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Abstract

Background: Parametric feature selection methods for machine learning and association studies based on genetic
data are not robust with respect to outliers or influential observations. While rank-based, distribution-free statistics
offer a robust alternative to parametric methods, their practical utility can be limited, as they demand significant
computational resources when analyzing high-dimensional data. For genetic studies that seek to identify variants, the
hypothesis is constrained, since it is typically assumed that the effect of the genotype on the phenotype is monotone
(e.g., an additive genetic effect). Similarly, predictors for machine learning applications may have natural ordering
constraints. Cross-validation for feature selection in these high-dimensional contexts necessitates highly efficient
computational algorithms for the robust evaluation of many features.
Results: We have developed an R extension package, fastJT, for conducting genome-wide association studies
and feature selection for machine learning using the Jonckheere-Terpstra statistic for constrained hypotheses. The
kernel of the package features an efficient algorithm for calculating the statistics, replacing the pairwise comparison
and counting processes with a data sorting and searching procedure, reducing computational complexity from
O

(
n2

)
to O(n log(n)). The computational efficiency is demonstrated through extensive benchmarking, and example

applications to real data are presented.
Conclusions: fastJT is an open-source R extension package, applying the Jonckheere-Terpstra statistic for robust
feature selection for machine learning and association studies. The package implements an efficient algorithm which
leverages internal information among the samples to avoid unnecessary computations, and incorporates
shared-memory parallel programming to further boost performance on multi-core machines.
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Background
Feature selection is a critical step in machine learning [1]
and association studies based on high-dimensional
genetic data. When building a model, attempting to use
all available features can perform as poorly as random
guessing [2]. The key to building a generalizable model is
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a robust feature selection procedure that minimizes the
inclusion of noisy features due to the presence of a few
outliers or influential observations. Similarly, a robust fea-
ture selection procedure protects against over-inflation
of the significance of a null variant. To illustrate this
point, we consider an example from a recently published
genome-wide association study (GWAS) which identi-
fied common variants associated with baseline circulating
protein levels in advanced pancreatic cancer patients [3].
Figure 1 illustrates the presence of extreme outliers for
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Fig. 1 Boxplot of selected plasma protein levels for CALGB 80303 data.Box plot of VEGF-A, VEGF-C, and MCP1 plasma protein levels in CALGB 80303.
The boxes indicate the 25th (Q1) and 75th (Q3) percentiles, with the heavy line showing the median value. Whiskers indicate max(min(plasma levels),
Q1–1.5 * IQR) and min(max(plasma levels), Q3+1.5 * IQR). The circles represent individual patient plasma levels

three markers from this GWAS. These examples under-
score the need for inferential methods which are robust to
such potentially influential observations.
Both parametric and nonparametric methods for fea-

ture selection are available. Parametric tests are more
widely adopted for feature selection, as they are generally
faster and, under certain assumptions, have greater power.
Furthermore, the parameter estimates of the parametric
models often have an intuitive interpretation. However,
the statistical validity of parametric methods is dependent
on distributional assumptions, for example normality or
homogeneity of the variability of the observations. Con-
versely, nonparametric tests, also known as distribution-
free tests, do not require assumptions about the distri-
bution of the data and are, unlike their parametric coun-
terparts, robust to outliers and influential points. For a
general comparison of parametric versus nonparametric
methods see [4].
Commonly employed nonparametric tests include the

Wilcoxon rank-sum (Wilcoxon-Mann-Whitney) [5] and
the Kruskal-Wallis [6] tests, which are nonparametric
counterparts of the two-sample t-test and the analysis of

variance (ANOVA) model, respectively. Feature selection
theory based on theWilcoxon rank-sum test has been pro-
posed to study lung and prostate cancers [7]. For ordered
alternatives, the Jonckheere-Terpstra (JT) test [8, 9] is a
nonparametric counterpart to the simple linear regression
model.
The JT test is used to assess whether a quantitative

