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Abstract

to share specificities.

Background: Repertoire sequencing is enabling deep explorations into the cellular immune response, including
the characterization of commonalities and differences among T cell receptor (TCR) repertoires from different
individuals, pathologies, and antigen specificities. In seeking to understand the generality of patterns observed in
different groups of TCRs, it is necessary to balance how well each pattern represents the diversity among TCRs

from one group (sensitivity) vs. how many TCRs from other groups it also represents (specificity). The variable
complementarity determining regions (CDRs), particularly the third CDRs (CDR3s) interact with major histocompatibility
complex (MHQO)-presented epitopes from putative antigens, and thus encode the determinants of recognition.

Results: We here systematically characterize the predictive power that can be obtained from CDR3 sequences, using
representative, readily interpretable methods for evaluating CDR sequence similarity and then clustering and classifying
sequences based on similarity. An initial analysis of CDR3s of known structure, clustered by structural similarity, helps
calibrate the limits of sequence diversity among CDRs that might have a common mode of interaction with presented
epitopes. Subsequent analyses demonstrate that this same range of sequence similarity strikes a favorable specificity/
sensitivity balance in distinguishing twins from non-twins based on overall CDR3 repertoires, classifying CDR3
repertoires by antigen specificity, and distinguishing general pathologies.

Conclusion: We conclude that within a fairly broad range of sequence similarity, matching CDR3 sequences are likely

Keywords: Antigen-specific recognition, CDR classification, Immune repertoire, Sequence similarity, T cell receptor

Background

The recognition by T cell receptors (TCRs) of non-self
peptide epitopes presented by major histocompatibility
complex (MHC) proteins drives the cellular immune
response against the non-self offender. In the case of
intracellular non-self peptides, e.g., infected or cancerous
cells, the ternary MHC:peptide: TCR recognition can
lead to the killing of abnormal cells presenting these
peptides; in the case of extracellular non-self peptides,
e.g., pathogens or biotherapeutics, it can lead to the de-
velopment of a humoral response to neutralize or clear
the antigens containing these peptides. Consequently,
modeling and predicting MHC and TCR recognition
propensities supports wide-ranging applications, for
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example: developing vaccines against infectious diseases
[1-6] as well as understanding escape mechanisms
[7-10], identifying cancer neoantigens and developing
specifically targeted vaccines [11-14], discovering
potential drivers of allergy, autoimmunity, and toler-
ance [15-18], and understanding and mitigating
anti-biotherapeutic immune responses [19-27].

In the MHC:peptide: TCR recognition process (Fig. 1)
the TCR represents the main source of variability and
training in distinguishing of self vs. non-self peptides
[28]. MHC is genetically encoded and even the effective
diversity across global populations due to allelic vari-
ation is limited, since there is degeneracy in the MHC
binding groove pockets that hold the peptide side-chains
[29, 30]. In contrast, TCRs are much more diverse, with
hypervariable complementarity determining regions
(CDRs), particularly the third CDRs (CDR3s), which are
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Fig. 1 MHCpeptide: TCR recognition. An MHC (brown) presents a
peptide (red spheres) to a TCR (light blue: a chain; light green:
chain) (PDB id 2bnr [67], rendered via PyMOL [68]). The TCR interacts
with the MHC and peptide through its CDR loops, with the first two
CDRs of each TCR chain generally recognizing mainly the MHC and
the third the peptide; here the CDR3a and CDR3p are “grabbing” a
methionine and tryptophan in the middle of the peptide (inspired
by Chen et al. [67])

