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Abstract

Background: Fluorescent reporter genes have become widely used for monitoring gene expression in living cells.
When a microbial strain carrying a reporter gene is grown in a microplate reader, the fluorescence and the
absorbance (optical density) of the culture can be automatically measured every few minutes in a highly parallelized
way. The extraction of useful information from the resulting large amounts of data is not easy to achieve, because the
fluorescence and absorbance measurements are only indirectly related to promoter activities and protein
concentrations, requiring mathematical models of the expression of reporter genes for their interpretation. Although
the principles of the analysis of reporter gene data are well-established today, there is a lack of general-purpose
bioinformatics tools based on generic measurement models and sound inference procedures. This has motivated the
development of WellInverter, a web application based on well-known methods for regularized linear inversion.

Results: We present a new version of WellInverter that considerably improves the performance and usability of the
original application. In particular, we have put in place a parallel computing architecture with a load balancer to
distribute analysis queries over several back-end servers, we have completely redesigned the graphical user interface
to better support the different analysis steps, and we have developed a plug-in system for the parsing of data files
produced by microplate readers from different manufacturers. We illustrate the functioning of WellInverter by
analyzing data of the expression of a fluorescent reporter gene controlled by a phage promoter in growing Escherichia
coli populations. We show that the expression pattern in different growth media, supporting different growth rates,
corresponds to the pattern expected for a constitutive gene.

Conclusions: The new version of WellInverter is a robust, easy-to-use and scalable web application, which has been
deployed on two publicly accessible web servers and which can also be installed locally. A demo version of the
application with two sample datasets is available on-line.

Keywords: Fluorescent reporter gene data, Microplate reader, Quantitative modeling of gene expression, Estimation,
Web application

Background
Fluorescent reporter genes are powerful tools for measur-
ing gene expression in individual cells or in populations
of cells. A fluorescent reporter gene codes for a protein
that has a characteristic fluorescence emission spectrum
when excited with light at a specific wavelength [1, 2]. The
principle of the use of fluorescent reporters for quantify-
ing gene expression is based on cloning the reporter gene
downstream of a gene or a regulatory region of interest,
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either in the genome or on a plasmid that can be trans-
formed into the host cell [3]. By construction, the reporter
protein is co-expressed with the protein of interest (when
the reporter gene and the gene of interest code for a sin-
gle fusion protein) or the expression of the two proteins
is co-regulated (when the two genes share transcriptional
and/or translational regulatory regions). The intensity of
light emitted by a cell or a population of cells provides an
indication of the quantity of fluorescent protein present
and therefore reports on the quantity of the protein of
interest or on its synthesis rate (Fig. 1).
Contrary to genome-wide methods for measuring gene

expression, like RNA-Seq and quantitative proteomics
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Fig. 1 Relation between the measurements of fluorescence and absorbance in reporter gene experiments and the activity of the host gene and the
concentration of the protein it encodes. a: Co-expression of the host and reporter gene, together encoding a single fusion protein. b: Idem, but the
host gene and reporter gene code for two distinct proteins. c: Co-regulation of the host and reporter genes, which share the same transcriptional
and translational regulatory sequences (promoter and ribosome binding site, RBS). d: Idem, but only transcriptional regulation is shared between
the host and reporter genes as indicated by the different colors of the RBSs. e-f: As in c-d, but the reporter gene is carried on a plasmid rather than in
the chromosome. In order to avoid visual clutter, the transcription and translation processes in the figure have been collapsed into a single protein
synthesis step

