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Abstract

Background: Gene regulatory networks can be modelled in various ways depending on the level of detail required
and biological questions addressed. One of the earliest formalisms used for modeling is a Boolean network, although
these models cannot describe most temporal aspects of a biological system. Differential equation models have also
been used to model gene regulatory networks, but these frameworks tend to be too detailed for large models and
many quantitative parameters might not be deducible in practice. Hybrid models bridge the gap between these two
model classes – these are useful when concentration changes are important while the information about precise
concentrations and binding site affinities is partial.

Results: In this paper we study the stable behaviours of phage λ via a hybrid system based model. We identify wild
type and mutant behaviours that arise for various orderings of binding site affinities. We propose experiments for
detecting these behaviours: we suggest several ways of altering binding affinities with either mutations or genome
rearrangements to achieve modified behaviours. The feasibility of these experiments is assessed. The interplay
between the qualitative aspects of a network, e.g. network topology, and quantitative parameters, e.g. growth and
degradation rates of proteins, is demonstrated. We also provide a software for exploring all feasible states of a hybrid
system model and identifying all attractors.

Conclusions: The behaviours of phage λ are determined mainly by the topology of this network and by the mutual
order of binding affinities. Exact affinities and growth and degradation rates of proteins fine tune the system. We show
that only two stable behaviours are possible for phage λ if the main constraints of λ switch are preserved – these
behaviours correspond to lysis and lysogeny. We identify several variants of both lysis and lysogeny – one wild type and
one modified behaviour for each. We elucidate the necessary constraints for binding site affinities to achieve both wild
type lysis and lysogeny. Our software is applicable to a wide range of biological models described as a hybrid system.
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Background
Gene regulatory networks can be modelled in various
ways that range from listing the building blocks of a
network to detailed simulations in time by differential
equations [1]. Picking the right modelling approach is not
trivial; the choice is often determined by the intended
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scope of a model, the available data, e.g. their detail, qual-
ity and ‘completeness’, and also by the availability of a
modelling software.
One of the earliest formalisms employed for the mod-

elling of gene regulatory networks is a Boolean network
[2, 3]. Being comparatively simple, these models allow to
identify all possible behaviours of a system. Boolean net-
works have been used to study stable behaviours of phage
λ by systematically exploring possible states of this bio-
logical system [4]. However, these models have limitations
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for describing the temporal aspects of behaviours because
concentrations are not explicitly modelled. Whenever the
response of a gene regulatory network differs depend-
ing on the concentration of a biological entity (such as a
transcription factor or a signalling molecule) it becomes
necessary to find various artificial ways to incorporate this
behaviour in the model. To overcome this hurdle, several
generalisations of Boolean networks have been proposed
[5–7]. Boolean networks have been used in modelling
the differentiation of myeloid and lymphoid cell lines
and reprogramming between cell types that can induced
by specific transcription factors [8]. In this study, the
effects of various knockdowns were simulated and com-
pared with experimental data. A Boolean dynamic model
was built to study combinatorial interventions that could
potentially inhibit epithelial-to-mesenchymal transition
and thus suppress the invasive properties of cancer cells
and reduce the potential for metastases [9]. The effects
of perturbations were explored, after at least one element
of the network was either inactivated or consistently acti-
vated. The predicted perturbation results were validated
with siRNA experiments and there was a sufficient overlap
between in silico and in vivo results.
Differential equation models have also been used to

model gene regulatory networks, although these frame-
works tend to be too detailed for largemodels. The param-
eters characterising dynamics cannot be easily obtained
from experimental data. For example, precise binding site
affinities under different biological conditions and tem-
peratures are difficult to determine. The analysis of such
a model can become intractable for a large number of
quantitative parameters. Thus, hybrid models are a wel-
come alternative when concentration changes have to be
modelled while the information about concentrations and
binding site affinities is partial. One such hybrid model is
based on the hybrid system formalism [10]. It has been
shown that this type of model is adequate for describ-
ing and simulating biological networks [11]. To facilitate
and simplify the analysis of hybrid system models many
authors have sought to define restricted classes of models
– these have been used to describe a variety of biological
systems [12–16]. For example, Drosophila circadian cycle
has been captured in such a model [17]. See also models
of cardiac cells and bone cells respectively [18, 19]. Other
models of this type have been used to analyse the stabil-
ity of cyclic behaviours [6, 7], and have been instrumental
in demonstrating the stability of the regulatory circuits of
phage λ [7].
In this paper we present and describe in detail a novel

model of phage λ. We carry out an exhaustive analysis
of possible model behaviours and identify different sta-
ble behaviours (attractors). We prove that phage λ can
exhibit only two steady states due to the way in which
its regulatory elements work and cooperate. We confirm

that all attractors of the model correspond to biologically
known behaviours, namely lysis and lysogeny. However,
either of these steady states can be altered when the rel-
ative order of critical binding affinities is changed. We
also describe the characteristics of these altered states.
Next, we determine sufficient conditions for binding site
affinities for achieving a wild-type behaviour of phage
λ. Finally, we propose experimentally testable hypotheses
about the behaviour of phage λ under different regulatory
constraints. We suggest several experiments that could
verify our findings.
We employ the Hybrid System Model (HSM) approach

