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Abstract

Background: Differential expression analysis on tumor expression profiles has always been a key issue for
subsequent biological experimental validation. It is important how to select features which best discriminate between
different groups of patients. Despite the emergence of multivariate analysis approaches, prevailing feature selection
methods primarily focus on multiple hypothesis testing on individual variables, and then combine them for an
explanatory result. Besides, these methods, which are commonly based on hypothesis testing, view classification as a
posterior validation of the selected variables.

Results: Based on previously provided A5 feature selection strategy, we develop a joint covariate detection tool for
differential expression analysis on tumor expression profiles. This software combines hypothesis testing with testing
according to classification results. A model selection approach based on Gaussian mixture model is introduced in for
automatic selection of features. Besides, a projection heatmap is proposed for the first time.

Conclusions: Joint covariate detection strengthens the viewpoint for selecting variables which are not only
individually but also jointly significant. Experiments on simulation and realistic data show the effectiveness of the
developed software, which enhances the reliability of joint covariate detection for differential expression analysis on
tumor expression profiles. The software is available at http://bio-nefu.com/resource/jcd-dea.

Keywords: Feature selection, Expression profiles, Differential expression analysis, Diagnosis, Cancer

Background
Multiple hypothesis testing, which is a situation where
more than one hypothesis is evaluated simultaneously [1],
has been widely used for differential expression analy-
sis on tumor expression profiles. In order to improve the
statistical power, methods that address multiple testing
by adjusting the p-value from a statistical test have been
widely proposed for controlling the family-wise error rate
(FWER) [2], false discovery rate (FDR) [3], q-value [4], etc.
Correspondingly, many tools deriving from multiple

hypothesis testing have been produced for detecting dif-
ferentially expressed genes. The siggenes bioconductor
package, which uses the significance analysis of microar-
rays (SAM) [5], provides a resampling-based multiple
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testing procedure involving permutations of data. Lin-
ear models for microarray data (namely, limma), which
help to shrink the estimated sample variances towards
an estimate based on all gene variances, provide several
common options (e.g., FWER and FDR) for multiple test-
ing [6, 7]. The multtest package provides a wide range of
resampling-based methods for both FWER and FDR cor-
rection [8]. Besides, a regression framework is proposed
to estimate the proportion of null hypotheses conditional
on observed covariates for controlling FDR [9].
Apart from multiple hypothesis testing on individual

variables, multivariate hypothesis testing which indicates
whether two distributions of samples are differential or
not (e.g., Hotelling’s t2-test [10]) holds a non-mainstream
position, considering the need of high dimensional matrix
operation. With the increasing number of multidimen-
sional features, multiple hypothesis testing also has to be
provided to multivariate hypothesis testing, which needs
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more computation. Therefore, testing according to clas-
sification results is assured of a common place. Using
classifiers (i.e., logistic regression model, supporting vec-
tor machine and random forest, etc. [11]), genes which
together help to stratify sample populations are regarded
as predictive.
In fact, it has been pointed out that hypothesis testing

is regarded to be explanatory, while classification-based
methods are viewed to be predictive [12]. As to mul-
tiple hypothesis testing on individual variables, it may
leave out the explanatory signature. It has been found
out in our previous researches [13, 14] that an explana-
tory pair expressed differently between two patient groups
may not be composed of individually explanatory vari-
ables. As to various dimensional hypothesis testing and
classification-based methods, how to select features not
only obeying population distribution but also improv-
ing prediction accuracy needs to be further discussed.
Thus, we proposed joint covariate detection for differ-
ential expression analysis on tumor expression profiles
[13]. Three improvements have been made. First of all,
we made a bottom-up enumeration of features in different
dimensions of gene tuples. Secondly, various dimensional
hypothesis testing was combinedwith classification-based
method. Thirdly, a resampling procedure involving per-
mutations of data, which was derived from A5 formula-
tion [15], was constructed. Besides, a combined projection
using cancer and adjacent normal tissues was made other
than treating them separately [16–19], in order to make a
better discriminative performance.

