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Abstract

Background: Several standalone error correction tools have been proposed to correct sequencing errors in lllumina
data in order to facilitate de novo genome assembly. However, in a recent survey, we showed that state-of-the-art
assemblers often did not benefit from this pre-correction step. We found that many error correction tools introduce
new errors in reads that overlap highly repetitive DNA regions such as low-complexity patterns or short
homopolymers, ultimately leading to a more fragmented assembly.

Results: We propose BrownieCorrector, an error correction tool for lllumina sequencing data that focuses on the
correction of only those reads that overlap short DNA patterns that are highly repetitive in the genome.
BrownieCorrector extracts all reads that contain such a pattern and clusters them into different groups using a
community detection algorithm that takes into account both the sequence similarity between overlapping reads and
their respective paired-end reads. Each cluster holds reads that originate from the same genomic region and hence
each cluster can be corrected individually, thus providing a consistent correction for all reads within that cluster.

Conclusions: BrownieCorrector is benchmarked using six real lllumina datasets for different eukaryotic genomes. The
prior use of BrownieCorrector improves assembly results over the use of uncorrected reads in all cases. In comparison
with other error correction tools, BrownieCorrector leads to the best assembly results in most cases even though less

detection

than 2% of the reads within a dataset are corrected. Additionally, we investigate the impact of error correction on
hybrid assembly where the corrected lllumina reads are supplemented with PacBio data. Our results confirm that
BrownieCorrector improves the quality of hybrid genome assembly as well. BrownieCorrector is written in standard
C++11 and released under GPL license. BrownieCorrector relies on multithreading to take advantage of
multi-core/multi-CPU systems. The source code is available at https://github.com/biointec/browniecorrector.
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Introduction

Ilumina platforms generate accurate sequencing data
with high throughput at a low financial cost. It is esti-
mated that more than 90% of sequencing data worldwide
are generated by Illumina platforms. These data are char-
acterized by a relatively short read length (100-300bp)
and low error rate (1-2% errors). Despite this relatively
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high accuracy, Illumina data suffers from different kinds of
biases, most notably a higher number of sequencing errors
towards the end of the reads. The most common errors
are substitutions whereas insertions and deletions are less
common and particularly occur in homopolymers [1].
Phenomena like crosstalk, phasing, fading or T accumula-
tion can be major sources of errors in Illumina sequencing
machines [2].

Due to its cost-efficiency and high accuracy, Illu-
mina data is frequently used for de novo genome
assembly, sometimes complemented by data generated
through other platforms (e.g. Pacific Biosciences, Oxford
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Nanopore). Short-read assemblers typically rely on the
de Bruijn graph (DBG) data structure in which overlap
between reads is established in a computationally effi-
cient manner through the identification of shared k-mers.
Yet, the presence of sequencing errors challenges de novo
genome assembly tools: sequencing errors result in erro-
neous nodes and arcs in the DBG, often classified as ‘tips’
(dead ends), ‘bubbles’ (parallel paths) and ‘chimeric con-
nections’ (spurious connections) [3]. As a single sequenc-
ing error leads to up to k erroneous k-mers in the DBG,
true nodes in the DBG are vastly outnumbered by erro-
neous nodes. These artifacts highly complicate the task
of identifying the path in the graph that represents the
original genomic sequence.

Trimming tools are sometimes used as a primary solu-
tion to exclude parts of the input data with a lower quality
score. However, this further reduces the read length and
aggravates the coverage bias. Additionally, indels are often
not associated with a low quality score [4], rendering it
difficult to remove them by trimming reads. Recently, a
number of standalone error correction (EC) tools have
been proposed which aim to identify and correct errors
in sequencing data: ACE [5], BayesHammer [6], BEC [7],
BLESS [8], BLESS 2 [9], Blue [10], Fiona [11], Karect [12],
Lighter [13], Musket [14], Pollux [15], Quake [16], Quo-
rUM [17], RACER [18], RECKONER [19], SGA-EC [20]
and Trowel [21]. The key idea is that the prior applica-
tion of EC tools to raw Illumina data provides a cleaner
input dataset to the assemblers and subsequently leads to
improved assemblies.