derived from variable-diversity-joining (VD]) recombin-
ation. Overall TCR theoretical diversity is estimated to
be perhaps 10 [31] and practical diversity in any
individual roughly 10° [32-34]. The CDR3s, which
contribute the bulk of the diversity, are thereby able to
specifically recognize a wide array of MHC-presented
antigen peptides, while the other CDRs, which are
largely genetically encoded, are primarily responsible for
recognizing the MHC itself (see again Fig. 1) [28, 35].
An individual's set of TCRs, or TCR repertoire, is
shaped by thymic training against self along with a
lifetime of exposure to different antigens. It is presum-
ably much smaller than that of all possible antigens, and
there is substantial degeneracy, with different TCRs able
to recognize the same antigenic region and the same
TCR able to accommodate different antigenic regions
[36-39]. Thus numerous interesting and important
questions center on the relationship between TCR reper-
toire and recognition propensities, including the impacts
of genetics vs. training and exposure, the ability of CDRs
to accommodate antigenic diversity, and commonalities
across pathology- or antigen-specific populations. The
advent of large-scale repertoire sequencing [40, 41], ini-
tially for CDRs alone [32, 42-44], and more recently
even for paired a/p chains [45, 46], provides opportun-
ities to gain insights into patterns of TCR diversity and
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recognition. An early study tackled the importance of
genetics by studying pairs of monozygous twins, and,
among other analyses, found that twin pairs had more
identical CDR3 sequences than non-twins [47]. More
recent publications have shifted the focus from identical
sequences to similar sequences. Paired o/ TCRs, result-
ing from single-cell sequencing and antigen-specific
selection, could be classified very well according to their
epitope specificities, and the sequences elucidated
patterns conferring those specificities [48]. Similarly,
epitope-specific repertoires from a variety of viral infec-
tion contexts pooled across many subjects revealed
distinctive motifs, and furthermore the CDRs from a set
of M. tuberculosis subjects clustered into groups with
strong MHC associations enabling design of specific
MHC-peptide-TCR interactions [49]. An extensive
analysis of available TCR sequence data from a wide
range of subjects revealed pathogen-specific MHC-TCR
associations along with structural insights into MHC
and TCR covariation [50].

TCR repertoire sequencing thus provides the oppor-
tunity to generalize from a set of samples to patterns
than are predictive of relationships among subjects,
pathologies, antigens, MHC restrictions, and so forth
[48, 50-52]. Here, we systematically investigate, over a
diverse group of repertoire datasets, the extent to which
sequence enables prediction of such relationships. As
always in statistical / machine learning approaches, one
must thread the needle between under-generalization,
missing out on predictions that would be true (ie.,
lacking sensitivity), and over-generalization, making
predictions that end up not being true (i.e., lacking
specificity). Thus we characterize the trade offs between
specificity and sensitivity in these various studies. We
show that in general it is possible to obtain a good
specificity-sensitivity balance and make a large fraction
of high-confidence predictions of TCR function from
sequence.

Results
We study a diverse group of CDR datasets in order to
evaluate in general how predictive TCR sequence is of
relationships among groups (subjects, epitopes, patholo-
gies, etc.). Since single cell methods are only now
becoming available, many repertoire analysis efforts use
standard sequencing approaches to characterize CDR3,
which, as discussed above, is the main source of variabil-
ity and antigen-specific recognition. So as to provide a
consistent and interpretable basis for drawing conclu-
sions, as well as to evaluate the information content
provided by CDR3 alone, we use only CDR3 for all
datasets, and separately analyze CDR3a and CDR3p.

The approach we take is representative of the key
principles underlying the many possible sequence-based
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prediction methods and parameterizations, with advan-
tages of being readily interpretable and able to function
well even with limited data. In short, we evaluate CDR3
sequence similarity (technically dissimilarity, as lower is
better), with a score which we term CDRdist, with 0 in-
dicating an exact match and 1 no identifiable similarity.
We assess the predictive power of CDR3 sequences by
using this score to perform 1-nearest-neighbor classifica-
tion (Fig. 2), predicting the group (e.g., associated anti-
gen or disease) to which one CDR belongs based on the
known group of the most similar CDR. By checking
whether the predicted group is correct or not, we can
evaluate both sensitivity (fraction of CDRs from a group
that are correctly predicted to be in that group) and
specificity (fraction of CDRs predicted to be in a group
that actually are in that group). In order to evaluate only
the impacts of similarity, without being confounded by
duplicates which can render classification trivial, we do
not consider exact matches (score of 0). In order to gain
deeper insights into how the degree of similarity impacts
classification performance, we slide a threshold from >0
to 1, making a prediction only if the nearest neighbor is
sufficiently similar, and assessing how relaxing the
required score manifests in specificity vs. sensitivity
trade-offs. The score also provides the basis for cluster-
ing, elucidating sequence similarity-based groupings for
CDRs and revealing sequence patterns conferring the
observed performance trade-offs.

In the following sections, we apply this general frame-
work to characterize several datasets: CDR groups de-
fined by structure, evaluating sequence variation within

Page 3 of 14

and between clusters; repertoires from twins, studying
the relative similarity between an individual and their
twin vs. others; a number of different human and
murine repertoires, assessing CDR distinctiveness as it
relates to antigen specificity as well as underlying
pathology.