trait is associated with an ordinal feature. For example,
the association between ammonia levels and the sever-
ity of hepatic encephalopathy [10], and the association
of abnormal MRI findings with bone-marrow-related dis-
ease [11]. More recently, studies have used the JT test
to investigate the association between single nucleotide
polymorphisms (SNPs) in human genes and quantitative
phenotypes [12–18]. However, in these cases the use of the
JT test for feature selection in genomic studies is limited to
small data sets, examining only a few candidate SNPs. Fea-
ture selection for high-dimensional problems, for example
the analysis of SNPs genome-wide, or mapping expres-
sion quantitative trait loci (eQTL), using the JT test is
computationally expensive and often infeasible, since the
computational complexity of the JT test is quadratic in the
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number of samples. Further, robust feature selection for
machine learning involves not only the application of the
JT test to high-dimensional data, but also cross-validation,
to avoid overfitting. Cross-validation requires repeating
the JT test on different subsets of the data, demanding
significant computational resources.
In this paper, we present fastJT, an open source R [19]

package featuring an efficient implementation of the JT
test that is capable of computing statistics across multi-
ple features and quantitative traits. The naive/brute force
implementation of the JT test has computational com-
plexity of O(n2), where n is the number of samples. By
replacing the pairwise comparison of quantitative traits
values with a sorting and searching algorithm, we are
able to achieve a computational complexity of O(n log(n)).
This improvement makes the computing of large numbers
of rank-based, distribution-free statistics possible within
reasonable computational time. fastJT also provides
a function for cross-validation-based feature selection
using the JT test. In the following sections, we provide
a detailed explanation of how the O(n log(n)) complex-
ity is achieved, a description of the new algorithm, and
a series of benchmarking examples for selecting top fea-
tures for GWAS and machine learning. We demonstrate
the application of the algorithm to real data, and conclude
with a discussion of the benefits and limitations of this
implementation.

Methods
Computational complexity
The JT test assesses the association between an ordinal
feature and a quantitative trait. The latter could be a clin-
ical outcome (e.g., blood pressure) or a biomarker (e.g.,
protein or mRNA level). The JT test compares the values
of the quantitative trait between samples from the differ-
ent ordinal groups. The resulting test statistic is composed
of a weighted sum of these comparisons.
The contribution to the statistic from any pair of ordinal

groups is the Mann-Whitney count [5], given by [20]

Ukl =
nk∑

i=1

nl∑

j=1
φ(yik , yjl). (1)

Here, k and l are the indices for the ordinal groups being
compared (assume k < l). The numbers of samples in
each group are nk and nl, and yik and yjl represent the val-
ues of the quantitative trait for the ith and jth members of
the groups, respectively. The function φ(a, b) has a value
1, 0.5, or 0, if a is less than, equal to, or greater than b,
respectively. This group-wise comparison is carried out
for each pairing of t ordinal groups, resulting in a total
of t(t − 1)/2 between-group comparisons. Note that the
ordinal categories being compared are predetermined by

the experimental design, as opposed to being based on the
observed data (Section 6.2 in [20]). In association studies
based on genetic data, as in the case of a linear regres-
sion, we treat the SNP as a non-random predictor. The full
statistic for the JT test is then the summation of the values
of Ukl for each possible k and l combination,

J =
t−1∑

k=1

t∑

l=k+1
Ukl. (2)

Note that computing the standardized version of the
JT statistic requires the calculation of the expected value
and the variance of J (Eq. 6.19 in [20]). The compu-
tational overhead of these additional steps is relatively
small (O(1)), so the overall computational complexity is
dominated by the calculation of J, which has a cost of
O(

∑t−1
k=1

∑t
l=k+1 nknl) for this simple pairwise compari-

son scheme.
The number of pairwise comparisons required is great-

est when the ordinal groups are of equal size. Since the
number of ordinal categories, (and therefore the number
of between-group comparisons), is a predetermined con-
stant, the total computational complexity will be O(n̄2),
where n̄ = n/t, (see “Appendix” for detailed deriva-
tions), i.e., quadratic in the number of samples. When
analyzing multiple features and quantitative traits, this
calculation must be conducted m × p times, where m is
the number of features and p is the number of quanti-
tative traits. This can become very expensive for some
applications, e.g., a GWAS, which might involve dozens of
biomarkers and thousands or millions of SNPs. Therefore,
a faster algorithm for computing JT test statistics is highly
desirable.
One way to reduce the computational complexity is

to sort the values of the quantitative trait prior to cal-
culation of the statistic, to minimize unnecessary and
repeated comparisons. This comes at the cost of adding
a preliminary sorting step. In general, a sorting algorithm
can be used that has (as an upper bound) O(n log(n)

complexity. After sorting, many unnecessary comparisons
can be avoided (the details of this are presented in the
“Algorithm and implementation” section below). It can be
shown that the computational cost for obtaining the JT
test statistic for sorted quantitative traits (ignoring, for a
moment, the cost of sorting) is O(n̄), i.e., linear in the
number of samples. It can further be shown that the com-
putational complexity of the sorting step is O