[4, 5], the use of fluorescent reporters allows only one
to three genes per cell to be monitored in parallel. How-
ever, gene expression can be quantified in vivo, without
the need to harvest and lyse the cells, and at high sampling
density, typically once every few minutes. Over the years,
many useful resources have appeared, such as libraries of
reporter strains for model organisms [3] and computer
tools for designing reporter plasmids [6]. Moreover, the
widespread adoption of thermostated microplate read-
ers in experimental laboratories has made it possible to

automate and multiplex reporter gene assays on the pop-
ulation level. This has resulted in large time-series data
sets, typically comprising 105−106 measurements for 102
wells on the microplate. The analysis of these data sets has
shed new light on the functioning of complex regulatory
networks [7–11].
The primary data obtained from reporter gene experi-

ments in microplate readers consist of measured intensi-
ties of the fluorescence emitted by a growing population of
cells as well as absorbance (optical density) measurements
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reflecting the size of the population. Due to the indirect
relation of these measurements with the expression of
the gene of interest (Fig. 1), the interpretation of the pri-
mary data is not straightforward. Therefore, the inference
of the activity of a gene or the concentration of a pro-
tein from fluorescence and absorbance measurements has
become a lively research area over the past decade. Dif-
ferent methods have been proposed, all based on dynam-
ical models that describe the process of gene expres-
sion, using different procedures to infer quantities of
interest [10, 12–23].
In previous work we have shown how the interpre-

tation of reporter gene data can be formulated as an
input estimation problem and solved in a mathematically
sound and practically useful manner using linear inversion
[22]. Most existing approaches first smooth the primary
data and then inject the resulting approximating func-
tions into the gene expression model, which may lead to
estimation errors that are difficult to control. Instead of
this indirect approach, we formulated a global optimiza-
tion problem with a regularization term directly apply-
ing to the quantities to be estimated. This problem was
solved using efficient linear inversion methods [24–26]
adapted to the structure of the problem. The methods
have been implemented in the Python package Well-
FARE and made accessible through the web application
WellInverter. WellInverter allows the user to upload, ana-
lyze, and visualize the data of a reporter gene experiment
as well as downloading the results for further process-
ing. The analysis includes outlier detection, background
correction, estimation of growth rate, promoter activity,
and protein concentration, the computation of summary
statistics over the wells of the microplate, and the export
of the analysis results.
The previous version of WellInverter [22] had a num-

ber of shortcomings that limited its practical usability
for a broad audience of biologists and bioinformaticians.
First, since the estimation of growth rates, promoter activ-
ities, and protein concentrations may be computationally
costly, especially when several wells are analyzed in paral-
lel and when the application has to simultaneously handle
several queries coming from different users, response
times could become prohibitively long. Second, the user
interface was functional but rudimentary, and did not sup-
port important features of the WellFARE algorithms and
different background correction procedures. Third, the
applicationwas limited to the import of data files from one
commercially-available microplate reader and support for
other file formats would have required the development of
new, customized parsers.
The new version of WellInverter presented in this paper

addresses all of the above problems. In particular, we
have put in place a parallel computing architecture with
a load balancer to distribute the estimation queries over

several back-end servers, we have completely redesigned
the graphical user interface to better support the differ-
ent analysis steps, and we have developed a plug-in system
for the parsing of data files produced by microplate read-
ers from different manufacturers. This has resulted in a
scalable and user-friendly web service providing a guaran-
teed quality of service in terms of availability and response
time. To our knowledge, this is the first easily accessible
and broadly applicable web application for the analysis of
reporter gene experiments. The WellInverter web server
has been deployed on the cloud of the French Institute of
Bioinformatics (IFB) and on the servers of our host insti-
tute, but is also available as a stand-alone version that
can be locally installed (see Availability and requirements
section).
In order to illustrate the use of WellInverter, we apply it

to the analysis of reporter gene experiments in the enter-
obacterium Escherichia coli that quantify the expression
of a reporter gene controlled by a constitutive promoter.
Transcription from a constitutive promoter is not regu-
lated by specific transcription factors and thus depends
only on the activity of the transcriptional machinery, that
is, the concentration of (free) RNA polymerase and pre-
cursor pools [27, 28]. Constitutive promoters are impor-
tant as experimental controls when estimating the effect
of transcriptional regulators on gene expression, as they
capture the global effect of changes in cell physiology
independently from the specific effect of transcription
factors [7, 11]. We provide further evidence that the pro-
moter considered here, the phage promoter pRM [29], is
truly constitutive by comparing the steady-state expres-
sion levels of the reporter protein with a theoretical model
of gene expression from constitutive promoters [28].