– it allows for a broad range of models comprising both
discrete and continuous variables. This framework offers
sufficient flexibility in describing a biological system as
it does not require complete knowledge of binding site
affinities and the shapes of growth and degradation func-
tions. This modelling technique is a generalisation of
the Finite State Linear Model (FSLM) which the authors
have developed previously [1, 20–22]. Within the HSM
framework we drop the assumption that concentrations
change according to linear functions; instead we allow
the changes to be monotonous. The HSM framework was
introduced in [23] and the corresponding mathematical
formalism was described in detail in [24] alongside the
algorithms performing automated analysis of all possible
states of a HSMmodel.
In this paper we outline the procedure of finding attrac-

tors when a partial ordering of binding affinities is known.
We are building on our earlier work in which we proposed
an algorithm for analysing all system behaviours when for
each protein a full linear ordering of binding affinities was
known [23].
We also provide a software for analysing biological mod-

els described within the HSM framework. It explores
all feasible states of a network and identifies all attrac-
tors. Our implementation classifies attractors according
to their dependence on quantitative parameters, distin-
guishes the states and cycles in which it is possible to
stay indefinitely, and provides descriptions of the dynamic
behaviours within attractors. The tool is computationally
fast, i.e. it completes analysis in a few seconds, and is suit-
able for gene regulatory networks having up to twenty
genes.
Our phage λ model is different from the one used in

[1, 20–22] as it explicitly models bothOR andOL cascades
of operators. This model was implicitly used in [23], but
without a complete definition. Our model is more general
than the one defined in [7]: it permits a broader range of
growth and degradation functions and captures additional
biological details.
A HSM model involves both discrete and continuous

components. Four elements can serve as building blocks
for models: substances, binding sites, control functions and
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substance generators. Substances represent various types
of molecules such as small molecules or proteins; their
concentrations are modelled by continuous variables. The
states of binding sites are modelled by discrete variables;
a binding site can have two states, ‘on’ and ‘off ’, or more
than two states if several substances can bind to it. The
state of a binding site depends on the concentration of a
substance that can bind to it. The states of sites determine
the expression levels of genes (the relationship between
an expression level and binding site states is defined by a
discrete control function, one for each gene; a finite num-
ber of expression levels is possible). Substance generators
provide growth and degradation functions describing the
changes of protein concentrations over time – these func-
tions are monotonous. A simple HSM model with three
binding sites and two genes is shown in Fig. 1.

Methods
A phage λmodel
Phage λ has served as a model organism for a long time
and its molecular biology is well understood by now [25].

The virus phage λ infects Escherichia coli cells. Upon the
infection of a bacterial cell phage λ chooses one of the two
modes of operation, lysis or lysogeny [26]. During lysogeny
the phage DNA is integrated into the bacterial genome
and the gene cI that encodes repressor protein is the only
active phage gene. During lysis the phage DNA is excised,
replicated, and new phage particles are produced. At the
end of this process the bacterium is broken open (lysed)
to release phage particles.
The molecular mechanism underlying the lysis-

lysogeny decision is known as a λ switch; it involves
several cascades of events and multiple genes [25]. In a
nutshell, the state of a λ switch is determined by the con-
centrations of two proteins, namely repressor (encoded by
the cI gene) and Cro (encoded by the cro gene). (Hence-
forward the names starting with capital letters will refer
to proteins, while the names starting with lower case
letters will denote genes.)
The switching of phage λ between various behaviours is

mainly implemented by the operator sites OR1, OR2 and
OR3. These sites are located between two λ promoters:

A

B

C

Fig. 1 A small network with two genes. Gene s1 has a negative feedback loop on itself, gene s2 has a negative feedback loop on itself and a
positive feedback on gene s1. a The network model. There are three binding sites, represented by triangles (b1, b2, b3), two control functions,
represented by rectangles, and two substance generators, represented by diamonds (s1, s2). Discrete inputs and outputs correspond to dotted
lines, while continuous inputs and outputs are represented by continuous lines. For each binding site, the association constant is given above and
the dissociation constant below an incoming arrow. The substance generators s1 and s2 can either produce a substance or not – here linear
growth and degradation rates are written above and below the output line. The binding sites can be unoccupied (‘0’ in the table) or occupied (‘1’ in
the table). b A simulation run of the network. With association and dissociation constants given in (a) the network switches between two modes
where either s1 is active and s2 inactive (↑↓) or vice versa (↓↑). c A graphical representation of the qualitative observational sequence describing
the simulation run (b) of the network given in (a).
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PR, which controls the transcription of the cro gene, and
PRM controlling the transcription of the cI gene which
encodes the repressor (Fig. 2) [26–29]. All three sites can
be bound by either Cro or λ repressor albeit with oppo-
site orderings of the strengths of binding affinities. The λ

repressor binds to the operator site OR3 when in very high
concentration (affinity is low).When repressor is bound to
OR3 it abolishes the transcription of the cI gene thereby
establishing a negative feedback loop on itself. At much
lower concentrations λ repressor binds to OR1 and thus
inactivates the transcription of cro. The affinity order for
Cro and these sites is opposite. At low concentrations Cro
can bind OR3, thus inactivating the transcription from
the promoter PRM and the cI gene. At higher concentra-
tions Cro occupies OR2 and then OR1, thus inactivating
the transcription from PR and its own gene [25, 25, 26,
29]. The remaining genes on the λ genome mainly encode
the proteins that form a phage particle and enzymes nec-
essary for integration into and excision from the host cell
genome. Many phage λ genes are organised in operons,
i.e. onemRNAmolecule actually encodes several proteins.
The terminator sites between genes determine whether a
RNA polymerase will move beyond a terminator site or
not and whether long or short transcripts will be made.
This read-through is dependent on the presence of the
anti-terminator protein N.
Here, we describe a HSM model for phage λ that cap-

tures essential biological aspects (Fig. 3). It is a novel
model that includes additional elements in comparison
with our earlier models used in [1, 20–22]. In particu-
lar, operator sites OR1,OR2,OR3,OL1,OL2 and OL3 are
modelled, and each of them can potentially have dis-
tinct binding affinities for repressor and Cro. To make the
model diagram more legible, we do not draw the lines
between substance generators (depicted by diamonds)
and the binding sites they affect (depicted by triangles).
Themodel consists of ten binding sites, six control func-