In this paper, we propose a joint covariate detec-
tion software for differential expression analysis on
tumor expression profiles (i.e., abbreviated to JCD-
DEA). In addition, we make three more improvements.
Firstly, a model selection method based on Gaus-
sian mixture model (GMM) [20] is introduced in, due
to the need of automatic selection of features. Sec-
ondly, we present a projection heatmap other than tra-
ditional expression heatmap, which directly indicates
the effectiveness of JCD-DEA. Thirdly, it is further
discussed whether the adjacent normal tissues really
work or not.

Method
Our JCD-DEA is concisely expressed, as illustrated in
Fig. 1. At step A1, combined projection which corre-
sponds to a linear projection (e.g., Fisher’s linear dis-
criminate analysis [11]) of cancer and adjacent normal
tissues on each gene is manually selected or not. Once
combined projection is selected, two expression profiles
which correspond to cancer and adjacent normal tissues
respectively are merged into one projection profiles with
two kinds of classification labels (e.g., metastasis or not).
Dimension reduction projection refers to a linear projec-
tion across genes for enumeration of features in different
dimensions bigger than one.
At step A2, values of expressions or projections with

two kinds of classification labels are resampled at 90% in
each dimension. Welch’s t-test is used on the one dimen-
sional values of two categories for hypothesis testing.

Fig. 1 Schematic of JCD-DEA
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Fig. 2 Step 1: Selection of feature(s) associated with differential expression

Permutations of data are alternatively utilized for over-
coming the limitation of sample size. In addition, a clas-
sifier is trained using resampled 70% specimens and
tested using the left 30% samples. An average classifi-
cation error rate is calculated after certain rounds of

resampling.More details about step A1 and step A2 can be
seen in [13].
At step A3, hypothesis testing results are combined with

those of classification-based testing. Unlike the voting
strategy applied in [13], a GMM-based model selection

Fig. 3 Step 1: Display of computing status
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Fig. 4 Step 2: Selection of feature(s) with high A5 score(s)

a b c

d e

Fig. 5 Scatter plots of simulated data in two-dimensional space. a The scatter plot with its x-axis and y-axis corresponding to miRNA-alternative 1
and miRNA-alternative 2 b The scatter plot with its x-axis and y-axis corresponding to miRNA-alternative 3 and miRNA-alternative 4 c The scatter
plot with its x-axis and y-axis corresponding to miRNA-alternative 5 and miRNA-alternative 6 d An example of unbalanced sampling associated with
the scatter plot of c, with undiscovered samples been added e The scatter plot with its x-axis and y-axis corresponding to miRNA-alternative 1 and
miRNA-alternative 5
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method [20] for automatic feature selection is introduced
in. The numbers of Gaussian mixtures for both p-values
derived from hypothesis testing and average classification
error rates are confirmed respectively. An intersection
of features derived from the two minimum-mean-value
Gaussian components respectively for hypothesis testing
and classification-based testing is obtained and voted with
one score for bonus point, as labeled with symbol

⋂
in

Fig. 1. As shown in the flow chart of Fig. 1, step A2 and
step A3 are repeated for score accumulation in order to
ensure the reliability of the selected candidates.
Based on proposed bottom-up enumeration strategy on

features with different dimensions, the above procedure is
repeated beneath the upper bound of computing capacity.
Tuples with different dimensions are voted and accumu-
lated. GMM-based model selection [20] is again used for
selection of features in each dimension. The Gaussian
component with the minimum-mean-value for accumula-
tion scores is chosen corresponding to candidates. If there
is only one Gaussian component in a certain dimension,
no candidates in this dimension are to be selected. Con-
sidering the discrimination power, candidates are to be
chosen with dimensions as high as possible, as labeled
with symbol

∧
in Fig. 1.

At step A5, we present a projection heatmap other than
traditional expression heatmap for further decision. Pro-
jection values are derived from the expression values of
selected candidates using the same projection method at
previous steps. In fact, the thought of using a projection
heatmap derives from the procedure of accumulations
on classification results. Following the treatment of using
projections at step A1 and step A2, it is obvious to use
projection values for clustering other than to use sim-
ple expression values. The performance of candidates
with different dimensions is evaluated by their projection
heatmaps. According to Occam’s razor criteria [11], a can-
didate in a lower dimension while with a good clustering
result on its projection heatmap is preferred.