(
n̄ log(n̄)

)

(see “Appendix” for detailed derivation), where n̄ could be
interpreted as the mean number of samples per ordinal
group. Thus the overall cost will be dominated by the sort-
ing process. For relatively large samples, (i.e., n̄ > 50), this
is a significant improvement over the quadratic complex-
ity of the naive, pairwise comparisons. If the sample size
is very close to the number of subgroups, or if the samples
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are very sparse, then the improvements in performance
may not be as dramatic.

Algorithm and implementation
The essence of the JT test is to count the number of
observations in one ordinal group that have smaller, larger,
or equal values of the quantitative trait compared to the
observations in higher ordinals. Recall, however, that for
k < l, counts of yik > yjl are weighted by zero. Therefore,
we can improve computational efficiency by avoiding such
noncontributing comparisons. In that case, Eqs. 1 and 2
can be written as

J =
t−1∑

k=1

t∑

l=k+1

nk∑

i=1

∑

js.t.yjl≥yik

φ(yik , yjl).

Further gains can be made if we increment the indices
i and j in order of ascending values of the quantita-
tive trait for each ordinal group. In this case, no further
comparisons are needed once yik is strictly less than yjl.
The additional contribution to the statistic is equal to
the number of remaining members of group l such that
yjl > yik .
The algorithm below demonstrates how this improved

counting process can be implemented. Initially, the values
of yik and yjl for groups k and l are sorted in ascend-
ing order into vectors Y1 and Y2, respectively. Then the
computation is conducted as follows:

Algorithm 1 Computing JT test statistics
1: p1 ← starting index of Y1
2: p2 ← starting index of Y2
3: while p1 < Y1.length and p2 < Y2.length do
4: if (Y1[ p1]< Y2[ p2] ) then
5: MWC ← MWC + Y2.length − p2
6: p1 ← p1 + 1
7: else if (Y1[ p1]== Y2[ p2] ) then
8: increment a from 1 until Y1[ p1+ a] != Y1[ p1]
9: increment b from 1 until Y2[ p2+ b] != Y2[ p2]

10: MWC ← MWC + 0.5(a+1)(b+1)
11: p1 ← p1 + a
12: p2 ← p2 + b
13: else if (Y1[ p1]> Y2[ p2] ) then
14: p2 ← p2 + 1
15: end if
16: end while
17: returnMWC

The pointers p1 and p2 proceed along the vectors Y1 and
Y2, moving one or, in the case of equal values, multiple
positions at a time, thereby accounting for all comparisons
while requiring only a single pass over the two vectors.
Therefore the computational complexity of computing the

Mann-Whitney count Ukl is O(nk + nl), i.e., linear in the
number of samples involved. The overall cost of com-
puting J is a summation of the above calculations for all
t(t − 1)/2 between-group comparisons. Since t is prede-
termined, the computation complexity is O(n̄), remaining
linear in the number of samples.
This algorithm is implemented in the R [19] exten-

sion package fastJT [21], primarily coded in C++ and
ported to the R platform using Rcpp [22]. This package is
designed to compute the JT test statistics for large num-
bers of ordinal features and quantitative traits for con-
ducting feature selection for machine learning or GWAS.
The package provides functions for k-fold cross-validation
of the feature selection process. Incorporation of the C++
library OpenMP [23] enables simultaneous testing of mul-
tiple phenotypes, as for example in the case of eQTL
analyses, improving performance for analyzing large
data sets.