tions (PQ,PME,PR,PRN,Pint,PL) and eleven substance
generators (cI, cro, cII, O, P, Q, int, N, cIII, xis and struc
where struc represents the genes encoding structural pro-
teins) (Fig. 3). We use bold face to denote model elements

and to distinguish them from biological entities; the map-
ping of names is shown in Table 1. There are two sets of
three binding sites bOR1, bOR2, bOR3 and bOL1, bOL2,
bOL3 where each binding site can be in three different
states: unbound, bound by Cro, or bound by repressor.
The repressor binding affinities form a descending order
(i.e. association constants increase) for the sites bOR1,
bOR2, bOR3 and also for the sites bOL1, bOL2, bOL3
(both orderings are separate). For Cro the affinities to
these binding sites have a reverse order of strength in com-
parison with repressor. The remaining binding sites (bQ,
bCII-1, bCII-2 and bN) can only be bound by one pro-
tein each and therefore have two states only (bound and
unbound).
The terminators are not represented in the model

directly. Instead the function that determines the expres-
sion of a gene incorporates conditions imposed by ter-
minators. As we do not model different growth and
degradation rates and consider only two states for each
substance generator (‘on’ or ‘off ’), the terminators affect-
ing the precise level of expression were not modelled
at all. It means that only tR1 was included in the
model.
The λ-switch is implemented in the model by coupling

the binding sites bOR1, bOR2 and bOR3with the control
functions PR,PRN and PME. PME affects the expression of
cI, whereas PR controls the expressions of cro, cII, O and
P. To model the behaviour of the terminator tR2, we intro-
duced the promoter PRN. PRN is active in the presence
of N (i.e. when bN is in the ‘bound’ state) just like PR; in
the absence of N it becomes inactive. Thus the expression
of Q is determined by the concentrations of Cro, repres-
sor and N. PME receives input from binding sites bOR1,
bOR2, bOR3 and bcII-1 and ensures that the activity of
cI depends on the concentrations of repressor and Cro,
and can also be triggered byCII reaching a certain thresh-
old. The binding sites bOL1, bOL2 and bOL3 affect PL
that in turn influences N, cIII and xis. The degradation
of repressor that is triggered by stress response proteins
is not explicitly incorporated in this model, but can be
mimicked by choosing suitable starting concentrations.

Fig. 2 The main gene regulatory component of phage λ. Operator sites OR1, OR2 and OR3 are located between the promoters PRM and PR on the
phage λ genome
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Fig. 3 A phage λ model. The model is defined by specifying genes
and binding sites and their mutual relationships – these entities
uniquely determine the components of a biological system that are
captured by a HSMmodel. Individual parts of the model are
described in Materials and Methods section ‘A phage λ model’

A full specification of our phage λ model is included in
Additional file 1 (model description and constraints for
binding site threshold orderings).

Qualitative analysis of a HSMmodel
What happens when we run a simulation of, for example,
a phage λ model? At the beginning the binding site states
will switch to states compatible with the initial protein

Table 1 Summary of the promoters and terminators of phage λ

and the corresponding components of our model

Phage λ entity Model component

PE PME

Pint Pint

PL PL

PM PME

PR PR

PR6′ PQ

tR1, tL1, tL2 –

tR2 PRN

The biological entities that are directly represented in our model map to
components depicted in Fig. 3

concentrations. The binding site states uniquely deter-
mine the gene expression levels via control functions. All
expression levels will remain unchanged until the concen-
tration of some protein reaches a threshold for a binding
site that in turn triggers a change in the state of this
site. It can happen when a protein concentration grows
above an association constant or falls below a dissociation
constant. As long as no binding site state is altered the pro-
tein concentrations will be either increasing or decreasing
monotonously. Therefore we can unambiguously recre-
ate the current state of the modelled biological system by
noting the states of all binding sites and the time when
the last switch of a binding site state took place and all
concentrations at that point.
We can perform a qualitative analysis of behaviours of

a HSM model by studying the states through which the
model behaviour evolves and by dropping the times of
change of binding site states. In this section we introduce
a new method of qualitative analysis that does not require
the knowledge of precise concentrations and of switching
times.
We capture the current (qualitative) behavioural state by

recording the states of all binding sites. We refer to such a
record as amode.
We call the actual course of the protein concentrations

over time a run. Different runs can be generated by the
same model by varying initial concentrations. A run is
defined and uniquely determined by three components:
the initial concentrations of all proteins, the sequence
of modes through which the system evolves, and the
sequence of time points when modes change.
It is straightforward to derive the information on growth

and degradation directions from the sequence of modes in
a run, because each mode uniquely determines the direc-
tion of change for each protein. A direction is coded by
the following symbols: ↑ for increasing, → for unchanged
and ↓ for decreasing. We will call a sequence of direc-
tions a qualitative behaviour as it omits both precise
concentrations and growth and degradation rates.
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In Fig. 1 we have depicted a small HSM network with
two genes. In this case the qualitative behaviour for a
simulation run can be recorded by a sequence of pairs
of arrows. For example, the pair (↑↑) implies that the
amounts of both proteins increase; (↑↓) shows that the
s1’s concentration increases, while the s2’s decreases. A
new pair has to be added to this sequence when the state
of some binding site changes as this can subsequently alter
the expression of a gene.

