.nature.com/protocolexchange/protocols/4347
https://www.mathworks.com
http://www.mcrals.info

Gorrochategui et al. BVIC Bioinformatics (2019) 20:256

Page 5 of 17

a
4 z A
intensity
E E
= =
< <
23 <9
72} wn
miz
intensity
m/z
- intensity v
Time windows of a total ion peaks time
chromatogram of 1 sample fmx1} (mx1)
b ) ROI (n) ROI (n)
‘ MS spectra ——
mzroi
(nx1)

5

Elution profile

m/z
values

MSROI

(m x n)

Retention

times
MS

scan
numbers
m/z

intensities
mean

~
= S
* &
&
2 =

Fig. 3 Schematic illustration of input (a) and output variables (b) of an ROI searching, filtering and compression algorithm. Data of the LC-MS
chromatogram is described as a {m x 1} cell array (named as peaks), with m cells (equal to the number of retention times), each of them
containing two vectors (of variable length among cells), corresponding to the m/z and intensity values acquired by the instrument at each of the
retention times. Peaks and vector time (m X 1) are the input variables of ROI function together with the parameters required to define one ROI
(thresh = 750, mzerror = 0.05 and minroi = 10 are used in this example), resulting in a data matrix, a data vector and a cell array (MSROI, mzroi and
roicell, respectively) after ROl search. ROI (n) is the total number of ROIs obtained (in the example of the figure, NROI = 297). MSROI is a (m x ROI
(n)) matrix, containing the MS spectra of every retention time in its rows, and the chromatograms of every ROl in its columns, mzroi is a vector
containing mean m/z values of ROIs and roicell is a {ROI (n) x 5} cell array, containing ROI (n) x 5 cells (in the example of the figure it would be
297 x 5=1485). Cells comprised in roicell variable from column 1 to column 4 contain single vectors in their structures (containing information of
m/z, retention times, intensities and scan number of the data enclosed in the same RO, respectively) whereas cells comprised in the fifth column

(roicell {ROI (n),5}) contain single values (corresponding to mean m/z values of ROI)

J
3. Calculate the mean mass (or alternatively the median 7. Eliminate empty spaces in the final MSROI matrix,
mass) of all the m/z values classified inside the same substituting them for random values with a mean
cluster (mzroi). threshold value, such as 1% of the threshold
4. Arrange mean mass values from the lowest to highest intensity value used in step 1.
values.
5. Repeat steps 1-4 for the remaining scans, merge The ROI search yields three outputs. A vector contain-
them within the mass error tolerance and update ing final mean m/z values of ROIs (“mzroi” in Fig. 3b), a

the calculated mean mass values.

newly arranged data matrix containing the MS spectra

6. Select clusters having a minimum number of of every scan in its rows and the chromatograms of

occurrences of m/z values.

every ROI in its columns (“MSROI” in Fig. 3b) and a
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cell array (“roicell” in Fig. 3b) containing information
about the m/z values, retention times, MS intensities,
scan numbers and the calculated mean/median m/z
value for each ROL

ROI search in more than one LC-MS sample

Since the main purpose of metabolomics is to study the
differences in metabolic profiles between multiple sam-
ples (e.g., controls vs. exposed), the final data analysis
must consider all samples simultaneously. In fact, an
MCR-ALS analysis of multiple samples requires the con-
struction of column-wise augmented data matrices (see
Simultaneous MCR-ALS analysis of multiple samples
section). The construction of these matrices is only pos-
sible when dimensions in the m/z mode of all individual
data matrices are the same. However, data compression
using the ROI strategy produces data matrices with m/z
mode dimensions equal to the number of ROIs, which
can vary between samples. Thus, a final unification of
ROIs among samples, considering both common and
uncommon mzroi values, must be performed.

The following description of the ROI search among
multiple samples allows the construction of column-wise
augmented data matrices that are suitable for a subse-
quent MCR-ALS analysis (Simultaneous MCR-ALS ana-
lysis of multiple samples section). The search for ROIs
in several data files (LC-MS samples) is based on the de-
termination of their common and uncommon ROI
values. The ROI searching procedure among samples
and the corresponding matrix augmentation procedure
are performed successively between two MSROI data
matrices, i.e., between two individual matrices, between
one individual matrix and one augmented matrix or be-
tween two augmented MSROI matrices. Different strat-
egies can be designed depending on the case. For
instance, when ROI searching and matrix augmentation
are performed first for control samples and then treated
samples separately, the matrices can be further aug-
mented together. The different steps of the algorithm for
ROI searching and augmentation are presented below.

1. Check mzroi values between the two data matrices
within the mass error tolerance, +/— mzerror.
Consider the new mzroi to be the average of these
values.

2. Build the new column-wise augmented data matrix
with MS intensity values of the coincident mzroi
values (if more than one mzroi value is coincident,
then consider the sum of the MS intensity values).

3. Examine non-matching mzroi values; these values
are accepted if their MS intensity is greater than the
preselected threshold value. For the non-coincident
mzroi values, replace empty values with random

Page 6 of 17

values at a low percentage (e.g., 1%) of the threshold
intensity value.

4. Eliminate those mzroi values that are not coincident
with an MS intensity value less than the threshold.

5. Reorganize the columns of the new augmented data
matrix according to the new mzroi values, from lower
to higher mzroi values.

