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Abstract

Background: Third-generation sequencing platforms, such as PacBio sequencing, have been developed rapidly in
recent years. PacBio sequencing generates much longer reads than the second-generation sequencing (or the next
generation sequencing, NGS) technologies and it has unique sequencing error patterns. An effective read simulator is
essential to evaluate and promote the development of new bioinformatics tools for PacBio sequencing data analysis.

Results: We developed a new PacBio Sequencing Simulator (PaSS). It can learn sequence patterns from PacBio
sequencing data currently available. In addition to the distribution of read lengths and error rates, we included a
context-specific sequencing error model. Compared to existing PacBio sequencing simulators such as PBSIM,
LongISLND and NPBSS, PaSS performed better in many aspects. Assembly tests also suggest that reads simulated by
PaSS are the most similar to experimental sequencing data.

Conclusion: PaSS is an effective sequence simulator for PacBio sequencing. It will facilitate the evaluation and
development of new analysis tools for the third-generation sequencing data.

Keywords: Third generation sequencing, Next generation sequencing, PacBio sequencing, Sequencing simulator,
Sequencing error, Sequence pattern

Background
Third-generation sequencing technologies including the
PacBio or SMRT (single-molecule real-time) sequencing
and nanopore sequencing are causing a revolution in
genomics study as they provide researchers to study ge-
nomes at an unprecedented sequencing read length [1].
SMRT sequencing developed by Pacific BioSciences is
among the most widely used third-generation sequen-
cing technologies [2].
More and more bioinformatics tools and algorithms,

such as sequence alignment program BLASR [3] and
GraphMap [4], genome assembly program canu [5] and
miniasm [6] and structural variant callers PBHoney [7]
and Sniffles [8] have been emerging for SMRT data ana-
lysis. Besides, PacBio sequencing has been developed
quickly with multiple versions. It’s essential that these
tools are benchmarked and assessed using reads simu-
lated by sequencing simulators targeting on a specific

version of PacBio technology. The simulation of PacBio
data can be useful to guide users to choose the most ap-
propriate analytical tool or approach for their own re-
search projects [9]. In addition, generating in silico data
can significantly reduce the cost and time required for
improving the downstream analysis tools [10].
The characteristics of PacBio reads is quite different from

that of the second-generation sequencing reads’. It is capable
of producing reads about 10-15 kb, which is much longer
than existing second-generation sequencing methods’. Long
reads can be useful for spanning repetitive or complex re-
gions such as large structural variations since the mapping
position of a read in a genome can be determined more pre-
cisely. Therefore, long reads show superiority in the analysis
of repetitive regions and large structural variations. In con-
trast, it is difficult for the second-generation sequencing that
may lead to misassembles and gaps. However, the per-base
error rate can be about 15% compared to less than 1% in
the second-generation sequencing technology and the errors
are dominated by indels [11]. Nevertheless, the high error
rate can be alleviated by the single-molecule circular se-
quencing or multi-pass sequencing. In the sequencing
process, the forward and reverse strands of the target
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molecule can be sequenced multiple times using the circular
template [12]. The output sequence termed as a polymerase
read can be split into multiple reads called subreads. The
final output sequencing read quality can be improved by
generating consensus of these subreads. Although the
throughput is still low, the latest sequencer Sequel can gen-
erate seven-fold to ten-fold more sequences than the older
sequencer PacBio RSII. It can produce 5-10Gb bases with
about 365 k~ 500 k reads per run [13]. Furthermore, com-
pared to the NGS methods, PacBio sequencing is faster and
has no GC bias [14].
Currently, there are several tools to simulate PacBio

reads, such as PBSIM [15], LongISLND [16], and NPBSS
[17]. All these simulators can estimate the read length dis-
tribution but only the LongISLND considers multi-pass se-
quencing of PacBio platform. PBSIM can simulate reads
using either a model-based or sampling-based method. But
the read length distribution of PBSIM does not match
current data well. LongISLND employs a sequence context
sensitive method called extended-kmer to deal with the
homopolymer-dependent bias and it can output in multiple
file formats. NPBSS can use the relationship between the
real error rate and quality values (QVs) while it takes a long
time in simulating. For the sequences from the latest se-
quencer Sequel, a fixed quality value (QV) was used so the
QVs do not represent the actual error rates whereas the
methods of PBSIM and NPBSS simulating sequencing er-
rors are based on QVs. In addition, LongISLND cannot
process the file format of Sequel data. Most of all, these
three simulators built their sequencing error models based
only on the aligned regions from alignment results, thus
some information about the sequencing error, especially
those regions with low qualities, were missing.
In order to catch the innovation of sequencing technol-

ogy and improve existing methods, we propose a new Pac-
Bio sequence simulator PaSS. PaSS can generate
customized sequencing pattern models from real PacBio
data and use a sequencing model, either customized or
empirical, to generate subreads for an input reference gen-
ome. Finally, PaSS and some popular existing simulators
are compared. The results and the assembly tests show
that PaSS can simulate PacBio reads with high fidelity.