Example applications to real data
Here we demonstrate the use of fastJT in a machine
learning application to real-world data. We illustrate a
practical application of our package in the context of
conducting cross-validated robust feature selection for
building a model to predict baseline circulating protein
levels for the three biomarkers, VEGF-A, VEGF-C and
MCP1, shown in Fig. 1. These analyses are based on
genome-wide genotyping and plasma protein marker data
from CALGB 80303, a randomized, placebo-controlled,
double-blind, phase III study of bevacizumab plus gemc-
itabine in advanced pancreatic adenocarcinoma patients
[3, 24–26]. For these analyses, we use data from 216
CALGB 80303 patients who are estimated to be genet-
ically European and have baseline circulating protein
level data available. The number of SNPs in this analy-
sis is 484,523. Additional information about these data,
including quality control methods used for the geno-
type and protein marker assays, are provided in the four
previously referenced papers. The genotyping data from
CALGB 80303 can be downloaded from the database
of Genotypes and Phenotypes (dbGaP) through study
accession phs000250.v1.p1. The protein marker data are
provided as part of the supplemental information from
Innocenti et al. [3].
For each marker, the predictive model is trained based

on a two-layer cross-validation approach as described
by Simon et al. [27]. The outer layer utilizes leave-
one-out cross-validation for robust feature selection
using fastJT, while the inner layer uses 10-fold cross-
validation to tune an elastic net model using the
cv.glmnet function from the glmnet [28] package. In
the outer layer, the data from a single patient are removed,
and the JT test is applied to the data from the 216 − 1 =
215 remaining patients. The resulting P-values are used
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to select the top 10 features. In the inner layer, the elas-
tic model is tuned using data from the 215 patients on
the basis of the features selected from the outer layer.
The resulting model is used to predict the plasma protein
level for the patient which was initially removed, and this
process is repeated for all patients. The cross-validated
predicted levels are then compared to the correspond-
ing observed levels using R2 values and scatter plots. See
Additional file 1: Figure S1 for a schematic of this process.

Results
In this section, we provide benchmarks to demonstrate
how the computational cost of our algorithm is related to
the number of samples and the dimensions of the data.
We also assess the statistical operating characteristics of
our method in the presence of outliers. Benchmarks for
parallel analyses are also reported, to explore the cost
of the overhead required for multiple threading. Bench-
marking was conducted on an AMDOpteron(tm) 6180 SE
CPU running the Debian 4.9.130-2 AMD64 GNU/Linux
operating system.We also demonstrate a real-world appli-
cation of our algorithm using data from the CALGB 80303
GWAS.

Simulation and benchmarking
We begin by benchmarking the performance of fastJT
in the context of feature selection for a simulated machine
learning analysis, looking at the computational costs of k-
fold cross-validation. A single quantitative trait (p = 1) is
sampled from N(0, 1), a normal distribution with mean 0
and variance 1. The features (m = 1, 000, 000) are each
sampled from B(2, 0.5), a binomial distribution with size
parameter 2 and probability parameter 0.5. These repre-
sent counts of variant alleles (0, 1 or 2) from genotyping
biallelic SNPs. The traits and features are simulated for
n = 1, 000 observations, and each simulation is replicated
B = 100 times.
Figure 2 shows the CPU times for feature selection cor-

responding to an analysis using the full training set, and
k = 5, 10 and 15 fold cross-validation.
The remaining simulation studies are conducted within

the context of an eQTL analysis. In the first study, we
benchmark the effects of varying the sample size, n, num-
ber of features, m, or number of traits, p, on execution
time. In the second study, we benchmark the performance
gained from using the OpenMP implementation of our
method. In the third study, we assess the robustness of
our approach in presence of outliers, as compared to a
parametric method.
For the first two studies, each of the p quantitative

traits are sampled from N(0, 1), a normal distribution
with mean 0 and variance 1, and the genotypes of the
m SNPs are sampled from a binomial distribution with
size 2 and probability MAF where MAF, the relative

Fig. 2 Cross-validation CPU times. CPU times for computing
standardized JT test statistics using cross-validation with different
numbers of folds, k, based on n = 1, 000 samples with
m = 1, 000, 000 features and p = 1 quantitative trait. Each reported
time is the mean of B = 100 simulation replicates

minor allele frequency, is 0.5. For the final study, which
involves outliers, the quantitative traits for samples simu-
lated as having twominor alleles are drawn from amixture
distribution consisting of components N(0, 1) (standard)
andN(8, 1) (outlier), withmixture probability π∈[ 0, 0.03],
the proportion of the observations drawn from the outlier
component. The simulations are repeated for MAF equal
to 0.2, 0.3, 0.4, and 0.5.
We first consider the effect of varying the number of