The characteristic graph for all model behaviours
We perform an analysis of the network dynamics by build-
ing a graph comprising all possible successions of modes.
Previously we have proposed a method for exploring the
graphs of all feasible states [24]. Such a graph captures
all possible behaviours of a system that are compatible
with given constraints for binding site affinity orderings.
Here, we consider a simpler situation when we know the
linear orderings of all binding affinities for each protein.
We call the graph describing all behaviours permitted by
such orderings a characteristic graph. In such a graph,
an edge is drawn between two modes when the source
mode can be followed by the target mode if the state of
a certain binding site changes. Each characteristic graph
is a directed graph – arrows indicate the order in which
modes can occur. Each edge is augmented with a label
stating which protein can trigger a change in a binding site
state by reaching a concentration threshold. A triggering
condition is denoted by an inequality between a pro-
tein concentration and a threshold (e.g. ‘Cro ≤ bOR2.dis’)
and called a transition guard. In this graph we lose the
information on protein concentrations and on the time it
takes to move from one mode to the next. Constructing a
characteristic graph involves identifying all possible suc-
cessive modes by iterating through all binding site state
changes that can occur in the current mode; for more
details on the construction algorithm see [23]. For large
networks enumerating all modes and traversing all tran-
sitions between them can be computationally expensive.
However, the knowledge of relationships between associ-
ation and dissociation constants can be used to reduce the
number of modes drastically as the orderings of these con-
stants provide many constraints for possible binding site
state combinations. For example, for our phage λ model
we know that the binding sites bOR1, bOR2 and bOR3
have a fixed order of affinities and that bOR1 will always
switch either before or simultaneously with bOR2 when
the concentration of repressor is increasing and the sites
are vacant.
All sequences of modes that can occur in the simula-

tions of a HSMmodel will be represented in a characteris-
tic graph. However, not all paths in a characteristic graph
will make biological sense and not all paths will be observ-
able in simulations. When exploring possible binding site

changes for a mode we are not checking whether there
exists a set of initial concentrations that can lead to a
specific transition given particular concentration change
rates. Thus a characteristic graph provides a safe approxi-
mation of all simulation results that can be obtained from
a HSM model by choosing various initial concentrations,
initial binding site states and growth and degradation
functions.
The software that constructs a characteristic graph

for a biological model is included in Additional file 1.
We used it for all analyses of this paper. Instructions
for deploying it are incorporated there as well as an
example of a complete ordering of all binding site
thresholds.

Identification of stable behaviours
Analysis of the topology of a characteristic graph can
reveal the number of different behaviours. We are inter-
ested in the parts of a characteristic graph that correspond
to stable behaviours (attractors) of a biological system.
A set of modes in a characteristic graph is an attrac-
tor if it permits a behaviour that stays exclusively within
these modes for an infinite time.We are particularly inter-
ested in well-connected attractors: an attractor is well-
connected if there is a path between each pair of modes
within it.
The closest analogue to a HSM model attractor is a

strongly connected component (SSC). A SSC is defined
as a subgraph that contains a path between any two of
its vertices. Any well-connected attractor lies within a
SCC. There can, however, be SCCs that do not contain
any attractors – this happens if no system behaviour can
stay infinitely within this SCC. We recognise this situ-
ation by noticing a progress indicator (a protein). Such
a protein either monotonously grows within all modes
of a SSC but stays below at least one of its associa-
tion thresholds or alternatively monotonously decreases
within all modes of a SSC but stays above zero and at
least one threshold for this protein. In this way we iden-
tify transitional components that certainly do not contain
any attractors.
We find all candidate attractors in the characteris-

tic graph of a HSM by identifying SCCs without any
progress indicators. The lack of a progress indicator
potentially allows an infinite behaviour to take place
solely within this SSC. However, this condition alone
does not guarantee that a particular run of a system
will stay indefinitely within such a component or even
that a run with this property will exist for a particu-
lar set of quantitative parameters. In addition we check
whether a SSC is final, i.e. whether there is no edge leading
outside of it.
We extracted and classified all stable states of a system

by Perl scripts (see Additional file 1).
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Results
Partially known binding affinities
When the precise ordering of binding site affinities is not
known, then for a sufficiently small network we construct
characteristic graphs for all possible binding site affinity
orderings. We used a Perl script to enumerate all linear
orderings that are compatible with given constraints for
binding site affinities (see Additional file 1). For the net-
work of Fig. 1 we built the graphs for the six orderings
shown in Table 2. The first two yielded graphs with identi-
cal structure and attractors; the last two orderings also led
to structurally equivalent graphs and identical attractors.
Thus, we observed four different attractor structures for
six threshold orderings (one of the characteristic graphs
is depicted in Fig. 4). We detected three different attrac-
tors across all graphs. One of them was a simple auto-
regulatory circuit with two vertices, while the other two
were more complicated. The dynamics of the system was
straightforward for each threshold ordering as it always
led to a unique attractor, with the exception of the third
ordering. The graph for the third ordering had two attrac-
tors (see Fig. 4), while the outcome of a behaviour was
immediately determined by the initial state of binding
sites.