However, in a recent survey [22], we showed that state-
of-the-art assemblers such as SPAdes [23] and Discovar
[24] did not benefit much from this pre-correction step.
In fact, the prior use of EC tools was often found to dete-
riorate assembly results. Most of the EC tools successfully
detect and correct a large fraction of sequencing errors,
however, most of these errors are harmless to the assem-
bly process as they are properly handled by the assembly
tools as well. Specifically, the vast majority of sequencing
errors lead to short spurious dead ends or short parallel
paths which are easily identified and removed from the
DBG based on graph topology and coverage considera-
tions. On the other hand, in certain genomic contexts,
EC tools have difficulties identifying sequencing errors
and might even introduce new errors. In turn, this may
result in misassemblies or assembly breakpoints, leading
to shorter contigs/scaffolds. In [22], we reported that mis-
assemblies and breakpoints often occur in two regions:
(i) genomic regions with low read coverage where the EC
tools incorrectly transform true k-mers into similar k-
mers with higher coverage and (ii), the direct vicinity of
short, highly repetitive patterns such as homopolymers.
We found that EC tools often modify reads that overlap
such pattern in an inconsistent manner.
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We introduce BrownieCorrector, an EC tool for Illu-
mina sequencing data that focuses solely on the correction
of (paired-end) reads that overlap highly repetitive pat-
terns. BrownieCorrector performs four steps: (i) selection
of a repetitive k-mer, (ii) read extraction, (iii) read cluster-
ing and (iv) per-cluster read error correction. Initially, it
selects a highly repetitive k-mer such as a short poly(A/T)
pattern and identifies all paired-end reads for which one
of the paired reads contains that k-mer. Next, using a
community detection algorithm, it clusters the read pairs
such that each cluster contains read pairs that overlap
with the same genomic region. As a similarity score for
the clustering algorithm, BrownieCorrector computes the
overlap alignment score (a variation of the Needleman-
Waunsch alignment score [25]) between different read
pairs. The read clustering problem is expressed as a
community detection problem in graph theory [26]. The
Louvain community detection algorithm [27] is applied
to an undirected weighted graph whose nodes repre-
sent paired-end reads while an edge between two nodes
denotes their similarity score. Edges exist only in case
the similarity score exceeds a threshold. Hence, the graph
is generally sparse. In order to have a robust cluster-
ing, BrownieCorrector repeats the community detection
process multiple times with different initialization condi-
tions and identifies stable community cores in the net-
work [28]. These cores contain read pairs that were often
clustered together in the different runs of the commu-
nity detection algorithm. The reads are corrected for
each cluster separately. From the (paired-end) reads in a
particular cluster, BrownieCorrector first constructs the
associated DBG. It then performs typical graph cleaning
procedures such as tip clipping and bubble detection to
remove erroneous nodes and arcs, taking into account
both the graph topology and the k-mer frequency (i.e.,
the number of reads that support each node/arc). Finally,
the reads in a cluster are aligned back to the cleaned
DBG using BrownieAligner [29]. A similar approach has
been already employed for the correction of long reads
in LoRDEC [30] and Jabba [31] which has been shown
to work effectively even for those errors prone sequenc-
ing technologies. This way, sequencing errors are iden-
tified and corrected in a consistent manner for all reads
within a cluster. This procedure is repeated for all clusters
individually.

Correcting smaller groups of reads in each cluster inde-
pendently from other clusters has a number of advantages
over tools that try and correct the entire dataset: first,
a small k-mer size (for example k = 15) can be used
to construct the DBG of each cluster. This allows to
establish overlap between individual reads with increased
sensitivity without suffering from chimeric connections.
This is particularly relevant for low-coverage regions. Sec-
ond, as each cluster is expected to contain reads from a
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single genomic region, reads are corrected in a consistent
manner.