6. Store output variables and plot ROI augmented
matrices.

Thus, the required input information to perform ROI
augmentation consists of the arrays of samples to be
augmented, including m/z values (mzroi matrices) and
MS intensities (MSROI matrices), the admissible mass
deviation, the threshold intensity value and the vector
containing the retention times. The output variables
consist of a vector containing final mean m/z values of
common and uncommon ROIs, the final augmented
ROI matrix containing compressed data of all the input
files and a vector containing the total number of scans
(i.e., sum of the number of retention times of individual
samples).

Multivariate curve resolution-alternating least squares
(MCR-ALS)

The MCR-ALS method performs a bilinear decompos-
ition of individual datasets, according to Eq. (1). In
Fig. 4a, this bilinear model is graphically explained for
the analysis of a single LC-MS sample/dataset.

D=CS"+E (1)

In this equation, matrix D (I x J) exemplifies the spec-
tral dataset derived from the output of a mass spectrom-
eter. For LC-MS data, matrix D includes the MS spectra
measured at all chromatographic retention times (i=1,
... I) in its rows and the elution profiles at the complete
range of spectra m/z channels (j=1, ... ]) in its columns.
This matrix is decomposed in the product of two small
factor matrices, C and ST. The C (I x N) matrix encloses
column vectors that agree with the concentration elution
profiles of the N (=1, ..., N) pure chemical constitu-
ents or components of matrix D. In the ST (N x J)
matrix, row vectors correspond to the MS spectra of
these N pure components. The fraction of D that is not
described by the bilinear model constitutes the residual
matrix E (I x J). MCR-ALS methods presume that the
measured variance in all samples in the raw dataset is
explained using a combination of a relatively small num-
ber of chemically significant profiles compared to the
number of measured variables (in this case, the number
of ROIs). For LC-MS datasets, the variance observed in
the investigated data matrices is explained by the
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simultaneous analysis of multiple individual, Dy, data matrices, C,ug and ST are the factor matrices which have respectively the concentration
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combination of a number of components defined by
their pure mass spectra (row profiles in the ST matrix)
weighted by their concentration profiles (elution profiles
in C matrix), as given in Eq. (1). Every component re-
solved by MCR-ALS is characterized by its unique MS
spectrum and its elution profile, and are interpreted dir-
ectly. The C and ST solutions of Eq. (1) are obtained
using an alternating least squares (ALS) optimization
under preselected constraints [1, 3, 22—-25]. In the case
of LC-MS data, due to the sparsity of the MS data,
non-negativity constraints of the elution and mass spec-
tra profiles of the resolved components already provide
good solutions for C and S”, although other constraints
may be applied to the profiles of the resolved compo-
nents, such as unimodality and local rank or selectivity
constraints [3]. The MCR-ALS method has been

described in previous studies and applied to different
type of datasets [1, 3, 22—-25].

The number of metabolites/lipids that is ultimately re-
solved by the proposed procedure will depend on differ-
ent experimental parameters, such as the efficiency of
metabolite extraction, the suitability of the chromato-
graphic column, the resolution power, signal to noise ra-
tio of the mass spectrometer, and the size of the elution
time window analyzed. The number of selected compo-
nents in the ROIMCR procedure, N, should be suffi-
ciently large to capture all data features related to
metabolites. Unavoidably, in addition to the metabolites,
other MS signal contributions (background, solvent, etc.)
are simultaneously resolved and yield extra components.
Therefore, the recommendation is to select a number of
components that is sufficiently large to explain most of
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the variance in the experimental data. The total number
of components resolved using MCR-ALS is limited by
the intrinsic mathematical structure of the dataset ana-
lyzed. MCR-ALS uses linear algebra operations to solve
(using a least squares method) the system of linear equa-
tions involved in the assumed bilinear model (Eq. (1))
used to analyze the experimental data. The solution of
this model implies the inversion of matrices C and S%,
and therefore implies that their columns and rows, re-
spectively, are linearly independent. This solution is also
related to the rank of the experimental data matrix D.
Different datasets will enable the resolution of a different
number of components. If the number of components
proposed is too large, the inversion of C and S* matrices
is not possible due to rank deficiency problems. Occa-
sionally, the precise definition of the best number of
components is difficult to obtain due to the experimen-
tal noise; nevertheless, those extra components that are
only related to noise will provide the shapes of the elu-
tion and spectra profiles that are unfeasible from a
chemical perspective and explain very low data variance.
No additional components should be added without a
significant increase in the explained data variance, and
should have well-shaped single peak elution profiles and
sparse MS spectra signals. Once the results are obtained,
every resolved component is examined to confirm its re-
liability and for its identification (MS) and relative quan-
titation (elution profiles). This output examination is
performed individually, component by component. Re-
siduals are also examined to determine whether some
well-shaped peak chromatographic signals are still
present. In some cases, some minor components with a
very low contribution that is very close to the noise level
are unable to be distinguished from background noise in
the residuals. This situation is a possible limitation of
untargeted metabolic approaches. However, most of the
untargeted metabolomic studies focus on changes in the
concentrations of the metabolites caused by the investi-
gated stress conditions, not their absolute concentra-
tions. Another possible alternative, in some cases, is to
subdivide the whole chromatographic run into different
time windows and submit each of them to a deeper
MCR-ALS analysis, where the presence of minor com-
ponents is analyzed more extensively.

Simultaneous MCR-ALS analysis of multiple samples

MCR-ALS has been simultaneously applied to distinct
datasets or matrices. For instance, the simultaneous ana-
lysis of multiple samples using LC-MS is accomplished
by generating column-wise data matrices (D,yug) includ-
ing different data matrices related to distinct chromato-
graphic runs appended one above the other. Therefore,
the MS spectral (column) direction is the same for all
matrices and the data matrix extent is augmented in a
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column-wise manner in the chromatographic (rows) dir-
ection. The bilinear model decomposition of the
column-wise augmented matrices, D,yg, in the analysis
of multiple LC-MS samples (data sets) is presented in
Eq. (2) and displayed graphically in Fig. 4b.