Implementation
In general, PaSS can produce in silico reads using se-
quencing error models built previously for some given
reference genomes. Sequencing error models can also be
re-estimated from a real PacBio sequencing data. The
methods involved are introduced as follows.

Estimating sequencing error models from real sequencing
data
In order to simulate PacBio sequencing better, the multi-pass
sequencing of PacBio sequencer was investigated. We

noticed that there is a trade off between target read length
and the number of passes that longer template will be cycled
less. PaSS can learn the read sequence patterns from real se-
quencing data. The distributions of pass-numbers and their
corresponding read length distributions are recorded in the
model for sequence generation.
In order to learn how the errors were distributed across a

read, we aligned PacBio reads to the reference sequences.
After we tried multiple alignment tools for long reads, we
adopted BLASR [3] to align sequencing reads to a reference
genome or a high-quality de-novo assembly. The alignment
results of real sequencing data are analyzed to extract se-
quencing error models which can be served as the input at
the simulation stage. The head and tail regions of some
reads may not be aligned back to the reference sequences
because of the high error rates on these regions. A ratio of
the unaligned part of a whole polymerase read is estimated
to get a more integral model (see Additional file 1: Figure
S1). The average sequencing quality over the whole read
varies from reads to reads. PaSS learns the ratio of different
error types (match/insertion/deletion/substitution), and
their corresponding sequence context patterns by
kmer-based analysis. Table S1 shows the 64 k-mers (k = 3)
frequencies in different error events for real sequencing
data. Every event is recorded with its corresponding 3-base
sequence in reference and the continuous error is regarded
as one event. Error rates are relatively high on some k-mers
especially those k-mers whose first two bases are the same.
The tendencies (Fig. 1 and Additional file 1: Figure S2) in
datasets E. coli and C. elegans seem close and it’s reasonable
because these two datasets are from the same sequencer
RSII P6-C4. The error size distribution is also derived from
alignment results. Although we observed sequencing error
bias across the relative locations in the reads, we did not in-
clude this pattern in the current version of PaSS.

Simulation of PacBio multi-pass sequencing reads
Figure 2 illustrates the simulation process. First, the num-
ber of forward-reverse cycles is estimated from the distribu-
tion of pass-number and the read length is determined by
the corresponding length distribution of this pass-number.
PaSS then randomly samples one error-free read from a
user-specified reference genomic sequence. If the selected
sequence contains Ns, those Ns are replaced randomly with
ACGTs in the read. The collected read is treated as a se-
quence template, and the subreads of it alternate between
the forward and reverse strands. Finally, errors are intro-
duced to get the output read. The reads that are marked to
come from the same template are divided into presumed
unaligned part and aligned part according to the relative
position inside the polymerase read. For the presumed un-
aligned sections, we use a preset high error rate. According
to the comparison between different preset error rates
(Additional file 1: Table S2), we chose 0.4 as the default
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value. As for the aligned regions, an event type is ran-
domly drawn based on the context-specific bin re-
corded in the model. When an error occurs, the length
of the error is then drawn from the model. From the
real PacBio data, we found that the inserted nucleotides
depend on the sequence context. Hence, if the error is
an insertion, the inserted nucleotides are also decided
by the context. If the error is a substitution, the substi-
tution pattern is introduced according to the distribu-
tion of twelve substitution types.

Real PacBio sequencing datasets
In order to assess the performance of PaSS, three real Pac-
Bio sequencing datasets for E. coli, C. elegans, and A. thali-
ana were chosen for benchmarking. Additional file 1: Table
S3 shows brief statistics of these datasets and they can be
downloaded freely from the websites listed in Additional
file 1: Table S3. In order to have a comprehensive assess-
ment of the performance of sequencing simulators, we in-
cluded real sequencing data from two different platforms,
RSII and Sequel. The sequencing data for E. coli and C.

Fig. 1 The distribution of sequencing error rates based on the context of 64 k-mers (k = 3) in real sequencing datasets of E. coli K12, C. elegans
and A. thaliana

Fig. 2 System diagram of PaSS. The sequencing profile (or sequencing error model) can be generated from real sequencing data and its alignment
to a reference genome. Reads can be simulated based on the reference genome and the sequencing profile (or error model). For each read, a
fragment of sequence from the reference genome is selected first then the sequencing errors will be added according to the profile, which includes
preset error rates for two ends of the read, the number of passes, read length distribution, context based error model and error size
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elegans were from RSII sequencing platform while A. thali-
ana sequencing data was from the latest Sequel platform.