Note that only a small fraction of pairs are corrected
using BrownieCorrector. Read pairs that do not contain
highly repetitive k-mer are not modified. The rationale
is that state-of-the-art genome de novo assembly tools
handle such reads very well. To the best of our knowl-
edge, BrownieCorrector is the first EC tool that uses the
paired-read read information in the error correction pro-
cess, whereas other error correction tools correct reads or
even k-mers individually.

Methods

Error correction tools

The performance of BrownieCorrector is compared with
the state-of-the-art EC tools which are all published in
2015 or later: ACE, BLESS 2, BFC, Karect and RECK-
ONER. All tools were run on a machine with four
Intel(R) Xeon(R) E5-2698v3 @ 2.30GHz CPUs (64
cores in total) and 256 GB of memory. All tools sup-
port multi-threading and were run with 64 threads.
BLESS2 failed to finish with 64 cores in some data
sets, hence we used 32 cores to get the corrected reads.
For all results the default or recommended parameters
are used. Parameters and settings are provided in
Additional file 1: 1. Elapsed (wall clock) time and peak
resident memory were measured with the GNU time
command.

Evaluation tools

SPAdes is a universal de novo genome assembler which
removes erroneous k-mers through the identification of
bubbles and tips in multisized DBGs. In a recent com-
prehensive study [22], SPAdes is compared to DISCO-
VAR [24], IDBA [32] and Velvet [3], and it was shown
that SPAdes produces longer and more accurate con-
tigs/scaffolds than other assemblers, both with and with-
out pre-correcting reads. SPAdes works with Illumina
single-end, paired-end and mate-pair read data and can
effectively be used for hybrid assembly where reads from
other platforms such as Ion Torrent, PacBio, Oxford
Nanopore are also provided. Therefore, in this study,
SPAdes is used to evaluate the impact of error cor-
rection on de novo genome assembly results. SPAdes
is provided with a standalone EC tool (BayesHam-
mer) that can apply error correction to the input
reads prior to the actual assembly process. All assem-
bly results in this work were obtained without the use
of BayesHammer by providing the —only-assembler flag
to SPAdes in all cases. Note however that the assem-
bly module within SPAdes also applies error correction
procedures directly on the de Bruijn graphs. The result-
ing assemblies were evaluated using QUAST [33]. In
order to determine k-mer frequencies Jellyfish [34] is
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used. To align reads to the reference genome BWA [35]
is used.

Data
Tools are evaluated on six real Illumina eukaryotic
datasets for which a high-quality reference genome is
available: human chromosomes 14 and 21, two differ-
ent datasets for fruit fly (Drosophila melanogaster), one
nematode (Caenorhabditis elegans) and one plant organ-
ism (Arabidopsis thaliana) (see Table 1). Genome sizes
range from 45.2 Mbp (Homo sapiens chr. 21) to 135 Mbp
(A. thaliana) while read coverage varies between 29x and
67 x. All datasets have fixed read lengths. In addition, two
publicly available PacBio datasets for D. melanogaster and
A. thaliana are used to evaluate the impact of EC tools on
hybrid assembly (See Additional file 1: 2.1 and 2.2).

Note the absence of bacterial datasets. As also observed
in [22], error correction often does not have a significant
impact on the assembly quality for such small genomes.