Extent of sequence similarity within/between structural
clusters

The Structural T-Cell Receptor Database (STCRDab)
[53] structurally clusters CDR3s into canonical classes,
separately for o and [, and separately by length(s). A set
of CDR3 sequences and associated structural classes
were downloaded and investigated for relative intra- vs.
inter-class sequence similarity. After removing dupli-
cates, there were 142 unique sequences across four o
groups and six B groups (Table 1). While it is common
for structural clusters to be characterized by their indi-
vidual sequence profiles, we also sought to understand
the extent to which the sequence pattern from one
cluster could be generalized before encroaching on
another cluster.

The distance from each unique CDR to the most simi-
lar (but distinct) CDR within its structural class tends to
be smaller than the distance to the most similar (but
distinct) CDR from another class (Fig. 3 (a, b)). When
the distance is less than about 0.2 or 0.3, the closest
CDR tends to be within the same structural class (below
0.2: 97% in the same structural class; below 0.3: 96%),
while when it is above about 0.6 or 0.7, the CDRs tends
to be within different classes (above 0.6: 69% in different

cl1®

Fig. 2 Classifying CDRs by sequence similarity. This illustration plots in a schematic low-dimensional space the locations (dots) of CDRs from three
different classes (colors). 1-nearest-neighbor classification predicts the class of one CDR from that of the most similar one; we here refine that to
require the nearest neighbor to be close enough, within a specific distance threshold. Contour rings show sequence distances of 0.2, 0.3, and 04
from three query CDRs ("A", “B", and "C") from those classes. At a threshold of 0.2, only “B" has a close-enough nearest neighbor, “b1”, which is of
the same class, so 1-nearest-neighbor classification is correct. At this threshold, “A” and “C" are not predicted. When the threshold is relaxed to
0.3, “A" now has a close-enough nearest neighbor, “a1”, of the same class, so it is also correctly predicted. However, “C" has “b2”, of a different
class, as its close-enough nearest neighbor, so it is incorrectly predicted. In this manner, we study trends trading off correct, incorrect, and
unidentified, as the threshold is varied
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Table 1 Unique CDRs from different structural classes according
to STCRDab [53]

Class name Length(s) Number of unique
sequences

A3-10-A 10 14
A3-13-B 13 3
A3-13-A 13 6
A3-10_11_12-A 10 10
B3-10_11_12_13-A 10, 11,12, 13 56
B3-10_11-A 10, 11 20
B3-12-A 12 6

B3-12-B 12 10
B3-13_14-A 13,14 14
B3-14-A 14 3

structural classes; above 0.7: 71%). This observation
supports the use of nearest-neighbor classification, pre-
dicting structural class from sequence matches, which
we elaborate to study specificity-sensitivity trade-offs by
subjecting it to a distance threshold; i.e., only make a
prediction if the nearest neighbor is closer than a given
threshold. When the threshold is less than about 0.2,
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many CDRs are unclassified but those that are tend to
be correct; between 0.2 and 0.4, the number of unclassi-
fied CDRs drops substantially while still retaining high
specificity; and above that range the specificity drops in
order to obtain further sensitivity (Fig. 3 (c, d)).

In order to more directly explore the relationship
between sequence similarity and structural similarity,
structures were downloaded from STCRDab and the
CDR3p loops extracted for those in which electron dens-
ity was present. When the same sequence was present in
multiple structures, a representative was chosen as that
with minimal sum of main-chain root mean squared
deviation (RMSD) to the others. For each such CDR, the
most similar sequence in its STCRDab CDR3p structural
class and the most similar sequence from another
CDR3p class were compared, in terms of both CDRdist
and RMSD. This comparison (Fig. 4) thus elaborates the
implications of Fig. 3, characterizing when a closer
sequence implies a closer structure. Some examples are
illustrated, limited to cases with good sequence score,
such that a classification decision would be made under
the thresholding approach above.

This analysis helps calibrate the general level of confi-
dence one can have that two CDRs of a given degree of
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Fig. 3 Sequence similarity in STCRDab structural clusters. ab Minimum sequence distances within (blue) vs. between (green) structural classes for
(@) CDR3a sequences and (b) CDR3 sequences, plotted as a density estimate. ¢, d Accuracy of nearest-neighbor classification using sequence
similarity to predict structural cluster for (c) CDR3a sequences and (d) CDR33 sequences. As the threshold required to make a classification is
increased (x-axis), the number of sequences (y-axis) that are unclassified (green line) decreases, trading off how many are correctly (blue line) vs.
incorrectly (magenta) classified
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Fig. 4 Sequence similarity differences vs. structural similarity differences. Each point represents a CDR3[3, and its coordinate represents the
difference in sequence similarity, CODRdist, (x-axis) and structural similarity, RMSD, (y-axis) between the most similar sequence in its STCRDab

superpositions highlight example relationships between a target CDR (blue), its in-class neighbor (green), and its other neighbor (orange).