Implementation
Estimation algorithms
The estimation of promoter activities and protein con-
centrations from measured fluorescence intensities and
absorbance (optical density) values follows the approach
developed previously [22], which we briefly summarize
here. Expression of the fluorescent reporter gene is mod-
eled by the ordinary differential equation model

d
dt

R(t) = a(t) · V (t) − γr · R(t), (1)

where R(t) [mmol] is the time-varying quantity of the
fluorescent reporter protein in the growing bacterial pop-
ulation, a(t) [mmol min−1 L−1] the synthesis rate of the
reporter protein per unit of population volume V (t) [L],
and γr the degradation constant of the reporter [min−1].
The protein synthesis rate is often called gene activity
or promoter activity in the reporter gene literature [10],
motivated by the fact that, under certain assumptions and
as a first approximation, the rates of transcription and
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translation are proportional [11]. The degradation con-
stant is related to the half-life t1/2 of the protein by t1/2 =
ln 2/γr , which can be easily measured [17].
The absorbance and fluorescence measurements car-

ried out in microplate readers are assumed to be propor-
tional to the volume of the growing bacterial population
and the total reporter protein quantity in the population,
respectively. More precisely, the absorbance and fluores-
cence measurements Ṽ , R̃ at time-point ti are related to
the volume and reporter protein quantities by means of
the following measurement model

Ṽ (ti) = α V (ti) + νi, (2)
R̃(ti) = β R(ti) + ν′

i , (3)

where νi, ν′
i represent measurement noise. The propor-

tionality constants α, β are usually unknown, without
the performance of nontrivial calibration experiments.
It immediately follows from the above definitions that
the concentration of the reporter protein in the growing
population at time-point ti is proportional to R̃(ti)/Ṽ (ti).
A first estimation problem consists in inferring the

growth rate of the population from the absorbance mea-
surements via the following growth equation

d
dt

(α V )(t) = α V (t) μ(t) ≈ V̄ (t) μ(t), (4)

where μ(t) [min−1] represents the growth rate and V̄ (t)
an interpolated version of the measurements Ṽ (t). With
the latter approximation, the population volume α V (t) is
the output of a linear system with input μ(t) and initial
conditions (α V )(t0). The estimation of the growth rate
and the initial population volume from the observed out-
put Ṽ at the time-points ti is an instance of a so-called
linear inversion problem that can be efficiently solved
using standard methods [24–26]. In order to make the
problem well-posed, we assume that the input μ(t) is
piecewise-constant and subject to an appropriate regular-
ization condition [22]. In particular, we impose Tikhonov
regularization on the first derivative of the growth
rate [30], penalizing rapid successive variations, and we
set the regularization parameter by generalized cross
validation [31].
Solving the above estimation problem yields, as a side

product, a denoised estimate ̂αV of the population vol-
ume. This estimate can be used for a second estimation
problem, namely to infer a(t), the promoter activity, from
the absorbance and fluorescence measurements via Eq. 1.
We rewrite the latter as

d
dt

R(t) = a(t)
α

· ̂αV (t) − γr · R(t), (5)

and note that this yields again a linear, time-varying sys-
tem with input a(t) and output R(t). The input can be

estimated, up to a multiplicative constant due to the fact
that α, β are not known, by means of the same linear
inversion approach as above [22].
A third estimation problem concerns the inference of

the concentration of the protein of interest from the
absorbance and fluorescence data. We make the assump-
tion that the reporter gene and the host gene are co-
regulated, giving rise to the same promoter activity a(t),
but allow the reporter and host proteins to have differ-
ent degradation constants (corresponding to cases b-e
in Fig. 1). In other words, we combine Eq. 5 with the
following model of host protein expression:

d
dt

P(t) = a(t)
α

· ̂αV (t) − γp · P(t), (6)

p(t) = α · P(t)/̂αV (t), (7)

where P(t) [mmol] is the time-varying quantity of the host
protein, p(t) [mmol L−1] its concentration, and γp [h−1]
its degradation constant. We assume γp to be approxi-
mately known, bearing in mind that most bacterial pro-
teins are stable, with half-lives well over 10 h [32]. If the
reporter protein is stable as well, the default choice of
γp = γr usually leads to good results, in the sense of
returning a protein concentration that is a smoothed ver-
sion of the reporter concentration. The system of Eqs. 5-7
is again linear, where the equations for the reporter and
host protein quantity are coupled by a shared input a(t).
The linear inversion procedure can be adapted for linear
equations with a shared input, resulting in an estimate
of p(t) from absorbance and fluorescence measurements,
given values for γp, γr [22].
The linear inversion procedures for estimating the

growth rate, promoter activity, and protein concentra-
tion from population-level absorbance and fluorescence
data have been implemented in the Python package Well-
FARE [22]. A new version correcting several (minor) bugs
and some new functionalities has been released since the
original publication (see “Availability and requirements”
section).

Distributed computing architecture
The WellFARE package has been integrated into the
web application WellInverter, thus allowing non-expert
users to analyze their data in a user-friendly way with-
out installing the package and developing Python scripts.
WellInverter has a client-server architecture: the client
can access the application through a web browser and
the estimation queries are handled by a dedicated server
running WellFARE.
The estimation procedures may be computationally

complex, because the algorithms involve numerical simu-
lation of the models and the multiplication and inversion
of large matrices [22]. The complexity is determined by
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the number of so-called control points, a high number of
control points corresponding to a high temporal resolu-
tion of the estimates of promoter activities and protein
concentrations. The user can set the number of control
points in WellInverter. For long time-series (> 200 mea-
surements) with a large number of control points (>180),
the computation of the promoter activity for all wells of a
microplate may take a few minutes. This led to scalability
problems in the original WellInverter architecture when
the estimation procedures needed to be repeated over
several wells or when several users launched estimation
procedures in parallel.
Scalability problem are frequently encountered in inter-

active web applications and also in high-traffic web sites.
The usual solution to this problem is an architecture
consisting of a cluster of servers rather than a single
server, enabling the parallelization of query handling.
There are other advantages of this distributed architec-
ture, such as a higher fault tolerance. Figure 2 shows
the improved WellInverter architecture, in which sev-
eral back-end Python application servers execute time-
consuming computational tasks as well as user/data man-
agement tasks, including the (incremental) saving of anal-
ysis results. A front-end web server receives user queries
and distributes these over the Python servers, using a
so-called load balancer.
We developed a general-purpose Python load balancer,

pyLoadBalancer, which is also available independently
of WellInverter (see “Availability and requirements”
section). As the computations for determining growth
rates, promoter activities, and protein concentrations are

completely independent for each well, deploying the esti-
mation procedures over a computer cluster makes it
possible to considerably reduce the computation time. In
the design of the architecture, care has been taken to
ensure data security and safety, in particular by providing
an appropriate authentication layer and log files.
We carried out computational experiments to quantify

the performance of the parallel architecture. When cal-
culating the promoter activity for 55 outlier-filtered and
background-corrected wells in the microplate experiment
attached as Additional file 1, we found that by increas-
ing the number of servers from 1 to 8, the execution time
decreases three-fold (from 20.3 s to 6.9 s). In addition to
improving the speed of execution of a single job, the archi-
tecture also allows several jobs to be executed in parallel.
The redesign of WellInverter has thus led to a distributed
architecture that is scalable, robust, and safe.