Targeted error correction

The targeted error correction pipeline has four main steps
(Fig. 1). The first step is the k-mer selection procedure.
Our experimental investigation shows that most of the
breakpoints in the assembled contigs occur in the direct
vicinity of low-complexity k-mers such as poly(A/T) or
poly(C/G) (see Additional file 1: 3). There are two main
reasons for this. Firstly, these k-mers are highly repeti-
tive in the datasets. For example, the poly(A/T) 15-mer
has the highest frequency among all 15-mers in 3 out of
6 datasets (see Additional file 1: 3). Such highly repeti-
tive k-mers form hubs in the DBG through which a vast
number of reads pass. They represent the central node
in a densely connected subgraph of the DBG for which
the resolution of the true path is very complex. Secondly,
it has been observed in Illumina sequencing data that
GC-rich or GC-depleted regions such as homopolymers
are more prone to sequencing errors, especially insertions
and deletions [36]. Fig. 1 in Additional file 1 shows that the
average quality scores of reads that contain a poly(A/T) or
poly(C/G) pattern are much lower than average. As such,
those reads generally contain more sequencing errors than
average. Particularly, in dataset D2, the average quality
score of bases in reads that contain a poly(A/T) pattern
is 20, whereas the average quality score for regular reads
is 31. This means that a base of a read that contains a
poly(A/T) sequence is about 10 times more likely to be
erroneous than average. Therefore, it is very difficult for
the assembler to establish a connection between reads
in these regions which explains why the produced con-
tigs by SPAdes often end with a poly(A/T) k-mer (see
Table 2 in Additional file 1: 3). Reads with other kinds
of low-complexity repeats appear less susceptible for an
excessive number of sequencing errors. In this paper we
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Fig. 1 Overview of the first three steps of BrownieCorrector's pipeline. Read pairs for which one read contains a highly repetitive k-mer are extracted
and clustered based on the sequence similarity between different read pairs. Each cluster is expected to contain reads that were derived from a

correct only read pairs for which one of the reads con-
tains a poly(A/T) 15-mer or longer. The effect of our
proposed error correction procedure for other examples
of low-complexity k-mers also has been investigated and
the corresponding results are reported in Additional file 1.
The second step in the pipeline is the read extraction.
Reads that contain a specific k-mer can easily be extracted
in a single pass over the dataset. The expected number of
reads that fully cover a k-mer occurrence in the genome
can be computed as follows. Let C denote the coverage,
i.e., the average number of reads that covers any base
of that k-mer occurrence. Some of these reads will not
cover the entire k-mer or might contain sequencing errors
and hence they will not be extracted in this step. The
expected number of extracted reads Cy that fully overlap
a k-mer in the genome is given by Cy = l_k%lC(l — ek
where [ is the read length and e denotes the error rate
(see Additional file 1: 4). Reads are extracted in pairs and
since these paired reads can occur on either side of the k-
mer, the expected number of reads covering the flanking
regions is Cg/2. Due to fragment length (insert size) vari-
ability, these paired reads might be more spread out over
the flanking regions. Figure 2 provides a schematic repre-
sentation of the coverage distribution after read extraction
where the expected number of pairs in one cluster is Cy.
The third step in the pipeline is read pair clustering. The
idea is to partition the read pairs into distinct clusters in

such a way that all read pairs within a cluster originate
from the same genomic region. The expected number of
read pairs in each cluster is Ci. BrownieCorrector uses
the Louvain community detection algorithm, a very fast
and memory efficient hierarchical graph clustering algo-
rithm [27]. It is based on the greedy maximization of
modularity and can handle large-scale networks (N >
10%) [40]. The Louvain community detection algorithm
takes as input a graph where nodes represent read pairs
and where arcs between nodes represent the similarity
score between read pairs. This similarity score is obtained
by computing the pairwise overlap alignment score. The
overlap alignment score represents the highest alignment
score between a prefix of one sequence and the suffix
of another, hence, trailing and leading gaps in the align-
ment are not penalized. Note that not only the sequence
similarity between the two reads that contain the repeti-
tive k-mer is taken in account, but also potential overlap
between their respective paired reads. We found the infor-
mation contained in the paired reads to be valuable to
obtain robust and homogeneous clusters.

Computing the overlap alignment score between all
pairs of reads has a quadratic time dependency on the
number of read pairs and can hence be time-consuming
for a large number of pairs. In BrownieCorrector, the read
alignment score is only computed between read pairs that
share at least one non-repeated k-mer, i.e., a k-mer for
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Fig. 2 While Cis the initial coverage (top), the expected number of reads that fully cover a selected k-mer is C. Depending on the insert size and the
insert size variability, the left and right flanking regions that are covered by the paired reads have a coverage of Cy/2 or lower

which the coverage is about Ci. This heuristic avoids the
computation of alignment scores between read pairs with
apparent low sequence similarity. This also means that
the input graph for the community clustering algorithm is
generally very sparse.