Qualitative analysis of phage λ behaviours
We analysed the dynamics of the HSM model for phage
λ under various constraints. We explored different order-
ings of binding site affinities for Cro or repressor to
understand which conditions are critical for attaining a
wild type behaviour and which aspects of the network
can explain various mutant behaviours that have been
observed experimentally. We built a characteristic graph
for each combination of Cro and repressor threshold
orderings that is consistent with the known affinity prece-
dence within bOR1, bOR2, bOR3 and within bOL1,
bOL2, bOL3. The necessary affinity precedence was pre-
served for both Cro and repressor. The orderings for
other proteins were assumed to be unique, because the
binding concentration for CII and binding site bCII-1 is

Table 2 Possible orderings of association and dissociation
thresholds for two binding sites when the same protein can bind
both sites

Threshold orderings

b2.dis < b2.as < b3.dis < b3.as

b2.dis < b3.dis < b2.as < b3.as

b2.dis < b3.dis < b3.as < b2.as

b3.dis < b2.dis < b2.as < b3.as

b3.dis < b2.dis < b3.as < b2.as

b3.dis < b3.as < b2.dis < b2.as

Such orderings are considered for s2 when analysing the small network from Fig. 1

known to be higher than for the site bCII-2. Further-
more, we assumed that the association and dissociation
thresholds for a pair of a protein and a binding site are
sufficiently close so that no other thresholds for the same
protein can be situated between them. As an exception
to the latter rule we allowed for two intermediate thresh-
old orderings for bOR2 and bOL2 sites: bOR2.dis <

bOL2.dis< bOR2.as< bOL2.as and bOL2.dis< bOR2.dis
< bOL2.as < bOR2.as. These assumptions follow from
the biology of phage λ, but might not always hold for
other models. After taking into account these constraints
we were left with 22 × 22 = 484 threshold orderings. In
addition we tested the case when the affinities for bOR2
and bOL2 are equal for both Cro and repressor – 16
threshold orderings compatible with this and other con-
straints were considered. In total, 500 different threshold
orderings were examined.
We built a characteristic graph for each of the 500

threshold orderings and detected SSCs in each graph. Sur-
prisingly, there were exactly two attractors in each graph.
We observed four different attractors across all threshold
orderings. Two of them corresponded to the familiar lysis
and lysogeny behaviours, while the remaining two were
altered behaviours: one modified attractor was a mutated
lysogeny behaviour and the other was a mutated lysis.
(Several attractors had variations exhibiting some differ-
ences in binding site states, but no discrepancies in the
qualitative behaviour – we do not distinguish between
them and speak of four different attractor types instead of
nine.) Thus, we found that there were no hidden attractors
for phage λ beyond the lysis and lysogeny, while these two
stable behaviours can vary phenotypically.
How do the wild type and modified lysis behaviours dif-

fer? The wild type lysis is represented in a characteristic
graph by a SSC with twelve vertices and transitions trig-
gered by three different proteins: Cro, CII and Q (see
Fig. 5). The modified lysis behaviour corresponds to a
SSC with six vertices; transitions with Q are absent from
this behaviour (see Fig. 5). Both wild type and modified
behaviours have characteristics in common: the concen-
tration of Cro fluctuates between the association and dis-
sociation thresholds of bOR2 (an auto-regulatory circuit)
and transitions with CII are similar.
What can be inferred about the wild type lysis behaviour

from the characteristic graph? The concentration of Cro
influences the concentrations of CII and Q via binding
sites bOR1, bOR2, bOR3: whenCro is accumulating both
CII andQ are increasing, but when Cro is being degraded
also the concentrations ofCII andQ are falling (see Fig. 5).
Thus the dynamics of Cro determines how far the con-
centrations of CII and Q will rise or fall and also which
of the transitions by Q and CII will actually be triggered.
For example, if the upwards path between the dissociation
and association thresholds of Cro and bOR2 is traversed
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Fig. 4 The characteristic graph of the small HSM network from Fig. 1 for the binding affinity ordering b2.dis < b3.dis < b3.as < b2.as for s2. Each
mode in the graph can be identified by a unique binding site state combination; it is labeled by the concentration change direction for each
protein. SSCs that contain attractors are either blue, with bold margins, or pink, with narrow margins. Pink attractors correspond to a single cycle
whereas blue attractors comprise at least two cycles and at least one branching point leading into different cycles

quickly, i.e. beforeQ can increase up to its binding affinity
for the site bQ, the production of structural proteins will
not be initiated. It means that the ratio of the growth rate
of Cro to the growth rate of Q determines the observable
behaviour within the lysis attractor. Similar observations
can be made about the dependence of CII growth on the
growth rate of Cro. We conclude that the wild type lysis
behaviour is mainly determined by the network topol-
ogy, however, there are some quantitative parameters that
fine tune the observable behaviour. Most importantly, the
ratios of the growth rates for Cro, CII and Q have to
be such that the production of structural proteins is not
inhibited, otherwise the wild type behaviour cannot occur.
The modified lysis behaviour is simpler than the wild

type lysis (see Fig. 5). It is guaranteed that the structural
proteins as well as proteins encoded byQ, xis, cIII, N will
degrade to zero concentration in contrast to the wild type
lysis. It means that a phage cannot be excised from the
host genome and that several components will be lacking
for assembling replicated phage particles. This attractor
has transitions initiated by Cro and CII only. The auto-

regulatory circuit of Cro controls the concentration of
CII: when Cro increases also CII increases and the degra-
dation of Cro implies the degradation of CII. Thus, the
ratio of the growth rate of Cro to the growth rate of CII
determines which thresholds can be reached by CII and
consequently whether Int will be produced. Hence appro-
priate quantitative parameters are crucial to enable the
integration of a phage genome into a host genome.
The main characteristics of the lysogeny behaviour are

the fluctuation of repressor concentration between the
dissociation and association thresholds of bOR2 (an auto-
regulatory circuit) and the gradual degradation of all
other proteins to zero level. Within a modified lysogeny
behaviour the products of cIII, xis and N are accumulat-
ing, while other proteins behave as in a wild type attractor.
The modified behaviour implies that phage particles can
be excised from the host genome and integrated into it,
while replication will be difficult. The observable type of
lysogeny behaviour is solely determined by the topology of
the network; quantitative parameters do not play any role
here.
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A