structural class and the most similar sequence in any other STCRDab CDR3(3 structural class. A negative number indicates that the CDR is more
similar to the neighbor in its structural class than to the other neighbor; i.e, left indicates more similarity in sequence and bottom more similarity
in structure to an in-class CDR than to an out-of-class one. Color represents the distance between the CDR and the in-class neighbor. Structural

a Sequence-based classification is correct, but actually does not yield the best structural match. b-d Classification is correct, and yields (b) similar,
() better, and (d) much better structural matches. e-f Classification according to STCRDab classes is incorrect but is actually consistent with the
relative structural similarity: the other structure is (e) more similar or (f) about the same, though in (e) neither structure is particularly similar.
g Classification is incorrect, and the closest sequence in the same structural class is more similar to that in the other class

A\

local sequence similarity are likely to adopt similar
structures, under a readily interpretable classification
approach.

CDR similarity across repertoires from twins

An early landmark study in TCR repertoire analysis
characterized three pairs of monozygous twins (“A”, “B”,
and “D”), evaluating general characteristics of the reper-
toires (e.g., diversity) as well as the extent of identity
across subjects [47]. The analysis published with that
study revealed that the number of identical CDR3
sequences between two individuals was significantly
increased if they were twins. We sought to relax the
identification of identical sequences across individuals to
allow for different degrees of similarity, in particular to
test whether twins had more similar sequences than
non-twins. As throughout this paper, we explicitly did
not consider exact matches, in this case thereby evaluat-
ing the “residual” information beyond the previously
studied identity. In order to focus the analysis on the
strongest signal, we considered only the 1000 most
abundant CDR3 sequences from each repertoire, with
read counts ranging from over 100,000 down to around
100. Zvyagin et al. [47] observed that shared clonotypes

were significantly higher among the most abundant
CDR3p sequences for any pair of individuals, and this
was even more evident for twins, so we focused on these
more significant sequences.

For each unique CDR from each subject, the closest
non-identical CDR in each other subject was identified.
These matches served as the basis for evaluating
nearest-neighbor classification, assessing whether the
closest CDR was from a twin (correct) or a non-twin
(incorrect). Over the range of required distance thresh-
olds, the number of correct classifications outpaces that
of incorrect ones (Fig. 5 and Additional file 1: Table S1),
though not as strongly as for the structural clusters. For
CDR3q, at a threshold of 0.2 about 46% of each twin
pair’s CDRs are correctly classified and about 20% incor-
rectly classified, with the remaining 34% unidentified.
Raising the threshold to 0.3 yields roughly 57% correct,
but at the cost of roughly 28% incorrect, leaving only
15% unidentified. Further increases in the threshold
continue this trend, with 0.4 resulting in 63% correct but
31% incorrect, and 6% unidentified. Results for CDR3p
follow the same sensitivity-specificity trend over this
range, but at a lower accuracy: at a threshold of 0.2,
there are about 26% correct vs. 14% incorrect; at 0.3 the
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Fig. 5 CDR3 similarity in twins vs. non-twins. The plots track the performance of nearest-neighbor classification, using sequence similarity to
predict whether a CDR is from a twin or an unrelated individual. As the threshold required to make a classification is increased (x-axis), the
fraction of sequences (y-axis) that are unclassified (green line) decreases, trading off the fraction that are correctly (blue line) vs. incorrectly
(magenta) classified

trade-off is 45% correct vs. 29% incorrect, and at 0.4,
55% correct vs. 37% incorrect. Overall, since identical
sequences were explicitly excluded from the classifica-
tion, this result demonstrates that twin repertoires share
not only more identical sequences, but also more similar
sequences.

To quantify the significance of the difference in twin
vs. non-twin nearest neighbors, the distribution of the
closest twin distance was compared to that of the closest
non-twin match with a Mann-Whitney U test. CDR3[
matches between twins in pair A are closer to each other
than to their closest non-twin matches (p-value 7 x 10~
) as are those in twin pair D (1 x 10~ °); however, the
distinction does not hold for twin pair C (0.24). For
CDR3a, however, only twins A are significantly different
from others (0.017), with C marginally above a 5% cutoff
(0.07) and D insignificant (0.198). We conclude that two
of the three twin pairs have more similar CDR3p
sequence, but only one pair has more similar CDR3«a
sequences. In contrast, the CDR3a classification per-
formance is better than that for CDR3, even though the
overall distributions are more similar, suggesting that
focusing specifically on close-enough pairs reveals
additional valuable information distinctive of twin pairs.