The Louvain community detection algorithm outputs
clusters for which the nodes in each cluster are densely
connected while having only relatively few connections
between nodes that belong to different clusters. The algo-
rithm is non-deterministic which means that in every run,
it may output different clusters. In order to reduce the
impact of non-deterministic behavior of the algorithm
and improve the robustness of the clusters, BrownieCor-
rector repeats the clustering procedure several times. The
stable core communities are then established as explained
in [28].

The final step of the pipeline involves correcting the
reads for each cluster independently. This step has three
stages (see Fig. 3): i) construction of the DBG from input
sequences; ii) correction of the DBG based on topology
and coverage considerations; iii) correction of the input
reads by aligning them to the corrected DBG.

i) Reads are first assembled in a DBG. Given a user-
specified value for k, all k-mers are extracted from the
reads and a DBG is constructed. To reduce memory
requirements, k-mers are encoded by 2k bits and stored
in a memory-efficient hash map with only 2 bits overhead
per entry. Overlap between k-mers is encoded by 8 bits: 4

bits to indicate if the k-mers can be left-extended with A,
C, T or G and similarly 4 bits to represent right overlap.
Linear paths in the graph are contracted to bigger nodes
(unitigs) and various statistics such as length (number of
k-mers in a node), average k-mer coverage (average num-
ber of reads that cover a k-mer in the node) are computed
for each node.

ii) Whereas k-mer spectrum-based EC methods such
as Quake identify errors based on (relative) k-mer abun-
dances, erroneous nodes in the DBG are identified by
BrownieCorrector based on graph topology and cover-
age considerations, as conceptually described by Zerbino
and Birney [3]. For example, a true k-mer with a low
abundance might be incorrectly classified as erroneous
when judging solely on k-mer spectrum. By taking into
account the context in which the k-mer occurs, it could,
for example, become clear that this k-mer is part of a lin-
ear path in the DBG and that no parallel path exists with
higher coverage. As such, the k-mer can be correctly clas-
sified as a true k-mer. Vice versa, an erroneous k-mer with
a higher abundance can be detected because of topol-
ogy considerations: either because the k-mer is part of a
dead-end in the graph (a tip) or because it forms a path
parallel to the correct sequence path. BrownieCorrector
adopts a conservative, multi-round approach, avoiding
the removal of true nodes as much as possible. A tip
or a bubble is labeled as an erroneous node and will be
removed if its length is less than the maxErrorNodeLen
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value and its average node k-mer coverage is less than
the cutoff value. The value of maxErrorNodeLen is set to
avgReadLen — k where avgReadLen is the average read
length and k is the k-mer size. The histogram of aver-
age node k-mer coverage for all the nodes in DBG shows
a mixture of two distributions: one that represents erro-
neous nodes and one that represents correct nodes (see
Fig. 4). Using the expectation-maximization algorithm, a
mixture of two Poisson distributions is fit: a distribution
of erroneous nodes with mean A, and a distribution of
correct nodes with mean A.. BrownieCorrector computes
the k-mer cutoff value at the intersection point of the two
distributions.

iii) The original reads are aligned back to the corrected
DBG using a seed-and-extend paradigm. In case a read
contains at least one true k-mer, this k-mer is used as a
seed that uniquely maps the read to a certain node in the
DBG. A depth-first search on the graph is performed to
align both ends of the read beyond the seed(s). Pairwise
alignments are used to find the optimal alignment path.

Branch-and-bound conditions are used to limit the search
space. We refer to [29] for a more detailed description of
the read-to-graph alignment procedure.