Implementation
JCD-DEA is written mainly in MATLAB, distributed
under GNU GPLv3. Variables which are either individ-
ually differential or jointly significant for distinguishing
between groups of samples are identified. Due to the lack
of adjacent normal tissues in some cancer diseases (e.g.,
brain cancer), Fisher’s linear discriminative analysis (LDA)
other than corresponding bilinear projection [21] is also
considered.
Due to the existence of repeating steps in JCD-DEA,

we make a two-step implementation: a client part in
Client.zip for analyzing expression profiles on personal
computers or workstations, and a server part in Server.zip
which is designed to run on cluster servers that using
Portable Batch System(PBS) as scheduling program.

Step A1, step A2 and step A3 correspond to a MAT-
LAB m-file S1_feature_selection.m for selection of fea-
ture(s) associated with differential expression analysis, as

Table 1 Individual results on simulation data

miRNA probe A5 scores p-value Classification
error rate

VIMP using
random forests

miRNA-alternative 1 7 0.01774 0.44653 0.00275

miRNA-alternative 2 0 0.90567 0.52247 0.00108

miRNA-alternative 3 0 0.58752 0.51500 0.00043

miRNA-alternative 4 0 0.36873 0.48780 -0.0002

miRNA-alternative 5 2 0.02859 0.47427 0.00174

miRNA-alternative 6 0 0.48969 0.51533 0.00044

miRNA-null 7 0 0.38552 0.51813 -0.00001

miRNA-null 8 14 0.00409 0.44940 0.00139

miRNA-null 9 0 0.16923 0.46687 0.00003

miRNA-null 10 4 0.02509 0.45887 0.00083

miRNA-null 11 0 0.08370 0.47180 0.00080

miRNA-null 12 0 0.68458 0.51887 -0.00011

miRNA-null 13 0 0.82576 0.52187 0.00047

miRNA-null 14 0 0.72355 0.52060 -0.00016

miRNA-null 15 1 0.02793 0.46633 0.00122

miRNA-null 16 0 0.50655 0.51327 0.00002

miRNA-null 17 0 0.58679 0.50447 0.00020

miRNA-null 18 0 0.71515 0.52567 -0.00027

miRNA-null 19 1 0.03970 0.46500 -0.00032

miRNA-null 20 0 0.32140 0.49920 -0.00004

miRNA-null 21 0 0.76909 0.52000 -0.00072

miRNA-null 22 22 0.00030 0.43947 0.00534

miRNA-null 23 0 0.08419 0.46827 0.00086

miRNA-null 24 0 0.15507 0.47913 0.00072

miRNA-null 25 0 0.51227 0.51200 -0.00046

miRNA-null 26 0 0.50874 0.50653 -0.00041

miRNA-null 27 0 0.90546 0.51873 0.00005

miRNA-null 28 0 0.28329 0.47227 -0.00042

miRNA-null 29 0 0.63784 0.50947 -0.00041

miRNA-null 30 0 0.97928 0.52327 -0.00050

miRNA-null 31 0 0.11834 0.48280 0.00063

miRNA-null 32 0 0.91276 0.52140 -0.00044

miRNA-null 33 0 0.08682 0.47747 0.00112

miRNA-null 34 0 0.48329 0.51120 -0.00035

miRNA-null 35 0 0.30921 0.49887 -0.00047

miRNA-null 36 0 0.44131 0.48927 -0.00056

miRNA-null 37 0 0.73472 0.50507 -0.00018

miRNA-null 38 0 0.47165 0.50267 0.00040

miRNA-null 39 0 0.95237 0.51647 -0.00033

miRNA-null 40 0 0.80447 0.52133 0.00018
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shown in Fig. 2. Parameters for assignment of feature
dimension, times of permutation, rounds of iterations for
step A2 and step A3, the threshold of prior probabil-
ity for GMM-based automatic model selection for fea-
ture selection and other running environments are set.
A display is also made after parameter setting, as shown
in Fig. 3.
Step A4 and step A5 correspond to a MATLAB m-

file S2_plot_heatmap.m for selection of feature(s) with
high accumulation score(s), as shown in Fig. 4. Candidates
derived from step A3 are further selected using GMM-
based automatic model selection on their accumulation
scores. In addition, a projection heatmap is made for indi-
cating the hierarchical clustering result of each selected
feature.
Detailed software documentation and tutorial are pre-

sented on http://bio-nefu.com/resource/jcd-dea.