features or traits. Figure 3a shows the CPU times for sim-
ulations with varying numbers of SNPs, m, and a fixed
number of traits (p = 1, 000) and samples (n = 1, 000).
Figure 3b shows results for a similar study, but instead
varies the number of traits, p, while holding the number
of SNPs fixed (m = 1, 000).
We next examine the computational cost of increasing

the sample size, comparing two different implementations
of the JT test. The first implementation is fastJT, using
the algorithm described above. The second is a “naive”
implementation of the test, which does not include the
sorting step. This algorithm therefore requires exhaus-
tive pairwise comparisons. Figure 4 shows the CPU times
based on a fixed number of features (m = 1, 000) and
traits (p = 1, 000), with a varying number of samples (n).
Each reported time is the mean of B = 100 simulation
replicates.
Specifically, we observe that if the number of samples is

increased from 100 to 5000, the corresponding CPU time



Lin et al. BMC Bioinformatics          (2019) 20:333 Page 6 of 11

a b

Fig. 3 CPU times for varying numbers of SNPs and traits. a: CPU times for computing standardized JT test statistics for different numbers of SNPs,m,
with a fixed number of traits (p = 50) and samples (n = 1, 000) using 8 threads. b: CPU times for computing standardized JT test statistics for
different numbers of traits, p, with a fixed number of SNPs (m = 1, 000) and samples (n = 1, 000). Reported time for panel (a) is the mean of B = 10
simulation replicates. Reported time for panel (b) is the mean of B = 100 simulation replicates

for fastJT is increased from 13.8 to 870.2s. The corre-
sponding times based on the naive pairwise comparison
algorithm are 14.7s and 5589.0s, respectively.
Beyond improving algorithmic efficiency, computation

time for investigating multiple features and quantitative
traits can be reduced by processing separate tests in

Fig. 4 CPU times for varying numbers of samples. CPU times for
fastJT and an implementation of the JT test using (unsorted)
pairwise comparisons. Results are shown for different numbers of
samples (n), with a fixed number of SNPs (m = 1, 000) and traits
(p = 1, 000). Each reported time is the mean of B = 100 simulation
replicates

parallel. However, this approach can incur additional over-
head due to the cost of passing data to, and retrieving
results from, the processing cores.
Figure 5 shows the elapsed CPU times for for a fixed

number of traits (p = 1, 000), SNPs (m = 1, 000), and
samples (n = 1, 000), when using different numbers of
parallel processing cores. The red dots represent the CPU
times for the multi-core OpenMP implementation. For
comparison, the dashed curve shows the single core CPU
time divided by the number of cores. This represents the
idealized parallel processing time in which there is no
overhead for passing data among cores.
Having explored the computational performance of our

algorithm empirically, we next examine its statistical per-
formance in the presence of outliers. This is shown in
the context of inference for a single feature/quantitative
trait pair (m = 1, p = 1) in n = 500 samples. For
this illustration, we simulate the genotypes for a variety
of MAFs, and simulate the quantitative trait to include
a small proportion of outliers, as described above. The
statistical performance of the fastJT algorithm is com-
pared to that of the simple linear regression model. The
simple linear regression model is a parametric counter-
part to the JT test for testing the association of ordinal and
a quantitative variables, using the genotype as a numeric
predictor of the marker level. We consider the rejection
rate at the nominal 0.05 level (i.e., we call the feature to be
significant if the corresponding asymptotic P-value is less
than 0.05).
Figure 6 shows the rejection rates for the linear model,

using the lm function in R, and the JT test, as imple-
mented in fastJT, for varying levels of π , the proportion
of the observations drawn from the outlier distribution.
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Fig. 5 CPU times for varying numbers of processing cores. CPU times
for different numbers of processing cores, with a fixed number of
SNPs (m = 1, 000), traits (p = 1, 000), and samples (n = 1, 000). The
dashed line gives the single core CPU time divided by the number of
cores. Each reported time is the mean of B = 100 simulation replicates