Daug:Caug ST+Eaug (2)

In this case, resolved pure mass spectra are the same
for all simultaneously analyzed chromatographic runs or
experiments (ST), while elution profiles (Caug) can vary
from run to run.

In the MCR-ALS method, bilinear models described in
Eq. (1) (single data matrix illustration) or Eq. (2) (aug-
mented data matrix illustration) are resolved using an al-
ternating least squares optimization approach under
constraints [3]. In both cases, when considering metabolo-
mic LC-MS data, the minimum constrains to apply con-
sist of non-negativity for concentration (elution), C or
Caug and spectra, S™, profiles, and normalization for the
second. Due to the sparse nature of the MCR-resolved
elution profiles, particularly the MS spectra profiles, no
additional constraints are required to achieve reliable
results.

In the proposed ROIMCR procedure, individual or aug-
mented MSROI data matrices (D or D,,q) are submitted
for MCR-ALS analysis. The application of this method will
provide the concentration/elution, C (or C,ug), and MS
spectra, S, profiles of the resolved components. Notably,
in the MCR-ALS procedure, elution profiles in C,y,g are
not required to be aligned or shape modelled among dif-
ferent samples (chromatographic runs), and spectra pro-
files are the filtered MSROI-compressed spectra with the
full instrument mass accuracy. Peak areas are calculated
by integrating (numerical summation) the values in the
concentration (elution) profiles resolved using MCR-ALS.
These profiles are located in the columns of the C matrix
(Eq. (2)) for every simultaneously analyzed sample. The
summation is performed computationally. Depending on
the time acquisition of the LC-MS instrument, the peak
profile will be digitized with a different number of values,
which would usually imply a minimum of 5 intensity
values, and in many circumstances, this profile contains
more than 10 intensity values. If the concentration profile
does not have a peak shape, it is discarded and not consid-
ered. Most, but not all, of the elution profiles resolved
using MCR-ALS have a good peak shape. For instance,
background, solvent, and other spurious signals do not
display a good peak shape and are not further considered.
The number of components in the analysis of the Dy,
matrix (simultaneous analysis of multiple samples or data-
sets) is selected in a similar manner as described above for
the analysis of a single dataset, after considering the in-
creased complexity of the augmented data matrix Dy,
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compared to the individual Dy matrices (see Fig. 4). Again,
a more detailed description of the MCR-ALS method and
the implementation of different constraints is presented in
previous publications [1, 3, 22-25].

Datasets

The dataset used to illustrate the performance of the
current methodology was obtained from a previous
study performed by the authors [16, 17], where LC-MS
data for lipids extracted from human placental chorio-
carcinoma cells (JEG-3) that were exposed to DMSO
(vehicle controls) and to a non-lethal dose of the chem-
ical endocrine disruptor TBT (exposed samples) for 24
h. Both groups (i.e., controls and exposed) contain three
replicates. These raw data sets are available in CDF for-
mat at  http://cidtransfer.cid.csic.es/descarga.php?en-
lace1=5792320ab8143ecal22f4cf7dbb68cd40e2cf7.

Thus, the interested reader can use the data to test the
ROIMCR procedure presented here. For details regard-
ing the characteristics of the data, readers are advised to
consult: https://www.nature.com/protocolexchange/pro-
tocols/4347.

Results of the application of the ROIMCR procedure
to other datasets from recent studies [16—22, 26—28] are
briefly described in “Applications of the ROIMCR pro-
cedure” section.

Implementation of the ROIMCR procedure

The ROI compression procedure presented in this study
has been implemented as command line functions in the
MATLAB environment available at http://cidtransfer.cid.
csic.es/descarga.php?enlace1 =298348e5b34daf9e8448353
52bafa645250eel and at www.mcrals.info.

A new user-friendly graphical interface for ROI com-
pression is currently being developed and will be freely
available at the same site. The provided MATLAB func-
tions for ROI searching, filtering and compression are
related to: a) ROI searching in one sample (ROIpeaks
function); b) the evaluation of ROI profiles (ROIplot
function), and c) the generation of augmented ROI data
matrices (MSROIaug function). In addition, a statistical
evaluation of the concentration profiles obtained after
the MCR-ALS analysis may be performed (plot_pro-
files_table function). Regarding the implementation of
MCR-ALS, its user graphical interface is also available at
www.mcrals.info.

Results

Although the dataset used as example in the present
study was already used in previous studies by the au-
thors [16, 17], the results presented here were not pre-
sented in the previous publications and are specifically
selected to show the key features of ROIMCR method-
ology in the present study. These results include ROI
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searching of individual datasets, ROI data matrix aug-
mentation and MCR-ALS analysis of the obtained aug-
mented ROI matrix. The readers interested in the
LC-MS data conversion and MATLAB import procedure
are advised to consult https://www.nature.com/protoco-
lexchange/protocols/4347.