B

Fig. 5 Phage λ attractors from the characteristic graph. a The wild type lysis attractor; b the modified lysis attractor. Note that binding site states are
omitted from the mode labels, instead modes are marked solely by their qualitative behaviour, i.e. the growth and degradation indicators for all
proteins

Model validation and sufficient conditions for altered
behaviours
What are the necessary and sufficient conditions for
obtaining a modified instead of a wild type attractor? To
answer this, we determined shared behaviours for various
threshold orderings. The analysis of characteristic graphs
for 500 threshold orderings led us to a conclusion that
both thresholds for Cro and OR2 have to be lower than

the thresholds for Cro and OL2 to achieve a wild type
lysis behaviour (interestingly enough, the mutual order
of repressor thresholds for these two binding sites did
not matter). When this condition was violated either lysis
alone or both lysis and lysogeny were altered and the two
modified attractors described above were observed. Fur-
thermore, when both Cro thresholds for OR2 were equal
to the Cro thresholds for OL2 a particular variant of wild
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type lysis was detected. In some cases a modified lysogeny
was observed while lysis did not deviate from wild type: it
happened when the thresholds for repressor andOR3 were
lower than the thresholds forOL1 and repressor regardless
of the threshold ordering for Cro.
Now that we know crucial inequalities between bind-

ing site affinities we can suggest experiments that should
yield modified behaviours. For example, we can exchange
binding sites OR1,OR2,OR3 with sites OL1,OL2,OL3 on
a phage λ genome thus swapping the affinities for these
sites for both Cro and repressor. According to our analysis,
this action should violate a necessary condition for bind-
ing site affinities and cause a modified lysis behaviour. We
also suggest a subtler experiment of swapping OR2 and
OL2 sites – a modified behaviour should arise after such
a swap. Here, it is important that the repressor affinities
for these sites can be freely exchanged together with Cro
affinities.
To detect the modified attractors experimentally it is

necessary to focus on their most significant differences
from the wild type attractors. Such discrepancies should
be observable regardless of precise concentrations and
growth rates. A major difference between the wild type
and modified lysis is the gradual degradation of the prod-
ucts of Q, xis, cIII, N and structural proteins to zero level
within the mutant lysis (these proteins are not produced
afterwards). A crucial discrepancy between the modified
and wild type lysogeny is the consistent production of
proteins coded by cIII, xis and N which in turn implies
the presence of non-integrated phage particles for the
lysogeny mutant. In addition to these observations it is
necessary to ascertain whether the system is within the
lysis or lysogeny mode. It can be done by detecting the
proteins that are produced in the same way regardless of
wild-type andmodified behaviours. For example, the pres-
ence of repressor and Cro could be checked to make this
conclusion. Otherwise the presence of, for example, N is
ambiguous: it can indicate either the wild type lysis or
modified lysogeny.

Experimental detection of modified behaviours
The phage λ genome is very compact and economical –
genes are densely packed and regulatory elements take
comparatively little space. The OR operator sequence is
only 74 base pairs (bp) long, while the OL operator cov-
ers approximately 100 bp sequence [30]. All OR and OL
binding sites are of the same size, 17 bp long [31]. The
space between OR1 and OR2 is 6 bp and the interval
between OR2 and OR3 is 7 bp. The coding sequences
of cI and cro genes are in physical proximity to OR and
OL as are the promoters from which the transcription of
either cI or cro is initiated [32]. Moreover, the proteins
that can bind to sites within the same operator tend to
form dimers and also interact with RNA polymerase [26].

The equivalent lengths of binding sites permit exchang-
ing their sequences, but care must be taken to preserve
crucial distances between nearby elements on a genome,
otherwise the strength of regulatory interactions could be
altered. Thus, swapping whole operators is more likely to
be successful than swapping of individual sites.
The sequence variation and mutations of the binding

sites belonging to OR and OL, including the effects of
mutations, have been described in [30, 33]. Of particular
interest to us are the mutations that inactivate OR1 site
so that repressor cannot bind to it. It has been observed
experimentally that this type of inactivation leads to an
increased affinity of repressor for OR3 coupled with a
decreased affinity for OR2 in comparison with a wild type
phage λ. This effect is due to repressor dimers occupying
either OR1 and OR2 or OR2 and OR3 sites simultaneously.
If the altered affinity forOR2 is smaller than the affinity for
OL2, then such a mutant could validate our hypotheses.

Discussion
Hybrid system models, such as the one introduced by us,
close the gap between Boolean networks and differen-
tial equation models. Hybrid models allow to represent
the dynamics of concentration changes without requir-
ing detailed knowledge of kinetic parameters. Several
extensions of Petri Nets also incorporate both continuous
concentration changes and discrete parameters, among
them a Petri Net formalism with stochastic time delays
[34] and Hybrid Petri Nets having two types of places and
transitions, discrete and continuous [35].
A disadvantage of many hybrid system models is the

lack of mathematical tools and software for their analysis.
Here, we address both of these problems.We build a char-
acteristic graph for a biological system and then analyse
its topology – this method allows us to identify all attrac-
tors of a model. Such an analysis also provides crucial
information for suggesting experiments that can distin-
guish between various steady states. The scalability of our
approach will depend on the number of constraints for
binding site affinity orderings – having more constraints
can drastically reduce the size of a characteristic graph.
Process Hitting is one of the alternative techniques that