Example application to real data
In Figure 7, we show scatter plots of the predicted versus
observed marker levels for VEGF-A, VEGF-C and MCP1
from the CALGB 80303 GWAS. The analysis is conducted
on an AMD Opteron(tm) 6386 SE CPU running the
Ubuntu 18.04.1 LTS GNU/Linux operating system. The
completion of the entire analysis, including the robust fea-
ture selection step using fastJT, is 2.51 hours. Note that
this process includes executing 216 leave-one-out cross-
validation replicates, each of which consists of a GWAS of
three protein markers, based on 215 patients and 484,523
SNPs. The predicted and observed circulating protein lev-
els for VEGF-A, VEGF-C and MCP1 have R2 values of
0.047, 0.24 and 0.19, respectively.
As another example application, the fastJT algo-

rithm is used by Innocenti et al. [3] to conduct an
eQTL analysis of data from CALGB 80303 [24] and
80203 [29].

Discussion
These benchmarks provide a practical demonstration of
how the computational cost of our JT test algorithm is
related to the number of samples and the dimensions of
the data. These simulations and results are completely
reproducible using the code includedwith thismanuscript
as Additional files 2, 3, 4 and 5. In addition to the eval-
uations shown here, we also confirm the accuracy of the
calculation against known results based on example 6.2

of [20]. The statistics calculated by our fastJT pack-
age match the published results. The code used for this
verification is provided as Additional file 6.
While the computational costs given here would be

greatest if the simulated samples were evenly distributed
across the ordinal groups, i.e., if the simulated counts
of the variant alleles (0, 1 or 2) occured in propor-
tions of 1/3, 1/3 and 1/3, a binomial distribution
with probability parameter 0.5, giving proportions of
1/4, 1/2, and 1/4, represents the worst case under
Hardy-Weinberg.
Figure 2 shows that the CPU times grow linearly with

the number of folds, since each cross-validation is a repeat
of the JT test (excluding a subset of samples). The CPU
times also grow linearly with the numbers of features and
traits (Fig. 3), when the other parameters are fixed, since
the JT test is conducted for all possible combinations of
features and traits.
When the sample size is increased (Fig. 4), a 50-fold

increase in sample size corresponds to a similar relative
increase, about 50-fold, in execution time for fastJT,
while the naive pairwise comparison algorithm shows a
more than 380-fold increase.
The limiting factor in the performance of our algo-

rithm is the efficiency of the sorting algorithm. The
computational complexity of O(n̄ log(n̄)) is the worst
case. In our simulations, as shown in Fig. 4, the com-
putational complexity is O(c × n̄ log(n̄)), where c is
a very small factor, thanks to the efficient sorting
algorithm implemented in C++ STL. Ultimately, the
optimal choice of sorting algorithm depends on the
data type.
For application of the JT test, the trait is assumed to

be continuous while the feature is assumed to be ordi-
nal. Note that by the nature of the Jonckheere-Terpstra
test, our approach is not applicable in the case when both
the trait and feature are continuous, except when such
features can reasonably be binned into a manageable set
of ordinal values. The algorithm also lacks support for
selection of interaction effects. In the case of overlapping
or correlated features, additional preprocessing, e.g., LD
pruning, is required to prevent the selection of redundant
features.
When leveraging OpenMP for multi-core process-

ing, as shown in Fig. 5, the observed times match
closely with the theoretical ideal, indicating that the
overhead of performing the multi-core computation
is negligible.
Finally, in Fig. 6 we observe that for small proportions

of outliers, the empirical rejection rate for the paramet-
ric approach exceeds the nominal rate of 0.05. The JT
test, while more computationally demanding compared
to the parametric approach, as expected, is robust to the
presence of outliers.



Lin et al. BMC Bioinformatics          (2019) 20:333 Page 8 of 11

Fig. 6 Empirical rejection rates in the presence of outliers. Empirical rejection rates for the linear regression model and the JT test, for data simulated
with n = 500 samples for varying levels of MAFs and varying proportions of outliers, π . The red solid line indicates the nominal rate of 0.05. Each
reported rate is based on B = 10, 000 simulation replicates