ROI searching procedure

Optimization of ROl parameters

As previously stated in the Methods section, some pa-
rameters must be optimized prior to the search for ROls.
The example presented in Table 1 shows the results of
the ROI search after setting distinct values for one of the
three input parameters, while maintaining the values for
the other two parameters unchanged. In all cases, three
distinct values are tested for the parameter: 10 times
higher than the recommended value, the recommended
value, and 10 times lower than the suggested value. In
the first case, where the influence of the threshold on
ROI search was evaluated, the three options tested cor-
responded to threshold values of 7500, 750 and 75 a.u. (a
search using ppm values instead of a.u. is also consid-
ered). The recommended threshold value should be ad-
justed between 0.1-1% of the maximum measured MS
intensity. Since the maximum measured MS intensity of
the evaluated sample was 3.5118-10°a.u., the recom-
mended threshold value would be between 351.18 and
3511.8 a.u. In particular, we selected an intermediate
value of 750 a.u. as the optimum value. The higher and
the lower values tested (7500 and 75 a.u., respectively)
were chosen to clearly show that a decrease in the
threshold value produces an increasing number of ROI
values, together with a substantial increase in the com-
putation time (see Table 1, in seconds), while an increase
in the threshold value results in the opposite changes.
Hence, the threshold value must be adjusted with
caution since it can increase data quality by eliminat-
ing noise, but immoderate threshold values may result
in information loss. In fact, this parameter is better
visually evaluated from the graphical outputs to en-
sure that it results in noise diminution without signal
loss or deformation.

In the second case (see Table 1), the study of the effect
of an admissible mass deviation on an ROI search, the
three options tested corresponded to mzerror values of
0.5, 0.05 and 0.005 Da/e. The optimum mass deviation
value should be halfway between an excessive and an in-
sufficient mass accuracy. In this example case, with an
mzerror value of 0.005 Da/e, peaks corresponding to the
same ion were divided into distinct parts, whereas for a
value greater than 0.5 Da/e, the opposite situation oc-
curred, and peaks corresponding to distinct ions col-
lapsed into the same chromatographic signal. Thus, the
optimum mzerror value was set to 0.05 Da/e. The higher


http://cidtransfer.cid.csic.es/descarga.php?enlace1=5792320ab8143eca122f4cf7dbb68cd40e2cf7
http://cidtransfer.cid.csic.es/descarga.php?enlace1=5792320ab8143eca122f4cf7dbb68cd40e2cf7
https://www.nature.com/protocolexchange/protocols/4347
https://www.nature.com/protocolexchange/protocols/4347
http://cidtransfer.cid.csic.es/descarga.php?enlace1=298348e5b34daf9e844835352bafa645250ee1
http://cidtransfer.cid.csic.es/descarga.php?enlace1=298348e5b34daf9e844835352bafa645250ee1
http://cidtransfer.cid.csic.es/descarga.php?enlace1=298348e5b34daf9e844835352bafa645250ee1
http://www.mcrals.info
http://www.mcrals.info
https://www.nature.com/protocolexchange/protocols/4347
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Table 1 Number of ROIs and computation time resulting from ROl searches performed with three different values of the input
parameters (signal threshold in absolute units, a.u., mass error tolerance in Da/e, and minimum number of occurrences). In cursive
are indicated the optimum values of the parameters. The results shown are obtained considering the variation of one parameter

while the other two remain fixed in their optimum value

Parameters of the ROI search

Number of ROI Computational time? (s)

7500
750
75

Signal threshold (a.u.)

Mass error tolerance (Da/e) 0.5
0.05
0.005
Minimum occurrences 100
10
1

55 08
300 1.8
1357 88
267 18
300 20
356 20
23 17
300 1.9
449 19

@ Computational time using a 64-bit Windows Intel(R) Core™ i5-3470 CPU computer of 8GB and version 8.2.0 (R2013b) of MATLAB

and lower values tested (0.5 and 0.005 Da/e, respectively)
were again selected to easily visualize their effects on
final ROI selection. Similar to the threshold parameter, a
decrease in mzerror value increased the number of
ROIs. In this case, however, the increase in ROI number
was not as spectacular as for the threshold parameter,
and the elapsed computation time was fairly constant
for all calculations (see Table 1). In the third case (see
Table 1), an evaluation of the effect of minimum occur-
rences on an ROI search, the three values tested corre-
sponded to 100, 10 and 1. The minimum number of
occurrences is directly related to a range of peak widths
and detector speed, which varies among high-
performance liquid chromatography (HPLC) (20-50s)
and ultra-high-performance liquid chromatography
(UHPLC) (5-12s) systems. In the current representative
case, the system used to analyze the sample was an
Acquity UHPLC system, and thus the optimum number
of occurrences should correspond to a peak with range
of 5-12s. In particular, with this instrumentation, the
interval between each occurrence was 0.63s, and thus
we selected 10 occurrences (i.e., 6.3 s) as the optimum
value. When considering results obtained for the three
values tested, the same trend observed for the other pa-
rameters was again detected, as higher numbers of ROIs
were obtained when the values of the minimum number
of occurrences decreased and lower numbers of ROIs
were observed when the value increased. Regarding the
mzerror parameter, the increase in ROI number ob-
served at a lower minimum number of occurrences was
less substantial than for the threshold parameter, and
the elapsed computational time was similar in the three
calculations (see Table 1). The example presented here
clearly illustrates the importance of the proper
optimization of ROI parameters before the application
of the method. It also highlights the influence of the

particular instrumental specifications (e.g., mass accur-
acy) on these parameters.