Analyzing patterns of CDR sequence similarity within
and between repertoires can yield biological insights into
the basis for specificity (or lack thereof) and suggest
directions for further investigation. To explore such
patterns for the twin pairs, CDRs in each individual’s

repertoire were clustered for illustration according to
CDRdist at a maximum distance of 0.3, which as shown
above vyields a good specificity-sensitivity trade-off.
Clusters from the different individuals were then com-
pared according to an aggregate sequence score, cluster-
dist, computed as the average cluster member distances.
Figure 6 illustrates some of the patterns of cluster
specificities, with motifs revealing the determinants of
specificity (or not). In these examples, a C-terminal
DSNYQLIW appears to be common to some CDRs in
all of the individuals, while AGNNRKLIW is more
specific to individual Al, and VV**GREYGNKLVF
distinguishes the twin pair A1/A2 from the other
individuals.

Classification of epitope specificity by CDR similarity

As discussed in the introduction, a pair of seminal
studies published in 2017 studied epitope-specific TCR
repertoires across many individuals. This section charac-
terizes sensitivity-specificity trade-offs in predicting
within these datasets which epitope each CDR3 recog-
nizes based on the epitopes for similar CDR3s.

Dash et al. [48] used peptide-MHC (pMHC) tetramer
selection and single-cell amplification to collect 4635
paired o/f TCR sequences from 10 epitope-specific
repertoires. The 1211 unique CDR3a and 1244 unique
CDR3p mouse sequences came from 78 mice and were
associated with epitopes labeled NP, PA, F2, and PB1
(presented during influenza infection) and M38, m139,
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Fig. 6 Example twin motifs with different specificity patterns. Motifs
represent sequences for four different clusters from subject A1, and
the closest clusters to each of those in each of the five other
individuals. The x-axis indicates the distance from the A1 cluster to a
cluster from another individual, assessed as the average over pairs of
CDRs. Sets of clusters illustrate different types of patterns: (common)
all of the clusters are similar to the cluster from A1 (within 0.3);
(twin-distinct) clusters from unrelated individuals are closer than that
from the twin; (twin-specific) the twin's cluster is closer than those
from other individuals; (A1-specific) the cluster is far from all clusters
from all other individuals

and M45 (presented during murine cytomegalovirus in-
fection). The 276 unique CDR3f and 294 unique CDR3«a
human sequences came from 32 humans and were asso-
ciated with epitopes labeled M1 from influenza virus,
pp65 from human cytomegalovirus, and BMLF1 from
Epstein-Barr virus. Among other analyses, Dash et al.
performed nearest-neighbor classification based on a
custom sequence similarity score using entire paired
TCR sequences, and were able to assign 78% (mouse)
and 81% (human) of the TCRs to their correct epitope
group. We again sought to characterize how specificity
and sensitivity vary, and as throughout the paper directly
focused on unpaired CDR3 only and the single most
similar sequence to a given one.
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Figure 7 illustrates performance over the range of
allowed distance thresholds and Additional file 1: Table
S2 gives details. At 0.2, 53% of the mouse CDR3ps are
classified correctly, as are 43% of the human ones, with
16% mouse and 4% human incorrect. Relative to the
CDRs that are actually identified (69% mouse and 47%
human), these fractions are 77% mouse correct and 91%
human correct, comparable to the previous results (78
and 81%, respectively). Thus even using just the CDR3p
alone, if the single closest neighbor is close enough then it
is highly predictive of the epitope group. Relaxing the
threshold to 0.3 yields more correct classifications, 59%
mouse and 49% human, at the cost of more incorrect,
29% mouse and 9% human. Consequently the accuracy
among those identified is somewhat lower but still
comparable, 67% mouse and 87% human. Further relax-
ing the threshold continues to yield further increases for
both correct and incorrect classifications, e.g., at 0.4,
62% of the mouse sequences are correctly classified vs.
36% incorrectly, and 58% correct vs. 16% incorrect for
human, which translates to 63% mouse and 79% human
correct among those identified. Thus the suitable
balance between accuracy and number of predictions
again appears to fall in the 0.2 to 0.4 range as we
observed first in the structural clusters as evidence of
similar conformation. Similar trends hold for analysis of
the CDR3a sequences, but CDR3p sequences had
greater predictive power, particularly for murine se-
quences. Other studies, e.g., [47, 49], have likewise found
CDR3p sequences to be more informative than CDR3a
sequences.