can be used in modelling networks with partial knowledge
of interactions between biological entities; this framework
does not require the knowledge of quantitative parameters
[36]. The authors propose a method for inferring positive
and negative influences of other genes on the expression
of a particular gene (some influences can remain ambigu-
ous). They represent the more complex logical functions
that govern gene expression as constellations of several
components, possibly involving time delays between their
activation. In contrast, we propose to model each control
function as one item. They enumerate all feasible param-
eterisations of a biological network – the number of these
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is exponential in the number of regulators of a network
component, but some parameterisations can be ruled out
by using biological constraints. This approach is similar
to our way of constraining threshold orderings. Process
Hitting was used to infer 40 parameters out of 195 for an
ERBB receptor-regulated G1/S transition model with 20
components [37] and 77 out of 143 for a T-cell receptor
model with 40 components [38].
Process Hitting framework has been augmented with

time delays that model production and degradation rates
of proteins [39]. The authors use linear functions with
unknown gradients to model changes in concentrations
between each pair of thresholds. They obtain ranges of
delay parameters that allow moving to a certain succes-
sive state. From this information necessary conditions for
reaching attractors can be derived. In contrast, we do not
require the assumption of linearity of growth/degradation
functions in our method of attractor analysis. Their
framework was applied to the phage λ network described
in [7] and a model of ERBB Receptor-regulated G1/S
transition involved in the breast cancer.
Our proposed modelling framework has several similar-

ities with asynchronous automata [40]. Within the latter
approach logical functions determine whether a protein is
synthesised or not; the expression level of a gene depends
on whether proteins are bound or not bound to bind-
ing sites. Their model incorporates binding thresholds for
pairs of proteins and binding sites (one threshold per pair).
All thresholds have to be linearly ordered and ambiguities
within an ordering are not allowed. For each expression
level of a gene, differential equations describe the growth
and degradation dynamics of the protein it produces.
The authors of [40] propose to draw a graph of possi-

ble sequences of states for a gene regulatory network. A
state is determined by the positions of protein concen-
trations relative to thresholds. They detect attractors by
analysing cycles in a state graph and determining which
of these cycles and under what conditions are consistently
up-regulating or down-regulating.
There are some important differences between our

approach and asynchronous automata. They had to create
separate states that correspond to protein concentrations
being equal to threshold values – we do not need such a
device, because our association and dissociation thresh-
olds are distinct for each pair of a protein and a binding
site. As a consequence we do not have to computation-
ally consider all combinations of additional intermediate
states.
The method in [40] requires that the relative protein

concentration with respect to its binding thresholds coin-
cides with the expression level of its producing gene. It
means that both growth and degradation rates have to be
faster for larger protein concentrations. We do not make
such an assumption and instead allow the expression level

of a gene to vary irrespective of the concentration range of
the protein it produces. They rely on a coupling of differ-
ential equations and logical expressions in their attractor
analysis, while we do not make assumptions about the
types of differential equations for various expression lev-
els.
Asynchronous automata have been used to analyse the

phage λ gene regulatory network [7]. The models pre-
sented in [7] are simpler than our proposed model: the
first incorporates only cI and cro together with their influ-
ences on other genes; the secondmodel involves cI, cro, cII
and N. None of these models allows to capture crucial dif-
ferences between wild type and modified attractors which
we describe here.
We incorporated various biological constraints that

have been demonstrated experimentally in our model. We
took into account the six conditions of the second model
from [7]. In addition we included the negative loop of cro
on itself, which prevents the products of cro, cII, O and
P from rapid multiplication during replication, and incor-
porated the negative control by repressor of its own gene.
Both OR and OL cascades were included in the second
model from [7] and four binding thresholds were distin-
guished for both repressor and Cro. In comparison we
considered six threshold pairs for each of these proteins.
A particular order of OL and OR affinities was assumed in
the earlier paper. In contrast, we checked a wide range of
orderings to discover the essential conditions that deter-
mine the known phage λ behaviours. They did not include
integration and excision in the model, while we modelled
both xis and int and were able to detect alterations of
integration and excision within modified lysis.
We detected only two stable behaviours for any phage

λ variant. The authors of [7] arrived at the same con-
clusion, but they first detected two steady states and one
stable cycle and only then deduced that just two stable
behaviours are feasible. Our approach did not require dis-
carding steady states on the basis of differential equation
stable point analysis – instead we immediately determined
attractors from the classification of strongly connected
components.
A range of phage λ variants has been studied both exper-

imentally and also by different modelling approaches. In
[41] only the OR cascade was modelled while OL was
not considered. Three different mutants were studied by
inducing mutations either within OR1 or OR3 or in both.
Identical binding affinities for OR1 and OR3 yielded stable
lysogeny and a fully functional genetic switch. However,
the phage in which OR1 and OR3 were switched could
not lysogenise and formed only tiny plaques. The effects
of these mutations are consistent with the predictions of
our model – we obtain the wild type lysis and lysogeny
whenever we do not contradict the mutual affinity order-
ing for OR sites and leave the OL cascade intact. Equal
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affinities are covered in our characteristic graphs as spe-
cial cases where the transition time from one state to
another is zero. The model presented in [42, 43] is simpler
than our model – it includes only the OR cascade, but not
the OL cascade; they model the changes in repressor and
Cro amounts by differential equations, but omit an impor-
tant influence of CII on the λ switch. They considered two
mutants whichmake the lysogenic state unstable in nature
– only lysis attractors were obtained under these condi-
tions. These results do not capture the different types of
lysis we have identified.
Our analysis of a phage λ model revealed a surpris-

ing robustness of this biological network. We explored
all orderings not contradicting the chief requirements for
two binding site cascades, OR1, OR2, OR3 and OL1, OL2,
OL3. Each ordering yielded exactly two different attrac-
tors which could be easily mapped to lysis and lysogeny
behaviours. We discovered only two modified versions of
lysis and lysogeny behaviours. This degree of robustness
is by no means guaranteed for any network. For example,
the small network in Fig. 1 has a characteristic graph of
less than ten vertices for any binding affinity ordering, yet
we can obtain many different attractors.
Our method of qualitative analysis can be useful in

deciding which models of a biological system are valid.
Several alternative models can be considered and their
stable behaviours identified: it is easy to check whether
the predicted behaviours correspond to experimentally
observable phenotypes. It is possible to use various prop-
erties of an attractor in a characteristic graph for detect-
ing this particular behaviour experimentally, for example,
consistent absence or presence of proteins can be tested.