Results
Results of the simulated data
In order to exhibit the effectiveness of JCD-DEA, wemade
a simulated data containing 500 samples equally divided
into two categories in a 40 dimensional space. 34 variables
of them are independently and identically distributed,
each of which keeps a random mean value ranging from
10 to 30 and a same standard deviation 0.01. The left
three variable pairs have jointly but not individually signif-
icant distributions respectively, subjecting to the following
guidelines.
As illustrated in Fig. 5a, the variable pair miRNA-

alternative 1 andmiRNA-alternative 2 has a good sample
distribution form and also a clear category distinction.
The mean vectors corresponding to the two categories
of samples are (1, 1)T and (1.11, 0.89)T . The two cate-
gories of samples keep a same covariance matrix, which is

expressed as
(

1 0.999
0.999 1

)

.

As to variable pair miRNA-alternative 3 and miRNA-
alternative 4, it ought to keep a good sample distribution

form but an inferior category distinction. In order
to achieve the above objectives, one fifth of sam-
ples are randomly and evenly selected and exchanged
between the two categories, of which the mean vectors
and the covariance matrix keep the same as the
former pair before sample exchange, as plotted in
Fig. 5b.
Scattered as Fig. 5c, variable pair miRNA-alternative

5 and miRNA-alternative 6 appears an inferior sam-
ple distribution form but a superior category dis-
tinction. Logically speaking, this might be caused by
a very small amount of singular points that signif-
icantly different from others with the same label.
We’ve found this situation in the expression values
of miRNA hsa-mir-450 from data set GSE22058 and
make the following surmises for the existence of such
points.

• It is just a special case among the expression values of
a particular feature, and the corresponding sample
should be removed in statistical view.

• This is caused by an unbalanced sampling, which
means that there might be undiscovered samples
between the singular points and others (see Fig. 5d).

In order to achieve the above objectives, five samples of
each category are resampled as singular points with their
mean vectors (2, 0)T and (0, 2)T and the corresponding

covariance matrix
(
0 0
0 0

)

.

Figure 5e shows a scatter plot of miRNA-alternative 1
and miRNA-alternative 5, which illustrates a noncorrela-
tion across different variable pairs.
In fact, we made such a simulated data in order to verify

the following three facts.

• Significant feature may not be composed of
individual variables expressed differentially between
two patient groups.

Table 2 Pairwise results on simulation data with a descending order of A5 scores

miRNA probe miRNA probe A5 scores p-value classification error rate

miRNA-alternative 1 miRNA-alternative 2 100 9.4× 10−211 0.00807

miRNA-alternative 5 miRNA-alternative 6 1 7.48× 10−8 0.11633

miRNA-alternative 1 miRNA-alternative 3 0 0.01682 0.45947

... ... ... ... ...

miRNA-alternative 2 miRNA-null 40 0 0.78344 0.53327

miRNA-alternative 3 miRNA-alternative 4 0 4.61× 10−45 0.20433

miRNA-alternative 3 miRNA-alternative 5 0 0.02402 0.47353

... ... ... ... ...

miRNA-null 39 miRNA-null 40 0 0.80111 0.53840

Full results can be seen in Additional file 1: Table S1

http://bio-nefu.com/resource/jcd-dea
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a

b

Fig. 6 Clustering results of samples using the projection heatmap (up) and the traditional heatmap (down) on miRNA-alternative 1 and
miRNA-alternative 2. a The result using the projection heatmap b The result using the traditional heatmap
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a

b

Fig. 7 Clustering results of samples using the projection heatmap (up) and the traditional heatmap (down) on miRNA-alternative 3 and
miRNA-alternative 4. a The result using the projection heatmap b The result using the traditional heatmap
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a

b

Fig. 8 Clustering results of samples using the projection heatmap (up) and the traditional heatmap (down) on miRNA-alternative 5 and
miRNA-alternative 6. a The result using the projection heatmap b The result using the traditional heatmap



Li et al. BMC Bioinformatics          (2019) 20:365 Page 10 of 13

• Significant feature ought to keep not only a good
sample distribution form but also a clear category
distinction.