Evaluation of ROI profiles

After the ROI search in individual matrices, their pro-
files were evaluated to determine whether they fit the
chromatographic shape of the original data. Figure 5
shows the two distinct graphical representations of three
ROIs obtained from the Control 1 sample after the ROI
searching, filtering and compression steps. The three se-
lected ROI correspond to the m/z values of 703.5740
Da/e (Fig. 5a), 271.1875 Da/e (Fig. 5b) and 391.2841 Da/
e (Fig. 5¢). The selected ROIs exhibit three completely
distinct elution profiles and related mass distributions.
In the first case (Fig. 5a), the elution profile of the ROI
with an m/z of 703.5740 Da/e describes a single-peak
curve and the corresponding mass distribution is appre-
ciably regular over time. The second case (Fig. 5b) corre-
sponding to an ROI with an m/z of 271.1875Da/e is
particularly interesting since it describes a double-peak
curve. As observed in the mass spectrum for this ROI,
three slightly distinguishable regions of mass measure-
ments are presented, corresponding to the initial mea-
surements of the profile curve, first peak and second
peak. This ROI may correspond to different isomeric
chemical compounds resolved by the chromatographic
column that have equal m/z values at the considered
mass deviation. Finally, in the third case (Fig. 5c), the
elution profile of an ROI with an m/z of 391.2841 Da/e
distinguishes two clusters of MS points. The first cluster,
located at approximately 200s, is associated with the
chromatographic peak, whereas the second cluster, lo-
cated between 600 and 1200s, is related to the back-
ground noise. The representations of mass traces
provide valuable information about the nature of experi-
mental MS measurements. In general, this information
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is unknown to MS users and may be crucial for a better
analysis and optimal interpretation of LC-MS data.

Once the optimum parameters for the ROI search
were selected, the augmentation was performed and a
final augmented ROI matrix was generated. The dimen-
sions of that matrix were (11,394 x481), the
x-dimension corresponding to six times the number of
retention times of one sample (ie., 1899) and the
y-dimension corresponding to the total number of com-
mon and uncommon ROIs among the six samples.

ROI profiles versus feature profiles of XCMS

Various forms (X) of chromatography and mass spec-
trometry (XCMS) is a popular data analysis software
package used by the metabolomics community that en-
ables the automatic processing of large size full-scan
LC-MS datasets and the prediction of candidate metabo-
lites using mass identification and retention time algo-
rithms [29]. It is based on feature detection, where a
“feature” is defined as a single m/z measurement of the
mass spectrometer. A general XCMS analysis starts with
the application of the centWave data processing algo-
rithm, which first identifies features using the ROI ap-
proach and then models the obtained chromatographic
peaks using a wavelet transformation and a Gaussian
shape curve fitting strategy. In the last step, some align-
ment algorithms (such as obiwarp) are used to align the
chromatographic peaks of the same feature among dis-
tinct samples.

Due to the resemblance to the ROI search performed in
the first step of the centWave algorithm of XCMS soft-
ware and the search performed using our methodology,
the results obtained using both approaches were com-
pared in the present study. We used the virtual research
environment built on the Galaxy web-based platform
technology called Workflow4Metabolomics (W4M) [10,
30] www.msomics.com/ version 3.0, which incorporates
XCMS and CAMERA packages. When using the XCMS
package included in W4M, the first step requires the users
to define the MS parameters prior to the ROI search.
These parameters are similar to those defined in our ROI
methodology and include: i) the m/z maximal error toler-
ance in consecutive scans (in XCMS software reported in
ppm), ii) the minimum and maximum chromatographic
peak width (reported in seconds) and iii) the
signal-to-noise  ratio  threshold. Importantly, the
optimization of the latter parameter (i.e., MS intensity
threshold) is linked to three input arguments, which the
users are asked to define. The first and second input argu-
ments are used to perform a preliminary threshold filtra-
tion and are called the “prefilter intensity” and the “noise
filter” arguments. Both are used as prefilter steps for the
first selection phase to retain mass traces that contain
peaks (i.e., prefilter peaks) with an intensity greater than
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the desired threshold (ie., prefilter intensity). In the sec-
ond selection phase, the third parameter that the user
must define is the “signal/noise threshold”. Table 2 shows
the number of ROIs obtained for all six samples investi-
gated in this study (i.e., three control replicates and three
tumor cell sample replicates treated with TBT) using the
two approaches, together with the input parameters uti-
lized. The resulting number of ROIs is 481 for our
ROIMCR methodology and 300 for the XCMS package
(in the W4W platform). The difference may be attributed
to the meanings of the input parameters used for their cal-
culation with the distinct approaches that are similar, but
not exactly the same, and therefore the input parameters
are not completely comparable, particularly the threshold
parameter. However, when observing the high-resolution
m/z values associated with these ROIs, 251 of the ROIs
(ie., greater than 80% of the number of ROIs identified
using W4W) coincide between the two strategies (within
an m/z error of 15 ppm, see Additional file 1: Table S1),
indicating that both approaches produce very similar re-
sults. These coincident ROIs have a greater MS intensity.

In addition to the comparison performed here,
other recent studies comparing the performance of
XCMS software to an ROI search followed by MCR
resolution are presented in the literature. Recently,
the proposed procedure was tested in different stud-
ies, where the complexity of the analyzed samples
was considerably greater and the number of samples
larger (see Navarro-Reig et al. [26] and other citations
listed above [16—21]. We have also validated the pro-
cedure for quantitative purposes in Dalmau et al. [27]
All these results have confirmed the adequacy of the
proposed ROIMCR strategy to analyze metabolomic
data, leading to very similar conclusions in both cases
(XCMS and ROIMCR).

These advantages are briefly described below.

— A peak alignment strategy is not required (needed in
XCMS).

— The shape of chromatographic peaks/elution profiles
does not need to be modeled (needed in XCMYS).

— All features in the mass spectrum of one metabolite/
lipid are directly resolved in the same MCR
component. The assignment of different features to
the same component spectrum is unnecessary
(needed in XCMS). The CAMERA procedure is not
required (needed in XCMS).