Conclusions
We propose a novel and computationally efficient method
for analysing gene regulatory networks and discovering all
stable behaviours of a network. It does not require precise
information on quantitative parameters such as binding
affinities and the characteristics of protein production
and degradation. Our method is also applicable when the
knowledge of the mutual ordering of binding site affinities
is incomplete. We provide a software that implements the
algorithm of attractor discovery.
We built a model of phage λ and were able to prove

that this biological system can exhibit only two dif-
ferent stable behaviours given the main constraints of
the λ switch. These behaviours correspond to lysis and
lysogeny. According to our predictions, two versions
of both lysis and lysogeny are possible, a wild type
and a modified behaviour. We derived sufficient con-
ditions for observing the wild type behaviour. We also
suggested several experiments for detecting modified
behaviours that correspond to altered binding site affinity
orderings.

The stable behaviours of phage λ turned out to be
almost entirely determined by the network topology and
unaffected by exact quantitative parameters. Neverthe-
less, sometimes the relationships between the growth
and degradation rates of various proteins fine tuned a
behaviour within an attractor. It would be of interest to
include the inequalities between different rates in network
analysis – this could potentially offer a more nuanced
understanding of stable behaviours and narrow down the
set of feasible behaviours.
Finally, an automatic discovery of necessary conditions

for a particular behaviour to occur is of great importance.
This would help in deriving experimentally verifiable
hypotheses and yield information about the robustness
and modularity of a network.

Additional file

Additional file 1: Software package implementing our proposed method
of attractor analysis. It contains source files, user manual and the phage λ

model described in this manuscript. Following subsections describe files
from the package. ModelDescription.txt: Definition of the phage λ model
that is analysed within this paper. ModelConstraints.txt: File that specifies
partial constraints for the orderings of binding site affinities. Here, the
constraints are applicable to our phage λ model. HSM_graph_analysis.cpp:
The main component of the software that identifies all feasible states of a
system. HSM_graph_analysis.h: The second component of the software for
graph analysis. It is a C++ header file which contains definitions of classes
and data structures. HSM_instructions.pdf: Instructions for compiling and
running the software that constructs a graph describing all possible states
of a system. Formats of input and output files are described as well. Thr.txt:
File containing the orderings of binding site affinities for all proteins .
ExtractStates.pl: Perl script that extracts all stable states from a state
transition graph. MergeStates.pl: Perl script that characterises and
summarises stable states. It aggregates the information about stable states
for several state graphs. AnalyseStates.pl: Perl script that characterises
stable states of a system by describing the feasible behaviours within
them. ThresholdOrderings.pl: Perl script that generates all linear orderings
of binding site thresholds that are consistent with a set of constraints
defining partially known orderings. (ZIP 84 kb)

Abbreviations
bCII-1: Binding site for CII that regulates the PME promoter; bCII-2: Binding
site for CII that regulates the Pint promoter; bN: Binding site for N that
regulates the PRN promoter; bOL1: Binding site in our model that stands for
OL1; bOL2: Binding site in our model that stands for OL2; bOL3: Binding site in
our model that stands for OL3; bOR1: Binding site in our model that stands for
OR1; bOR2: Binding site in our model that stands for OR2; bOR3: Binding site
in our model that stands for OR3; bOR3.as: Association threshold for the bOR3
binding site in our model; the same type of abbreviation is used for other
association thresholds; bOR3.dis: dissociation threshold for the bOR3 binding
site in our model; the same type of abbreviation is used for other dissociation
thresholds; bQ: Binding site for Q that regulates the PQ promoter; cI: Gene
that encodes repressor protein; cII: Gene that codes CII protein which activates
transcription for lysogeny; cIII: Gene that codes CIII protein which is a
regulatory protein for lysogeny; cro: Gene that encodes Cro protein whose
presence is essential for initiating lysis; FSLM: Finite state linear model; HSM:
Hybrid system model; int: Gene coding Integrase which is responsible for the
integration of the phage genome into host’s genome; N: Anti-termination
protein; O: Replication protein; OL : Operator cascade starting from the PL
promoter; both repressor and Cro can bind to its sites; OL1: The first binding site
within the OL cascade; OL2: The second binding site within the OL cascade;
OL3: The third binding site within the OL cascade; OR : Operator cascade
starting from the PR promoter; both repressor and Cro can bind to its sites; OR1:
The first binding site within the OR cascade; OR2: The second binding site
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within the OR cascade; OR3: The third binding site within the OR cascade; P:
Replication protein; Pint : Promoter regulating int; PL : Promoter regulating the
transcription of int, xis, N, and cIII and the OL cascade of binding sites; PME :
Promoter within our model that stands for promoters PM and PE of phage λ;
the latter two regulate the transcription of cI; PQ : Promoter regulating the
production of structural proteins; stands for the PR′ promoter of phage λ; PR :
Promoter regulating the transcription of cI, cro, cII and further downstream
genes and the OR cascade of binding sites; PRM : Promoter controlling the
transcription of the cI gene; PRN : Promoter in the model representing the tR2
terminator; Q: Anti-termination protein that regulates genes encoding
structural proteins; SSC: strongly connected component; struc: Genes
encoding structural proteins; xis: Gene that encodes Excisionase which is
responsible for the excision of the phage genome from host’s genome
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