• Projection heatmap corresponding to the classifier
selected before may present a better clustering result
other than traditional expression heatmap.

Fisher’s LDA was utilized for combined projection and
dimension reduction projection at step A1 and the clas-
sifier at step A2. Besides, 100 rounds of resampling were
performed at step A2 and step A3, with GMMpriori prob-
ability for eliminating redundant Gaussian components
set to 0.001. Correspondingly, GMM priori probability
used at step A4 was set to 0.001.
A5 scores (i.e., accumulation scores) together with the

p-values of Welch’s t-test and the average classification
error rate derived from 100 rounds of Fisher’s LDA trained
on 70% randomly selected samples and tested on 30% rest
samples were calculated. The corresponding pairwise and
individual results on simulation data are listed in Tables 1
and 2.
In Table 1, it is found that neither A5 scores nor the

average classification error rates of individual miRNAs
show significance. Several p-values (e.g., miRNA-null 8
and miRNA-null 22) exhibit false positives. Besides, vari-
able importance of each miRNA is calculated using ran-
dom forest [22] as listed in Table 1, which also shows no
significance.
In Table 2, it is found that the variable pair miRNA-

alternative 1 and miRNA-alternative 2 which keeps a
statistically good distribution and also a clear category
distinction, has the highest A5 score, the minimal p-
value and the smallest average of classification error
rate. As to the variable pair miRNA-alternative 3 and
miRNA-alternative 4 which keeps a statistically good dis-
tribution but an inferior category distinction, a smaller
p-value and a bigger average of classification error rate
are listed. As to the variable pair miRNA-alternative 5
andmiRNA-alternative 6 which has a statistically inferior
distribution but a superior category distinction, it keeps
a bigger p-value and a smaller average of classification
error rate. As the result indicates, only the variable pair
miRNA-alternative 1 and miRNA-alternative 2 has been
selected by JCD-DEA, which shows the effectiveness of
our method.
In addition, we made projection heatmaps (i.e., clus-

tering on projection values instead of directly on origi-
nal expression values) as plotted in Figs. 6a, 7a and 8a
with the corresponding traditional heatmaps plotted in
Figs. 6b, 7b, 8b. In each sub-figure, the up bar, the middle
part and the bottom strip refer to the projection values,
the expression values and the classification labels, respec-
tively. Slices of the bottom strip colored in red and black
in Fig. 6a are clearly separated, compared with Figs. 7a

and 8a. Besides, comparisons within each figure show the
effectiveness of using a projection heatmap.

Results of GSE6857
We also performed experiments on GSE6857 which is
a public dataset containing 29 samples associated with
metastasis cases and 102 samples corresponded to liver
cancer without metastasis using linear and bilinear pro-
jection. Limited by computing capacity, we have only
enumerated features in 2-dimensional space.
Results with GMM priori probability set to 5e-5 are

listed in Table 3. Furthermore, only the pair hsa-mir-29b-
1No1 and hsa-mir-338No1 has been selected with GMM
priori probability set to 1e-5.
However, the result is not very ideal. As shown in Fig. 9a,

though the red slices of the bottom strip tend to clus-
ter in the right, there are misclassifications. In fact, when
diagnosing whether there is metastasis, patients have been
diseased. Thus, expressions of normal tissues might not
be meaningful anymore.
On account of this, we made new hierarchical cluster-

ings using linear projection on tumor and normal tissues
instead of bilinear projection based on the pair selected