Simulation method comparison
In order to do a fair comparison, we tried to estimate the se-
quencing models for all methods from the real sequencing
data first and reads were simulated using the sequencing
models generated for the same genome. Since the NPBSS
program can only simulate single chromosome, we simu-
lated a chromosome each time and mixed the reads for
C.elegans and A. thaliana. LongISLND couldn’t generate
profile from Sequel data and we did not simulate reads for
A. thaliana using LongISLND.

Results and discussion
A new sequencing simulator for PacBio sequencing called
PaSS was implemented. We compared PaSS with three exist-
ing popular methods, PBSIM, LongISLND and NPBSS, using
three sequence datasets (see Methods for more details).

Simulation results and comparisons
The length distribution of simulated reads and that of
the real sequencing data were compared and results
were shown in Fig. 3 (A). All simulators get length dis-
tribution similar to that of real sequencing data. The de-
fault value of maximum read length defined in PBSIM
was outdated and could not be reconfigured.
We then assessed the length distribution of the error

bases. Figure 3 (B) shows the length distribution of the
error bases for E. coli (Additional file 1: Figure S3. for C.
elegans and A. thaliana). Although most lengths of indels
are one base long, there are about 15–20% of insertions
and 7–10% of deletions contain multiple bases. Unlike the
indels, the length for vast majority of the substitutions is
one base. PBSIM and NPBSS reads are more distinct from
the real sequencing data at this aspect because they only
include single base error in their models.
Next, we used the Kolmogorov–Smirnov test (K-S test) to

decide whether two probability distributions of real

Fig. 3 Comparison of simulated data with the real sequencing data. (a) Comparison of read length distributions. Subfigure a, b and c showed the
read length distribution collected for three organisms, E. coli K12, C. elegans and A. thaliana respectively. (b) Comparison of error size distribution.
Simulated reads from different methods were compared with real sequencing data on error size distribution for organism E. coli K12. Three
subfigures showed the probability density bar plot for insertion, deletion and substitution respectively

Zhang et al. BMC Bioinformatics          (2019) 20:352 Page 4 of 7



sequencing data and simulated data are different. The null
hypothesis of this test is that the two sets of data are drawn
from the same distribution. K-S test was performed for the
read length distribution and the distribution of error bases.
The resulted p-values in Table S4 and S5 (see Additional file
1) reject the null hypothesis, which indicate the two distribu-
tions between all the simulated data and real sequencing data
are distinguishable. Nevertheless, the test statistics D be-
tween real sequencing data and simulated data of PaSS is the
minimum among the several simulators in most cases. Test
statistics D is the maximum value of the difference between
two distributions. Therefore, it shows that the distance be-
tween the distributions of simulated data from PaSS and real
data is the closest. Moreover, it is consistent with what is
shown in Additional file 1: Figure S4 and S5.
Table 1 (Additional file 1: Tables S6-S7) shows the sta-

tistics of alignment results, from which we can see that the
alignment rates and the error rates in terms of insertion,
deletion and substitution from PaSS are more consistent
with the real sequencing data than existing methods. More
than 99% bases of the simulated reads by PBSIM, Long-
ISLND and NPBSS can be aligned to the reference, while
the alignment rates of real sequencing reads and PaSS reads
are more consistent to each other, ranging from 89 to 94%
for the three datasets. Because only the aligned regions
were analyzed and included in the estimated profile, the un-
aligned regionswere ignored by these three simulators. As
mentioned before, the quality values (QVs) in Sequel se-
quenced data did not represent the actual error rates.
Therefore, PBSIM was not able to get reasonable parame-
ters from real sequencing data from the Sequel platform. If
we did use PBSIM to re-estimate sequencing error models
from real Sequel sequencing data, the error rate may be less
than 1%, which was much lower than it should be. Add-
itional file 1: Figure S6 showed the distribution of the aver-
age accuracy (1-error rate) over the whole polymerase read.
The quality of sequencing reads is not uniform and PaSS
provides a more realistic simulation result than other tools.
In general, PaSS can simulate PacBio data reasonably better
than other simulators especially for the new Sequel data.
We further investigated the correlation between the

error rates and the relative positions of bases in a read.
We divided each polymerase read into ten fragments
equally, then calculated the average error rate of each

fragment. As shown in Additional file 1: Figure S7, the
error rate from the real sequencing data decreases quickly
at the first one or two fragments and then increases
slightly at the end fragment of a read. We have tried to
divide the reads into 10 evenly divided intervals, and one
interval, and found that the simulation results for the 10
interval model and the one-interval model were similar.
Therefore, we adopted one interval model in the end.