Results
Ability of EC tools to improve genome assembly
Table 2 shows the contig and scaffold NGA50 val-
ues for nine datasets and the different EC tools. The
NGA50 denotes the characteristic length of the assem-
bled contigs/scaffolds that can be contiguously aligned to
the reference genome. These contigs/scaffolds thus con-
tain no major structural assembly flaws and a higher
NGA50 hence implies a better quality assembly. The
first six columns show the assembly results for the
Illumina datasets (D1=R1,..., D6=R6), while the last
three columns refer to the hybrid assembly of Illu-
mina and PacBio datasets (D7=R4+P1, D8=R5+P1 and
D9=R6+P2).

Overall, BrownieCorrector shows the best performance
and has the highest contig/scaffold NGA50 in 13 out
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of 18 cases while Karect has the highest NGA50 in the
5 remaining cases. In those cases, BrownieCorrector is
second best. Pre-correcting reads with BrownieCorrec-
tor leads to improved assembly results in for all datasets.
The other EC tools (ACE, BLESS 2, BFC and Reckoner)
show mixed results. D2 is the only dataset for which all
EC tools improve the contig/scaffold NGA50 over the

use of uncorrected data. For datasets D3 and D5, all
EC tools except BrownieCorrector deteriorate the assem-
bly results. For some EC tools this leads to significantly
shorter contigs/scaffolds. In 12 out of 18 cases, the con-
tig and scaffold NGA50 values obtained from uncorrected
data are among the top 3 highest values (though often
below those of BrownieCorrector and Karect). It shows

Table 2 NGA50 of respectively contigs (top) and scaffolds (bottom) assembled by SPAdes before and after error correction

Tools D1 D2 D3 D4 D5 D6 D7 D8 D9
Contig NGA50
Uncorrected 10876 5451 6325 50833 35924 40802 80752 85003 65138
ACE 11375 8475 3116 29126 20032 34273 55391 65163 62161
BFC 11672 9488 6307 49089 27 365 40910 77526 78985 64709
BLESS2 9183 7737 2969 25133 17133 29968 61609 60574 55639
BrownieCorrector 13334 11015 6328 52152 38670 45400 83397 88877 71788
Karect 12507 10103 6295 54106 29286 41391 85226 85 881 68873
Reckoner 9154 6440 6281 41977 26296 39605 58176 71724 56734
Scaffold NGA50
Uncorrected 11377 5668 6419 60714 59591 41833 96381 109785 84659
ACE 12135 8597 3143 35425 40860 39895 62981 93602 83138
BFC 12294 9698 6392 59124 54093 41818 91577 110748 82101
BLESS2 10034 7909 3012 34856 36316 38431 73377 86526 74447
BrownieCorrector 14155 11570 6420 61474 65174 46 678 96 385 118192 96916
Karect 13528 10298 6377 63 400 59526 42256 101753 124215 90661
Reckoner 9670 6509 6354 47781 50834 40779 67061 99419 71646

The best result for each dataset is shown in bold
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that SPAdes, which uses advanced paired and multi-sized
de Bruijn graphs, uses accurate built-in error correction
algorithms in the assembly process as well.

The results indicate that BrownieCorrector and Karect
are the only reliable EC tools that perform consis-
tently across different datasets. Table 3 shows the
contig/scaffold NGA50 when applying both BrownieCor-
rector and Karect to the Illumina data. The idea is
that BrownieCorrector first corrects only reads with a
highly repetitive k-mer and that Karect corrects the other
reads. We observe that the combined effect of the two
error correction tools further raises the assembly qual-
ity except for the cases where Karect already performs
poorly. This indicates that both tools are complementary
to some degree. The improvements in NGA50 over the
use of uncorrected data (averaged over all datasets) shows
that the combined use of BrownieCorrector and Karect
leads to the highest positive impact on the quality of
contigs/scaffolds (+21%/+25%) while BrownieCorrector
(+18%/+19% ), Karect (+11%/+15%), and BFC (+5%/+7%)
are the second, third and fourth best tool, respectively.
On the other hand, BLESS2 (-25%/-19% ), ACE (-17%/-
14% ) and Reckoner(-11%/-10%) deteriorate the quality of
assembly on average (see Additional file 1: 5.1).