Additionally, other advantages of XCMS are also
present in the ROIMCR procedure.

— The full mass accuracy of MS measurements is
preserved (the ROI searching procedure is similar to
the one used in XCMS).


http://www.msomics.com/
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Table 2 Comparison of ROI search results obtained using our MATLAB routines and the centWave algorithm of XCMS package of

Work4Metabolomics

Number of ROIs m/z error tolerance Peak width Threshold
ROl search using MATLAB home-made routines 481 0.05 Da/e 10s 750 a.u.
ROI search using centWave algorithm of XCMS of W4W? 300 5ppm 10s S/N threshold 10
Prefilter intensity 7500
Noise filter 0

Number of coincident ROls 251

? The version 3.0 of Work4Metabolomics available at http://workflow4metabolomics.org/ has been used to do the calculations

— Signal filtering and data compression properties are
also derived from the ROIMCR procedure.

— The open source code is available (see the links
below).

Data resolution using the MCR-ALS analysis

Once the augmented data matrix of ROI compressed
data from the six samples has been constructed, the next
required step is the MCR-ALS analysis.

The selection of the number of pure components is
the first step in the MCR-ALS analysis. As described in
“Multivariate curve resolution-alternating least squares
(MCR-ALS)”  section, the optimum number of
MCR-ALS components should be sufficiently large to
explain all the chromatographic peaks, the background
(e.g., solvent), and contributions from other unknown
signals. Any increase in the number of components
should produce a significant reduction in the lack of fit
and a corresponding increase in the explained variance.
Otherwise, no other components should be added to the
calculation. In the example presented here, the number
of components was proposed to be 50 for the MCR-ALS
analysis of the augmented matrix, resulting in a less than
7% lack of fit and 96.5% of the variance was explained. A
larger number of components did not significantly im-
prove the lack of fit or model new chromatographic
peaks. The difference between the larger number of
ROIs (481) compared to the smaller number of MCR
components resolved (50) has two potential explana-
tions. The first explanation is that not all ROIs will pro-
duce different MCR components within an elution
profile and a mass spectrum profile characteristic of a
metabolite or lipid. In addition, another important ex-
planation is in MCR-ALS, various ROI (features) are
grouped into the same component. ROIs grouped into
the same MCR-ALS component generally include iso-
tope and adduct peaks. In fact, the capability of
MCR-ALS to group features corresponding to the same
component (metabolite/lipid) is one of the most distin-
guishing and advantageous aspects of our ROIMCR
methodology compared to other tools such as XCMS
that associate each feature with a unique m/z. For this
reason, another package, CAMERA [7, 31], has been

developed to search for features that correspond to the
same compound. In the present study, we used the
CAMERA package of W4W to search for ROIs obtained
with the centWave algorithm that corresponded to the
same compound. The results of the CAMERA search in-
dicated that the initial 300 ROIs were grouped into 194
components. However, the larger number of compo-
nents obtained using the CAMERA software than the
number of components resolved with MCR might be at-
tributed to the fact that not all the 194 components cor-
respond to distinct chromatographic peaks and further
grouping should be performed, which is a laborious task.
The final list of lipids or metabolites obtained using the
two methods should ultimately be comparable, which
implies their identification based on their exact mass or
another analytical strategy (see Biomarker discovery
section).

Importantly, due to the sparse number of MS spectra and
their high selectivity, their resolution has little ambiguity
[32, 33] and the possible underestimation of the number of
MCR-ALS components will not cause a misinterpretation
of the results but only a small loss of information. In that
case, the final interpretation will only be provided for the
ultimately resolved components. As previously explained in
“Multivariate curve resolution-alternating least squares
(MCR-ALS)” section, another possibility to resolve metabo-
lites with very low signal contributions in LC-MS untar-
geted studies is to divide the whole dataset into shorter
elution time windows.

Biomarker discovery

Concentrations and spectral profiles of the resolved
MCR-ALS components are finally used for biomarker as-
sessments. However, a subsequent statistical analysis is re-
quired to identify the most relevant MCR-ALS components
(ie., the components that significantly vary among control
and stressed samples). Distinct statistical tests have been
used for this evaluation, such as the classical Student’s
t-test, which was used in the present study. This test, to-
gether with other statistical tests, may be performed using
the functions and protocol [23] available at https://www.na-
ture.com/protocolexchange/protocols/4347.
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Figure 6 shows a representation of the elution and
spectra profiles of three representative MCR-ALS re-
solved components. As shown in the elution profiles of
these components (Fig. 6a), a noticeable difference in
the areas and heights of the chromatographic peaks is
observed among control and exposed samples. This dif-
ference indicates an increase in the levels of these lipids
after the treatment with TBT.

A classical statistical Student’s t-test was performed on
each component using a p-value less than 0.05 as the
criterion to evaluate the significance of these changes.
The results of the test revealed significant changes in the
heights of the three components between the two
groups (i.e., controls and exposed), suggesting that they
represent potential biomarkers for TBT exposure. When
needed, multiple comparisons procedures (MCPs) [34]
can be applied to avoid the assignation of false positives.
These statistical procedures are intended to consider
and suitably manage multiple effects through some
shared or joint measure of mistaken inferences. Alterna-
tively, ANOVA and its multivariate extensions for
well-designed data have been applied [35, 36] to better
ascertain the reliability of the observed effects of TBT
exposure. Additionally, the fold-changes for the three
components were calculated (Fig. 6a), resulting in 3.5-fold,
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4.5-fold and 4.0-fold changes for components A, B and C,
respectively. The MS spectra profiles were evaluated to
identify the lipid species corresponding to these
MCR-ALS components. As shown in Fig. 6b, the exact
masses of components A, B and C were 872.7702,
874.7857 and 902.8171 Da/e, respectively. Further identifi-
cation using MS databases such as Lipid Maps [37] is also
possible. As shown in the same figure, components A, B
and C corresponded to triacylglycerol species 52:4, 52:3
and 54:3, respectively. Notably, this identification was
made possible to a large extent because no loss of mass
spectral information occurred after ROI compression.