Fig. 7Machine learning prediction of plasma levels in CALGB 80303. Comparison of observed and predicted plasma protein levels of VEGF-A,
VEGF-C, and MCP1. The machine learning model is built based on the top 100 SNPs selected by fastJT, and trained using the glmnet package
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In addition to benchmarking on simulated data, we use
our package to to build prediction models for three cir-
culating protein markers from the CALGB 80303 GWAS.
This application of the algorithm for robust feature selec-
tion produces predictions of the observed marker levels
within a few of hours using a desktop CPU. Because the
predictions are based leave-one-out feature selection, pro-
cessing time is dominated by the number of patients,
rather than the number of traits being predicted.
The R2 values between the observed and cross-validated

predicted levels of circulating VEGF-A, VEGF-C and
MCP1 (Fig. 7), which are 0.047, 0.24 and 0.19, respectively,
provide estimates of the proportion of the variability in the
marker levels that can be attributed to common genetic
variation. We note that if one skips the outer layer of the
cross-validation, by selecting the top ten features based
on data from all 216 patients, and then reusing the same
set of features for each of the 216 leave-one-out cross-
validation replicates, the estimated R2 values are 0.38, 0.31
and 0.20 for VEGF-A, VEGF-C and MCP1, respectively.
The risk of producing potentially over-optimistic results,
when the feature selection process is not cross-validated,
is well known [27, 30]. The main objective of this example
is not to carry out a full analysis of the estimated propor-
tion of variability of these protein markers explained by
common genetic variation but rather to illustrate a practi-
cal application of our package for properly cross-validated
robust feature selection.
The key feature of the proposed algorithm is that it

leverages the sorting of sample values to minimize unnec-
essary comparisons when calculating the statistics. The
gain in performance of this algorithm over pairwise com-
parisons is substantial (Fig. 4), and this improvement is
magnified as the sample size increases. The JT method
shows markedly less inflation of the empirical rejection
rate in the presence of outliers than the method of linear
models. While these results are shown in the context of
feature selection for machine learning and trait-SNP asso-
ciations, our approach can be applied to a wide variety of
statistical problems requiring large-scale feature selection.

Conclusion
This paper introduces the R extension package fastJT
for robust and efficient feature selection for machine
learning and genome-wide association studies with multi-
ple quantitative phenotypes. The package employs an effi-
cient algorithm which uses sorting to avoid unnecessary
and redundant computations. This algorithm achieves a
reduction in computational complexity to O(n̄ log(n̄)),
compared to O(n2) for the naive approach. The JT test
is robust in the presence of outliers when compared to
a parametric linear regression test. fastJT is released
under a public license and provides ample documentation,
including a vignette.

Appendix: Computational Complexity
The core of the JT test statistic is the the Mann-Whitney
count [5]:

Ukl = �
nk
i=1�

nl
j=1φ(yik , yjl).

Here, k and l are the ranked indices for the ordinal groups
being compared (assume k < l). The numbers of sam-
ples in each group are nk and nl, and yik and yjl represent
the values of the quantitative trait for the ith and jth mem-
bers of the groups, respectively. Then the JT test statistic
is the summation of the Mann-Whitney counts across all
pairings of the ordinal categories

J =
t−1∑

k=1

t∑

l=k+1
Ukl,

where t is the number of categories. The overall computa-
tional complexity of the above process has a cost (in terms
of elementary operations) of

t−1∑

k=1

t∑

l=k+1
nknl.

In the worst-case scenario, all groups have size n̄ = n/t.
The total computation cost can then be given as

t(t − 1)
2

n̄2.

Since the number of categories, t, is a predefined constant,
the computational complexity, in big O notation, is:

O
(
n̄2

)
.

That is to say, the computational cost for a naive imple-
mentation of the JT test statistics is quadratic in the
number of samples.
In the fastJT package, the computation of the statis-

tics is carried out in two parts, sorting and counting.
After sorting the quantitative trait, the Mann-Whitney
count is carried out by conducting a searching and count-
ing process, shown in the “Algorithm and implemen-
tation” section to have a computational complexity of
O(n̄). For this implementation of the statistic, the compu-
tational cost, in terms of the total number of elementary
operations, is:

tn̄ log(n̄) + O(n̄) = O(max(tn̄ log(n̄), n̄)).

The logarithmic term of the cost is incurred from sort-
ing the quantitative trait values for the samples in each
of the ordinal groups. The linear term accounts for the
searching and counting process. Thus, the sorting process
dominates the overall cost of computation, so the com-
putational complexity for computing the JT statistic in
fastJT is O(tn̄ log(n̄)), or essentially O(n̄ log(n̄)) for a
fixed number of ordinal categories.
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