Graphical user interface
The client part of WellInverter consists of the graphi-
cal user interface (GUI) of the application, running in a
web browser. The GUI of the original WellInverter was
functional but limited, in the sense that it did not sup-
port the entire workflow and the whole range of options
of the WellFARE algorithms. We therefore designed and
developed a completely new GUI, written in JavaScript
and communicating with the server using JSON-encoded
data and Ajax (Asynchronous JavaScript) calls [33, 34].
The GUI is structured around a visual representation of
the microplate and guides the user through the process
of analyzing reporter gene data in an intuitive manner, as

Fig. 2 Distributed architecture of WellInverter. User queries are received by a front-end web server that distributes them over several back-end
Python application servers running WellFARE, using the load balancer. The front-end server is also responsible for user authentification and logging
traces of user operations. The results are sent back to the user for display in a web browser
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will be illustrated in some detail in the “Results” section.
The user can switch between different screens that pro-
vide different types of operations on the wells of the
microplate.
In the Outlier filtering screen, the user has the choice

between manual and automatic filtering of outliers. Out-
liers may arise from occasional instrument failure or from
the use of beads in the wells to improve oxygen transfer
in the culture. The outliers are caused by the deflection of
light by the glass bead when the latter finds itself in the
path of the light beam at the time of the measurement.
During manual outlier filtering, the user can either select
individual data points as outliers or sketch a trend line
with a tolerance band such that all data points outside the
tolerance band are considered outliers. Automatic outlier
filtering relies on the iterative application of the Savitsky-
Golay smoothing algorithm as implemented in SciPy [35].
The user can specify the different parameters of this algo-
rithm, including the size of the smoothing window, a
cut-off parameter defined in terms of the standard devi-
ation of the distance of the data points to the smoothed
curve, and the number of iterations of the filtering pro-
cedure. Automatic outlier filtering can be launched for a
single well or for a subsets of the wells on the plate. The
results of the outlier filtering procedure can be visually
displayed, by selecting a well in the plate or by hovering
the mouse button over a well. In order to visually assess
the results, outlier data points can be included or left out
from the plot.
The Background correction screen aims at subtract-

ing the background of the measured fluorescence and
absorbance time-courses. This is a critical step for the
interpretation of the results of a reporter gene experiment
and several solutions have been proposed for achiev-
ing this [17, 21, 36]. In WellInverter, the user has the
choice between three different background correction
procedures. First, a user-defined baseline can be sub-
stracted from the measured absorbance and fluorescence
values. This solution is appropriate if the background
level does not change with the growth of the bacterial
culture, as is for example the case for the absorbance
background and for the autofluorescence of bacteria in
some regions of the emission spectrum (e.g., red in the
case of E. coli). If the autofluorescence does vary with
the population size, as is for example the case for green
autofluorescence, a second solution consists in directly
subtracting the fluorescence emitted by a culture with
bacteria carrying a promoter-less reporter plasmid or
(which in many cases comes to the same thing) bacte-
ria without the reporter plasmid. This solution works
well if the strains with and without an (active) reporter
plasmid have the same growth kinetics. The GUI of
WellInverter allows the user to define background wells
for different sections of the microplate, in accordance

with the design of the experiment, by a few mouse
clicks.
If the strains with and without an (active) reporter plas-

mid do not have the same growth kinetics, a third option
can be chosen that is based on the construction of a so-
called calibration curve [11]. The calibration curve returns
the autofluorescence levels in the control strain as a func-
tion of the absorbance levels. Background correction then
consists in subtracting the autofluorescence level corre-
sponding to the absorbance level observed for the strain of
interest carrying the reporter plasmid (see Fig. 5 below).
Care should be taken, however, that the growth kinet-
ics for the two strains are not too dissimilar, as this may
reflect serious differences in the growth physiology of
the two strains. The results of the background correction
step, for individual wells, are shown in the Outlier filter-
ing screen. The possibility to construct a calibration curve
from the data, by defining the upper and lower bounds,
the smoothing window, and an extrapolation interval, was
not offered in the previous version of WellInverter.
The Plots screen allows the users to visually inspect the