Speed comparison
In order to compare the speed of the four simulators, we
simulated reads for genome E. coli K12 and C. elegans
with sequencing depth 170 and 50 respectively. We report
the computational time for all simulators in Additional file
1: Table S8. PaSS can be run in parallel with multi-thread.
Therefore, different running time for PaSS was listed with
various numbers of threads. PBSIM is the fastest tool
while NPBSS is the slowest one. PaSS is faster than PBSIM
and LongILSND if more than 4 threads are used for PaSS.

Assessment of simulation with assembly results
We conducted assembly on reads simulated by PBSIM,
NPBSS, LongISLND and PaSS and real sequencing data.
Each genome was simulated with sequencing depths of 5,
10, 15, 20, 25, 30, 35, and 40. C. elegans was simulated
additionally for sequencing depth of 45 and E. coli was
simulated additionally for sequencing depth 45 and 50.
We conducted de novo assemblies using canu, an assem-
bler designed for noisy long length read sequencers [18].
Quast [19] was utilized to compare the assemblies with
the reference genome and evaluate the simulators in terms
of some features. The number of contigs, genome fraction,
indels per 100 kb, mismatches per 100kbp, N50 and indel
length of the contigs were compared for assemblies de-
rived from simulated datasets and the real sequencing
data. The assembly results shown in Fig. 4, Additional file
1: Figure S8 and S9 are for E. coli K12, C. elegans and A.
thaliana respectively. Assembly result evaluation is an in-
direct comparison between the simulators. The results of
PaSS show more similar patterns to the results of real se-
quencing data than other simulators. In terms of the num-
ber of contigs in the assembly and genome fraction being
assembled, the curve tends to be stable at 25× for organism
E. coli and 35× for organism C. elegans. It indicates that

Table 1 Statistics about the simulated reads by PBSIM, LongISLND, NPBSS, PaSS and real sequencing data for E. coli K12 genome.
Reads were aligned back to E. coli K12 genome

methods aligned rate(read) aligned rate(base) error rate insertion deletion substitution

real data 96.71% 91.74% 14.54% 9.42% 3.86% 1.27%

PBSIM 99.99% 99.73% 12.27% 7.22% 3.16% 1.89%

LongISLND 99.90% 99.92% 11.07% 7.09% 2.77% 1.20%

NPBSS 100.00% 99.93% 11.48% 2.67% 6.05% 2.76%

PaSS 95.84% 92.53% 14.39% 8.97% 3.80% 1.62%
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these sequencing depths can be adopted in real experi-
ments. From the proportion that the reference covered by
the number of aligned contigs, the assembly result of PaSS
is much closer to real sequencing data than the other simu-
lators. What’s more, the indicators about the average num-
ber of indels and mismatches per 100kbp aligned bases also
show that PaSS simulated reads are more similar to the real
data than other simulators. Although the contigs assembled
from high sequencing depth (>30X) simulated data could
cover most of the reference genomes for all simulators, the
results from lower sequencing depth (5-30X) did show the
gap between the real data and simulated data, and the sim-
ulated reads from PaSS were more similar to the real data
than the other simulators.

Conclusions
In this paper, we propose PaSS to simulate PacBio sequen-
cing reads to keep up with the latest sequencing technol-
ogy. We incorporated sequence context into the
sequencing model of PaSS. Comparing to existing
methods, the part of the sequence that cannot be aligned
back to reference due to the high error rate is also

considered in PaSS. To our evaluation, PaSS can simu-
late PacBio sequencing reads more similar to real
PacBio data than the existing simulation systems.
Overall, PaSS is an effective sequence simulator to
generate benchmark datasets with the known ground
truth so that it can be beneficial to evaluate the latest
bioinformatics tools. Besides, it can be used as guid-
ance for researchers since no gold standard is avail-
able for data analysis. The simulation of PaSS could
serve as a reference to determine some critical pa-
rameters for a specific project.
However, PaSS can still be improved on various aspects.

First,the length of kmer is limited. Second, the method to
estimate error models based on alignment results is not
perfect. The algorithm and performance of the alignment
tool will affect the estimated error models and may bring
additional bias. Third, the sequencing simulator cannot be
customized or updated easily for different species.

Availability and requirements
Project name: PaSS.
Project home page: http://cgm.sjtu.edu.cn/PaSS

Fig. 4 Comparison of the assembly results for real reads and simulated by different methods. The six subfigures show the relationships between
sequencing depth and the resulted (a) number of contigs, (b) genome fraction, (c) number of indels per 100kbp, (d) number of mismatches per
100kbp, (e) N50, and (f) the length of indels of contigs in the assembly results for organism E. coli K12 . X-axis stands for the sequencing depth
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Operating system(s): Linux.
Programming language: Perl and C.
Other requirements: Perl(5.10.1 or above), gcc

(4.8.0 or above).
License: GNU GPL.
Any restrictions to use by non-academics: None.

Additional file

Additional file 1: Supplementary Material (including supplementary
figures and tables) for PaSS. (DOCX 4780 kb)
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