We additionally investigated the impact of error correc-
tion by using other highly repetitive k-mers. This time
a poly(C/G) pattern was utilized to extract the reads.
The results show that correcting these reads with Brown-
ieCorrector has a smaller impact on the assembly quality
except for dataset D3 in which the NGA50 of both con-
tigs and scaffolds is higher than the values in Table 2 (see
Additional file 1: 5.2). This can be explained by the fact
that for most datasets the poly(C/G) k-mer is much less
frequent than poly(A/T) pattern and hence SPAdes ben-
efits less from the error correction of those reads. The
correction of reads with a poly(AC/GT) 15-mer does not
lead to improved assemblies, even though a poly(AC/GT)
15-mer is more frequent than a poly(C/G). This is because
reads that contain these poly (AC/GT) k-mers do not
suffer from the error bias that can be observed in reads
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containing a poly(A/T) or poly(C/G) pattern. Finally, we
examined the impact of the number of iterations in the
stable core detection procedure on the final assembly
result in D1. The default value for this parameter is 20,
which is compared to 1 (when the stable core detection
is disabled), 5, 10 and 30. The result shows that using the
stable core improves the accuracy, however, BrownieCor-
rector is robust and performs good as well for other values
(see Additional file 1: 5.3). The detailed Quast reports for
all datasets and EC tools for both contigs and scaffolds are
provided in Additional file 1: 5.4 and 5.5.

Time and space requirements

Figure 5 shows the memory usage of the EC tools
(see Additional file 1: 5.6 for detailed tables). Reck-
oner, BLESS 2, and BFC are the most memory-efficient
tools; memory usage of ACE and BrownieCorrector is
comparable and Karect has the highest memory require-
ments. Figure 6 compares the runtime of the different EC
tools for each dataset. Reckoner, BLESS 2, and BFC are the
fastest tools whereas ACE, Karect, and BrownieCorrec-
tor are somewhat slower. Generally speaking, Reckoner,
BLESS 2 and BFC are fast and memory efficient.

Discussion
Although BrownieCorrector corrects only a small frac-
tion of the reads (less than 2%, see Additional file 1: 5.2),
results show that it performs well for a diverse set of
organisms and even for relatively low coverage data (33 x).
The only parameter that can negatively affect the perfor-
mance of BrownieCorrector is a larger standard deviation
of fragment length (insert size). In that case, there is less
overlap between paired reads and the identification of
homogeneous clusters is more challenging. For example,
BrownieCorrector performs worse than Karect in datasets
D4 and D7 which is due to the fact that the standard devi-
ation for the R4 Illumina dataset is 92, which is relatively
high compared to the other datasets.

The main advantage of BrownieCorrector over other
tools lies in its use of paired-end read information.

Table 3 NGA50 of respectively contigs (top) and scaffolds (bottom) assembled by SPAdes after error correction by both

BrownieCorrector and Karect

Tools D1 D2 D3 D4 D5 D6 D7 D8 D9
Contig NGA50

BrownieCorrector 13334 11015 6328 52152 38670 45400 83397 88877 71788

Karect 12507 10103 6295 54106 29286 41391 85226 85881 68873

Karect+BrownieCorrector 13526 12409 6297 56 046 30557 45423 89065 87822 74620
Scaffold NGA50