In order to gain some insights into the factors confer-
ring epitope specificity, each of the repertoires was
clustered, and as with the twins dataset, the clusters
were evaluated for their relative specificity. Within the
murine and human groups of repertoires, the cluster
similarity score clusterdist was computed for each pair
of clusters. Each cluster’s specificity to its repertoire was
characterized by the smallest clusterdist to a cluster from
a different repertoire, since a relatively small clusterdist
indicates that the sequence pattern defining a cluster
common to epitopes in other repertoires while a rela-
tively large score indicates that no cluster in another
repertoire has similar epitopes. Figure 8 illustrates
some examples of relatively specific and relatively
non-specific clusters at a threshold of 0.3, shown
above to yield a good specificity-sensitivity balance.
For example, TCS*GTGG*NYAEQFF is common to
both PB1 and M38 from mice, with a distance of only
0.12 between the two clusters. On the other hand,
ASGLVP*G*VYEQYF is distinct to the human M1
repertoire. Its closest motif is ASS**TGTG*YGYTF in
p65 at a distance of 0.79, which is relatively large, in-
dicating that ASGLVP*G*VYEQYF is unique to M1.
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Fig. 7 Epitope specificity in Dash et al. repertoires. The plots track the performance of nearest-neighbor classification, using sequence similarity to
predict a CDR's epitope from a set of seven different murine epitopes or from a set of three different human ones. As the threshold required to
make a classification is increased (x-axis), the fraction of sequences (y-axis) that are unclassified (green line) decreases, trading off the fraction that
are correctly (blue line) vs. incorrectly (magenta) classified

As shown in Fig. 7, the specificity-sensitivity balance
shifts as the threshold varies, so in order to understand
the sequence patterns driving that shift, we evaluated
the evolution of the underlying clusters (illustrative
examples in Fig. 9). As the threshold increases, clusters
tend to become larger, containing more unique
sequences, and are therefore more diverse and less
specific. In particular, for the NP cluster, the nearest

cluster in a different repertoire at 0.2 is at a clusterdist
of 0.43, but that falls to 0.36 for the 0.3 NP cluster;
similarly, for PB1-F2 the nearest other-repertoire cluster
at 0.2 is 0.49 away, down to 0.38 at 0.4.

Turning to the other recent large TCR repertoire study,
Glanville et al. [49] collected 2068 unique sequences using
the pMHC tetramers to isolate antigen-specific T cells
spanning eight tetramer antigen-MHC (more specifically
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Fig. 8 Example relatively specific and relatively non-specific epitope clusters in Dash et al. repertoires. Each motif represents sequences from a
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human MHC, called human leukocyte antigen or HLA)
specificities: pp50 associated with HLA-A1 (271
sequences), NP177 associated with HLA-B7 (213), pp65 +
HLA-A2 (155), pp65+ HLA-B7 (56), BMLF1 + HLA-A2
(700), M1+HLA- A2 (56 sequences), and NP44 +
HLA-A1 (24 sequences). Their analysis of this data
showed that the antigen-specific repertoires tended to
share more similar sequences, and revealed some 2-, 3-,
and 4-mer motifs enriched in different repertoires. We
sought to build on this analysis by once again systematic-
ally evaluating the extent of generalization and predictive-
ness supported by sequence patterns.

Nearest-neighbor classification was performed for each
pair of specificities at thresholds of 0.2, 0.3, and 0.4,
predicting the epitope+HLA of one CDR based on that
of the most similar one (Fig. 10). NP44 and pp65 associ-
ated with HLA-B7 generally do very well, and BMLF1
also does relatively well. NP177 and pp65 associated
with HLA-A2 are more easily confused with other
epitopes. On average, over all the pairwise comparisons,
a threshold of 0.2 yields about 19% correctly classified
vs. 2% incorrectly classified, with 74% unidentified.
Raising the threshold to 0.3 yields 38% correct vs. 7% in-
correct with 56% unidentified sequences, and 0.4
continues the trend to 55% vs. 15% with 30% unidenti-
fied. The standard deviations on these correct percent-
ages are around 11-13%, as some pairs are clearly quite
better than others. Overall, these tests confirmed that
the 0.2 to 0.4 range balances accuracy and a sufficient
number of predictions for the epitopes in this dataset.

Classification of pathology by CDR similarity

MCcPAS-TCR catalogues TCR sequences from T cells
associated with various pathological conditions in
humans and mice [54]. This repository allowed us to
move up from epitope specificity to pathology specificity,

evaluating how well CDR3p similarity supports classifi-
cation of the general pathology from which it was de-
rived. The McPAS-TCR human TCR sets with at least
50 unique CDR sequences were downloaded and split
into two groups: “small”, with fewer than 400, and
“large” with more than 400, yielding a relatively equal
number of repertoires per group with relatively balanced
number of sequences per repertoire (Table 2). All pairs
of pathologies within the same size group were then
subjected to nearest-neighbor classification, predicting
the pathology of one CDR based on that of the most
similar one.