Table 3 A5 voting result on GSE6857 with bilinear projection

miRNA probe miRNA probe A5 scores

hsa-mir-29b-1No1 hsa-mir-338No1 409

hsa-mir-210-prec hsa-mir-30c-2No1 355

hsa-mir-210-prec hsa-mir-30c-1No1 302

hsa-mir-181b-2No2 hsa-mir-192-2 3No1 282

hsa-mir-031-prec hsa-mir-215-precNo1 242

hsa-mir-215-precNo2 hsa-mir-371No1 225

hsa-mir-185-precNo1 hsa-mir-194-precNo1 224

hsa-mir-210-prec hsa-mir-26a-2No1 219

hsa-mir-215-precNo2 hsa-mir-3p21-v3 v4-sense45P 217

hsa-mir-017-precNo1 hsa-mir-210-prec 207

hsa-mir-138-2-prec hsa-mir-194-precNo1 201

hsa-mir-194-precNo1 hsa-mir-210-prec 196

hsa-mir-138-2-prec hsa-mir-215-precNo2 191

hsa-mir-210-prec hsa-mir-215-precNo2 182

hsa-mir-099b-prec-19No1 hsa-mir-124a-2-prec 177

hsa-mir-030b-precNo1 hsa-mir-210-prec 162

hsa-mir-215-precNo1 hsa-mir-338No1 160

hsa-mir-030c-prec hsa-mir-210-prec 158

hsa-mir-031-prec hsa-mir-192-2 3No1 157

hsa-mir-135a-2No1 hsa-mir-215-precNo2 153

hsa-mir-191-prec hsa-mir-210-prec 152

hsa-mir-149-prec hsa-mir-372No1 149

hsa-mir-105-2No1 hsa-mir-181c-precNo2 145
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a

b

c

Fig. 9 Hierarchical clustering on the selected miRNA pair hsa-mir-29b-1No1 and hsa-mir-338No1. a Bilinear projection result b Linear projection
result on tumor tissues c Linear projection result on normal tissues
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Table 4 A5 voting result on GSE6857 with linear projection

miRNA probe miRNA probe A5 scores

hsa-mir-194-2No1 hsa-mir-346No1 670

hsa-mir-215-precNo2 hsa-mir-371No1 493

hsa-mir-29b-1No1 hsa-mir-338No1 460

hsa-mir-215-precNo1 hsa-mir-373No2 403

hsa-mir-192-2 3No1 hsa-mir-371No1 401

above respectively. We found that the result on tumor is
better than normal tissues, as shown in Fig. 9b and c.
The other two pairs pointed in [13] also have the same
situation.
Thus, we performed new experiments using only linear

projection on tumor data with GMM priori probability
set to 5e-5. Results are presented in Table 4. And only
miRNA pair hsa-mir-194-2No1 and hsa-mir-346No1 is
selected with GMM priori probability set to 1e-5. Com-
pared to Figs. 9a, 10 indicates that linear projection on
tumor tissues have a better clustering result than bilinear
projection.
As illustrated in Fig. 10, the clustering result using

projection values of the selected 2-dimension feature

can achieve a demonstration effect comparable to the
heatmap using expression values on dozen of variables
(see Fig. 3 in [13]).
Though improvements have been made in Fig. 10,

misclassification still exists, possibly due to the inade-
quate 2-dimension enumeration limited by our computing
capacity.

Conclusions
JCD-DEA is a bottom-up enumeration tool for seek-
ing not only explanatory but also predictive variables
associated with the categories of patients on tumor
expression profiles. Other than prevailing differential
expression analysis, we concern various dimensional fea-
tures expressed differentially on tumor expression pro-
files. In order to strengthen the reliability of selected can-
didates, both distribution-based and classification-based
testing are considered. In addition, we introduce GMM-
based model selection for automatic feature selection,
which helps to choose features objectively. Finally, a pro-
jection heatmap is proposed for hierarchical clustering.
On account of the potential possibilities on complicated
distributions of samples, we plan to develop new top-
down feature selection methods in the near future.

Fig. 10 The cluster result of samples using the projection heatmap of the selected feature hsa-mir-194-2No1 and hsa-mir-346No1 on tumor tissues
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