Applications of the ROIMCR procedure

In previous sections of this study, the different methodo-
logical aspects of the ROIMCR procedure have been de-
scribed in detail for a single dataset as an example. In
previous and simultaneously performed recent studies
[16-22, 26, 27], the ROIMCR procedure has been ap-
plied to diverse datasets and scenarios, such as a recent
investigation of the rice metabolome using LCxLC-MS/
MS [17]. In this study, the ROIMCR procedure was ap-
plied to the different modulations of the second LC col-
umn to analyze several samples arranged in a super
column-wise augmented data matrix. The number of
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value < 0.05). Lipid Maps was the MS reference database used for the identification of lipids
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components resolved in the MCR-ALS analysis of this
super augmented data matrix was 250. The ROIMCR
method determined which of the mass traces belonged
to every resolved metabolite, and the resolution of the
sample metabolites in the entire dataset was much faster
with this method than with other traditional strategies
based on the analysis of each component separately. In
another recent study [19], the effects of different endo-
crine disruptors (EDC) on zebrafish (Danio rerio) em-
bryos were investigated using an untargeted LC-HRMS
(Exactive Orbitrap) metabolomic analysis. In this case,
25 zebrafish embryos (5 replicates for each of the 5 ap-
plied chemical doses) were simultaneously analyzed
using the ROIMCR method for every EDC treatment.
Eighty-six to 110 MCR-ALS components were resolved,
depending on the EDC used, and the corresponding
changes in the metabolite concentrations suggested the
presence of similar underlying zebrafish responses to the
different investigated EDCs. The underlying metabolo-
mic and lipidomic patterns linked to thermal acclimation
in Saccharomyces cerevisiae were investigated in another
study using a combination of H'NMR and LC-MS. In
this example, the application of the ROIMCR procedure
allowed for more than a 100-fold reduction in the
computer storage requirement, but maintained the high-
est possible experimental mass accuracy. Twenty-four
yeast samples cultured at different temperatures were
simultaneously analyzed and produced 80 tentative lipid
candidates in the ESI+ mode and another 50 lipids in
the ESI- mode of MS. In another recent study [21], the
proposed ROIMCR LC-MS approach facilitated an as-
sessment of the effects of acute and chronic UV irradi-
ation on the phenotype and lipidomic profiles of
keratinocytes. Finally, a similar ROIMCR strategy was
applied to the simultaneous analysis of multiple mass
spectra from plants to investigate the changes in lipid
composition induced by the application of the chlorpyri-
fos pesticide [18]. MS data from 20 samples receiving
each treatment (4 doses with 5 replicates) at different
growth stages were simultaneously analyzed and pro-
vided information about the changes in the spatial com-
position and distribution of different lipids on the
surface of the investigated samples, which were also
identified.

Finally, as an additional confirmation of the advantages
of the ROIMCR procedure, the results obtained in the
analysis of a new dataset are provided here to complete
the assessment of this method. This dataset was obtained
in a previous study [28] where three tissues (brain, gonads
and gastrointestinal tract) were obtained from male and
female zebrafish exposed to low dietary doses of four dif-
ferent carbon nanotubes (CBNs): C60 fullerene (C60),
single-walled carbon nanotubes (SWCNT), short
multi-walled carbon nanotubes (MWCNTs), and long
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multi-walled carbon nanotubes (MWCNTs). The lipid ex-
tracts of these samples were analyzed using LC-MS. The
data produced in these LC-MS analysis were processed
using the ROIMCR procedure (see Additional file 2:
Figure S1, Additional file 3: Figure S2 and Additional file 4:
Figure S3). One hundred fifty components were simultan-
eously resolved, explaining the 99.2% of the total data vari-
ance. Each of these components was described with one
elution and one mass spectrum profile. Additional file 5:
Figure S4 shows an example of the MCR-ALS-based reso-
lution of component 2. In the upper panel of Additional
file 5: Figure S4, an example of MCR-ALS output results
is provided for the resolution of the 150 components in
the simultaneous analysis of the same 80 zebrafish sam-
ples treated with the different carbon nanotubes. The
lower panel Additional file 5: Figure S4 shows an example
of the MCR-ALS-based resolution of component 2. This
lipid component was identified from its mass spectrum as
TAG 50:3, C53H;00NOg, with an m/z value of 846.7474.
Additional file 6: Figure S5 and Additional file 7: Figure S6
show the resolution of other MCR-ALS components, after
their proper identification using lipid databases. In Add-
itional file 6: Figure S5, the MCR-ALS components corres-
pond to glycerolipid species, whereas in Additional file 7:
Figure S6, they correspond to glycerophospholipid species.
In all cases, the selected components are the most repre-
sentative biomarkers of the treatments with the distinct
carbon nanoparticles (i.e., Cgp, SWCNT, ShWCNT and
LWCNT) in the distinct zebrafish tissues (i.e., brain, go-
nads and intestinal tracts). As observed in these figures,
the differences in the numbers of MCR-ALS components
between control and treated samples were very significant
in some cases. For instance, in Additional file 6: Figure S5,
concentrations of the TAG 54:3 and TAG 54:5 lipid spe-
cies were up to 5-fold higher in the gonads of female con-
trols compared to SWCNT-treated samples, as evaluated
using MCR-ALS. In some other cases, however, a
non-significant effect of the treatment was observed. An
example is brain tissues from females presented in Add-
itional file 7: Figure S6, which showed very similar LC-MS
elution profiles for the resolved MCR-ALS components in
controls and zebrafish treatment with the distinct carbon
nanoparticles. More details and specifically a discussion of
the results obtained in the study of this system are pro-
vided in a published study [28] and at https://doi.org/10.
1093/mutage/gew050. Again, the valuable contribution of
the MCR-ALS methodology to the evaluation of LC-MS
omic profiles in target organisms exposed to environmen-
tal contaminants has been validated.