The pairwise classification performance (numbers of
correct, incorrect, and unidentified) was calculated for
thresholds of 0.2, 0.3, and 0.4, in the common range
demonstrating favorable specificity-sensitivity perform-
ance across all studies (Fig. 11). On average over all
pairwise classifications in the small repertoire group, the
percentage of correct classifications increases from 19%
at 0.2 to 34% at 0.3 and 49% at 0.4, traded off against 2,
6, and 14% incorrect, respectively, as the fraction of
identified sequences goes from 24% up to 40% and fi-
nally 63%. Likewise, for the pairwise classifications in the
large repertoire group, the fraction of correct classifica-
tions averages 24% at 0.2, 48% at 0.3, and 64% at 0.4,
with corresponding incorrect classification averages of 4,
12, and 20% and identified averages of 34, 56%, and fi-
nally 84%. Over all these comparisons, the standard de-
viations for correct fractions ranges from 8 to 10%, with
some pairs clearly much better than others. In general,
larger repertoires are able to classify more sequences
than small ones, and do so at a higher accuracy, presum-
ably due to simply having a higher probability of con-
taining a sufficiently close sequence. Some infectious
diseases such as influenza, yellow fever, HIV, and hepa-
titis C all do particularly well in the classification task,
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even against each other. With these datasets, cancers
and autoimmune diseases are confused, and diabetes
performs poorly. Further studies are required to ascer-
tain whether differences in classification performance
across specific pathologies and general pathology types
reflect inherent immunological differences or reveal
artifacts in experimental procedures that can perhaps be
mitigated with systematic integration methodologies.

Discussion

This study centers on the use of a representative ap-
proach to assessing TCR similarity, with local alignments
between size-matched CDR3s for each chain separately,
and a relaxed substitution scoring matrix combined with
a relatively large gap penalty. This set of choices strikes
a balance between looking for the local “hot spots” that
mediate binding, and accounting for the overall
structural context in which those hot spots are situated.
While the detailed outcomes would surely be different if
the score moved in one direction toward global align-
ment or in the other direction toward alignment-free
motifs, the same general specificity-sensitivity trends
would likely hold. In contrast, integrating information

across all six CDRs (and even framework regions)
[48-50], rather than considering only CDR3«a or
CDR3pB independently, would likely yield higher
overall performance. However, we felt it worthwhile
to explore how much information was encoded just
in the CDR3 regions, and found them to be strikingly
informative.

The 1-nearest-neighbor classifier employed here for
specificity-sensitivity assessments is one of the simplest
approaches possible, but makes it straightforward to
understand and analyze the basis for predictions. A
model-based approach, e.g., a linear classifier or even a
nonlinear model [51, 52, 55, 56], could give better
predictive performance, but would also confound some
of the analyses due to the differences in sizes and diver-
sity in different groups. At the same time, a statistical
learning approach could provide insights into the
importance to different groups of particular CDRs and
particular residue positions, directly reveal amino acid
motifs conferring specificity, and so forth. In order to
focus on the information provided by CDR similarity
alone, the analyses presented here did not allow for
identity in the 1-nearest-neighbor classification and did



Thakkar and Bailey-Kellogg BMC Bioinformatics (2019) 20:241

Table 2 Pathology-associated repertoires [54] for small (a) and
large (b) size-matched groups

Pathology Category Size

(@) small
Allergy Allergy 259
Celiac disease (celiac) Autoimmune 70
Multiple sclerosis (MS) Autoimmune 116
Rheumatoid Arthritis (RA) Autoimmune 270
Clear cell renal carcinoma (clearcell) Cancer 68
Hepatitis C virus (HepC) Pathogens 85
Yellow fever virus (YF) Pathogens 179

(b) large
Diabetes Type 1 (diabetes) Autoimmune 724
Melanoma Cancer 475
Cytomegalovirus (CMV) Pathogens 921
Epstein Barr virus (EBV) Pathogens 1061
Human immunodeficiency virus (HIV) Pathogens 649
Influenza Pathogens 2939

not consider abundance. This made the classification
task somewhat harder, but also provided a uniform basis
across the different studies. In a specific practical
application, leveraging identity and abundance would be
advantageous; statistical learning approaches could offer
a natural means to incorporate this information.