BrownieCorrector 14155 11570 6420 61474 65174 46 678 96 385 118192 96916

Karect 13528 10298 6377 63400 59526 42256 101753 124215 90661

Karect+BrownieCorrector 14613 12795 6380 65857 62706 46332 103872 126 449 104037

The best result for each dataset is shown in bold
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Fig. 5 Peak memory usage. Peak memory usage of the EC tools
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Figure 7 shows a specific case for dataset D1 where the
use of BrownieCorrector resolves a breakpoint near a
poly(A/T) pattern that occurs when using uncorrected or
Reckoner-corrected data. To create this figure, all uncor-
rected reads were aligned to the reference genome using
BWA and the read pairs that overlap the breakpoint
were extracted. Next, the corresponding reads corrected
by both BrownieCorrector and Reckoner were obtained.
BrownieCorrector corrects only the reads that contain
a poly(A/T) 15-mer (shown in orange). Although the
average error rate in Illumina sequencing data is around

(1-2%), we observe a much higher error rate in the vicin-
ity of the poly(A/T) 15-mer. This is already confirmed
by the low average quality scores of reads that contain
poly(A/T) patterns (see Table 2 in Additional file 1). This
high error rate renders SPAdes unable to correctly bridge
the breakpoint. Also EC tools that do not exploit the
paired-read information are likely to correct these highly
erroneous reads in an inconsistent manner as exemplified
for Reckoner. In contrast, using the paired reads, Brown-
ieCorrector can still correctly cluster and correct these
low-quality reads.
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Fig. 6 Runtime. Runtime of the EC tools
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Fig. 7 Alignment of BrownieCorrector-corrected, Reckoner-corrected and uncorrected paired reads in the neighborhood of a contig breakpoint: the
first track contains part of the reference genome, which is assembled into a single contig from BrownieCorrector-corrected data but breaks into two
contigs using Reckoner-corrected or uncorrected data. The second track (BrownieCorrector) shows the alignment of the
BrownieCorrector-corrected reads. The only the reads in orange are corrected by BrownieCorrector. The third track (Reckoner) shows the alignment
of the Reckoner-corrected reads. The fourth track (Uncorrected) shows the alignment of uncorrected reads. Mismatches in the sequencing data are
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Conclusions

We propose BrownieCorrector, a targeted error correc-
tion tool that corrects Illumina sequencing errors in
paired-end reads that contain highly-repetitive patterns
such as short homopolymers. Such reads form densely
connected subnetworks in the de Bruijn graph, which,
in the presence of sequencing errors, are difficult to
resolve, ultimately leading to a fragmented assembly.
BrownieCorrector uses the entire read sequence as well as
the paired-end read information to cluster read pairs in
homogeneous groups, where the paired-end reads in each
group originate from the same genomic region. Reads in

each cluster are corrected independently such that a con-
sistent correction is achieved for all reads within each
cluster. Despite the fact that BrownieCorrector corrects
only a small fraction of the input reads, results indicate
it outperforms other error correction tools in terms of
contiguity of the assembled contigs and scaffolds. This
observation lends support to the idea that error correc-
tion tools should focus their efforts on the correction of
difficult’ sequencing errors. Indeed, the utility of error
correction tools lies in their ability to improve the qual-
ity of downstream applications. We believe that for future
EC tools, it is ultimately more beneficial to try and correct
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problematic regions really well, rather than designing a
method that performs well across the entire genome but
fails to produce consistent corrections for certain regions.
By limiting the application of these algorithms, which per-
haps need more CPU cycles, to these specific regions,
the computational cost can still be kept under control.
Such algorithms likely need to exploit the paired-end read
information to ensure a consistent error correction.

We also investigated the impact of BrownieCorrector in
a hybrid genome assembly setup where Illumina sequenc-
ing data is combined with PacBio data. Our results
show that the use of BrownieCorrector-corrected Illumina
reads along with PacBio data leads to better assembly
results in this case as well. One of the advantages of
BrownieCorrector’s pipeline is its modularity where each
step can be replaced by a method of choice. For example,
the Louvain community detection algorithm can easily be
replaced by another clustering algorithm, other EC tools
can be used to correct clusters or different metrics can be
used to infer the similarity score between pairs of reads.
We believe this flexibility allows the pipeline to further
evolve in the future.

Additional file

Additional file 1: Targeted Error Correction Improves the Assembly
Results. (PDF 1261 kb)
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