In summary, based on these previous studies, the ap-
plicability of the ROIMCR method has been confirmed
for diverse metabolomic and lipidomic studies and pre-
sents some advantages compared to other strategies, as
explained in “ROI searching procedure” and “Data
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resolution using the MCR-ALS analysis” sections of this
paper. Moreover, XCMS and MCR-ALS data analysis
strategies were also compared in other studies, such as
in the previously published LC-MS metabolomics data
analysis protocol [22], in the review article describing
data analysis strategies for targeted and untargeted
LC-MS metabolomics studies [1], in the article describ-
ing the LC-MS investigation of the changes in the rice
metabolome induced by Cd and Cu exposure [26], and
finally, in the recent validation of the ROIMCR method
for untargeted qualitative and quantitative LC-MS ana-
lyses of the lipidomic [27]. All these previous studies
have confirmed the suitability of the ROIMCR method
in the MS omics data analysis field.

Conclusions

The chemometric LC-MS data analysis strategy proposed
in this study based on the ROIMCR procedure (ROI
searching, filtering and compression followed by
MCR-ALS analysis) has been shown to be a powerful ap-
proach to analyze LC-MS metabolomic datasets. On one
hand, the principal benefit of performing the ROI filtering
and compression steps is the capacity to minimize the pri-
mary dimensions of the data (gigabytes of storage) while
preventing any loss of spectral accuracy. On the other
hand, the main advantages attributed to the MCR-ALS
analysis include: i) the possibility of immediate chemical
identification of the metabolites based on the MS informa-
tion provided in the analysis, ii) the high degree of inter-
pretability of the results, iii) the flexibility in the structure
and nature of the datasets that are potentially able to be
analyzed and iv) the added value as a preprocessing
method that does not require peak modelling or chroma-
tographic alignment for the simultaneous analysis of mul-
tiple samples.

Additional files

Additional file 1: Table S1. Coincident ROIs obtained both with our
methodology and with centWave algorithm of XCMS package of
Work4Metabolomics http://workflow4metabolomics.org/ webpage. The
number of ROIs is indicated in this table together with the difference in
m/z among these values. (DOCX 26 kb)

Additional file 2: Figure S1. LC-MS profiles once imported into
MATLAB environment and after ROl compression and filtering and data
matrix construction. Example shown for lipid extracts from control brain,
gonads and intestinal tract from one simple female Zebrafish. See also
Mutagenesis, 2017, 32, 91-103, open access publication at doi:https://doi.
0rg/10.1093/mutage/gew050. (TIF 514 kb)

Additional file 3: Figure S2. Augmented LC-MS ROI data matrices of
brain samples (Control, C60, SWCNT, ShWCNT and LWCNT) of 15 female
and male Zebrafish samples. See also Mutagenesis, 2017, 32, 91-103,
open access publication at doi:https://doi.org/10.1093/mutage/gew050.
(TIF 711 kb)

Additional file 4: Figure S3. Final augmented LC-MS ROI data matrix
containing information of the 90 samples analyzed. Input matrix for
further MCR-ALS analysis. See also Mutagenesis, 2017, 32, 91-103, open
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access publication at doi:https://doi.org/10.1093/mutage/gew050.
(TIF 351 kb)

Additional file 5: Figure S4. A) Output of MCR-ALS analysis of the final
augmented data matrix to find purest elution and mass spectra profiles.
One hundred fifty components were resolved, explaining 99.2% of data
variance. B) Example of elution and spectra profiles for component 2 in
the 90 samples. See also Mutagenesis, 2017, 32, 91-103, open access
publication at doi:https://doi.org/10.1093/mutage/gew050. (TIF 682 kb)

Additional file 6: Figure S5. Representation of LC-MS elution profiles of
MCR-ALS resolved components corresponding to most representative
glycerolipid biomarkers. A) Brain female samples. B) Brain male samples.
C) Gonads female samples. D) Gonads male samples. E) Intestinal tract fe-
male samples. F) Intestinal tract male samples. (TIF 645 kb)

Additional file 7: Figure S6. Representation of LC-MS elution profiles of
MCR-ALS resolved components corresponding to most representative
glycerophospholipid biomarkers. A) Brain female samples. B) Brain male
samples. C) Gonads female samples. d) Gonads male samples. E) Intestinal
tract female samples. F) Intestinal tract male samples. (TIF 633 kb)

Abbreviations

CWT: Continuous wavelet transformations; HPLC: High performance liquid
chromatography; LC-MS: Liquid chromatography coupled to mass
spectrometry; MCR-ALS: Multivariate Curve Resolution-Alternating Least
Squares; MS: Mass spectrometry; ROI: Regions of interest; TBT: Tributyltin;
UHPLC: Ultra-high performance liquid chromatography
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