Our analysis of structural clusters provided some
intriguing insights into sequence-structure relationships,
while the rest of the paper explored a range of
sequence-function relationships. The structural analysis
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was somewhat limited due to limited available
structures, but a more complete loop modeling approach
[57-59] might provide additional power. The functional
analysis could benefit from incorporation of MHC
restriction information [50], in order to reveal associa-
tions among the presented antigens, the presenting
MHCs, and the CDRs. And ultimately, combining
sequence, structure, and function in an integrated model
could provide much deeper insights into the basis for
specific recognition.

We individually analyzed repertoires for pairs of twins
[47] and for particular antigen specificities [48, 49],
along with aggregated collections of pathology-related
repertoires [54], but we did not seek to combine
information across these different studies. An integrative
analysis could provide insights into common modalities
of recognition, as has been shown for MHC restrictions
[50], but which could also span broader functional
associations across antigens from different pathogens as
well as from different “self’s. An integrative analysis
could thus seek to account for private and public aspects
of recognition, gain insights into genetics vs. exposure,
and support modeling of the development of immunity.

Conclusion

This paper has systematically explored the utility of
using CDR3 sequence similarity to predict structural
class and functional group (namely antigen specificity or
pathology association). Based on a representative
measure of similarity and an interpretable classification
method, the information content in CDR3 alone was
shown to support highly specific predictions at a
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sufficiently stringent similarity threshold, and to main-
tain good specificity even while increasing sensitivity by
substantially relaxing the threshold. Furthermore,
patterns supporting predictions within and between
groups were shown to provide insights into the
structural and functional bases for recognition. We
conclude that, if suitably controlled as demonstrated
here, predictive frameworks can productively leverage
sequence patterns in characterizing and predicting TCR
sequence-structure-function relationships.

Methods

Data processing

When data was processed for each repertoire, the first
“C” from each sequence was removed as it is uninforma-
tive for scoring, uniformly inflating the scores. Duplicate
sequences were combined within each repertoire.

Sequence similarity score

Given a pair of CDRs to evaluate for similarity, local
alignment was performed using the Smith-Waterman
(SW) algorithm [60], implemented in the Python pack-
age swalign [61]. SW was applied with the BLOSUM45
substitution matrix [62] to allow for biochemical diver-
sity, and a gap penalty of — 10 to focus on matching
largely gap-less substrings. Manual inspection of some
CDR alignments suggested that these parameters accom-
plished the intended goals. So as to generate a score that
is universally comparable across different CDR sets, the
alignment score was normalized by dividing by the
self-scores of the two sequences. To provide a dissimilar-
ity measure suitable for clustering, the normalized score
was then subtracted from 1. Since SW scores are
non-negative and self-scores are maximal, the final score
is between 0 (identical) and 1 (no discernable similarity).
Formally, for two sequences A and B, the distance is:

| SW(A,B)*
D A,B)=1-
CDRdist(A,B) \/S\V(A,A) * SW(B,B)

Nearest neighbor classification

Given a set of CDRs that are labeled as belonging to one
of two or more different groups, a nearest neighbor clas-
sifier predicts the label of another CDR based on
“nearby” labeled CDRs, in terms of CDRdist. A
1-nearest-neighbor classifier was used for the results
here, making the assignment on the single closest (but
not identical) CDR rather than taking a vote among
several. Furthermore, the allowed distance was
thresholded, such that if no neighbor was sufficiently
close, then no prediction would be made.

Page 12 of 14

Clustering

CDRs were clustered using hierarchical agglomerative
clustering via the linkage function in the scipy.cluster.-
hierarchy package of scipy [63], with the CDRdist as a
comparison function. The resulting dendogram was cut
at the specified CDRdist threshold (i.e., 0.2, 0.3, or 0.4 in
the example results) in order to define clusters.

Cluster similarity score

In order to characterize how specific or non-specific
clusters were to the repertoires they came from, the
distance between a pair of clusters was computed as the
average pairwise distance between their members:

ZceCl ZC'ECZ CDRdiSt(Cv Cl)
|C1||C2|

clusterdist(C1,C2) =

Then the relative specificity of a cluster to its
repertoire was characterized in terms of its distance to
clusters from other repertoires, with a small score
indicating non-specificity (i.e., similarity to a cluster
from another repertoire).

Logos

Sequence logos were generated by Weblogo version
2.8.2 [64, 65] in conjunction with the biopython [66]
motif library Bio.motifs.Motif.

Additional file

[Additional file 1: Classification Results Details. (DOCX 18 kb) J
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