primary and corrected data, as well as the different quan-
tities computed from the data by means of the WellFARE
algorithms. In the case of absorbance data, the growth rate
can be estimated and displayed. In the case of fluorescence
data, the promoter activity, the reporter concentration,
and the protein concentration can be estimated and dis-
played. The user can choose the color of the plotted
time-courses and zoom in on specific portions of the time
course. For a given well, several quantities can be shown
simultaneously, for example the absorbance of a growing
bacterial culture and the promoter activity. This makes it
possible to visually relate changes in the one to changes in
the other. Moreover, the quantities for several wells can be
displayed simultaneously, by selecting the wells by means
of the mouse. For each of the selected wells, all relevant
information can be shown, but it is also possible to limit
the displayed results to summary statistics, such as the
mean and an uncertainty band defined by the standard
deviation or the standard error at each time-point.
In order to facilitate the inspection of several wells in

parallel, the new version of WellInverter allows wells to
be grouped together in so-called well groups, correspond-
ing to the different conditions in the experimental design.
Typical well groups consist of all replicates of the growth
of a specific reporter strain in a specific medium. If a well
is included in a well group, selecting this well causes all
other wells in the group to be selected as well, thus speed-
ing up the inspection of the results of the experiment.
In the Parameters screen, the default parameter val-

ues for the model, for the background substraction pro-
cedures, and for the inference method can be set. In
particular, for the model the values of the degradation
constants are needed and the growth rate can be declared
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to be positive. For the inference algorithms, the regular-
ization parameters can be specified and the number of
control points chosen, contrary to the previous version of
WellInverter. The different parameters for the automatic
outlier correction procedure can be chosen as well as a
fixed absorbance and fluorescence background level for
background subtraction.

Plug-in system to parse data files
A major practical challenge for programs supporting the
analysis of reporter gene data is that different microplate
reader manufacturers use different formats for the out-
put data files generated during the experiment. These files
need to be parsed in order to fill the WellInverter data
structures with the primary data from the instrument. In
the absence of a standard file format, this requires a spe-
cific parser to be developed for each microplate reader
or for each output file format for a given microplate
reader. The development of a robust parser, however,
requires specific programming skills that many potential
WellInverter users do not possess.
In order to work around this complication, the new ver-

sion of WellInverter employs a so-called grammar-based
parser generator, which supports the high-level specifi-
cation of data formats and their automatic conversion
into working parsers [37]. We have chosen ANTLR [38],
which allows the data format to be formulated as a gram-
mar from which a parser is generated that is capable
of interpreting files specified in the language defined by
the grammar. In ANTLR, grammars are specified in the
EBNF formalism [39]. An excerpt of the grammar for pars-
ing data files produced by a Tecan microplate reader is
shown in Fig. 3. When defining a grammar for a new data
file format, it is usually convenient to start from exist-
ing grammars that have been developed already and that
come with WellInverter.
The grammar specification is transformed by ANTLR

into Java code, the parser, which can be called by
WellInverter when an experiment data file is uploaded.
The parsers are plug-ins of WellInverter, declared on the
server side of the application, thus making their develop-
ment, addition, and maintenance entirely modular. A few
parser file are available by default, notably for Tecan and
Perkin-Elmer microplate readers, and new parser plug-ins
will be added as they are developed.

Data export
The GUI offers general file management operations for
loading and saving the results of (the analysis of ) a
reporter gene experiment. For many purposes, it is desir-
able to export the data in formats that allow them to be
analyzed by other software, such as general purpose sci-
entific programming languages like Matlab, Python, and
R. In the new version of WellInverter, the contents of the

Plots screen can be exported in CSV and XLS format, in
addition to several graphical formats (PDF, JPEG, PNG,
SVG). Moreover, the user can export the data and/or the
final or intermediate analysis results in the JSON format,
a format that is widely used in the scientific computing
community. The precise contents of the JSON export file
can be customized in the Export screen. The file struc-
ture is defined in the WellInverter manual. The JSON
file defined in the Export screen is different from the
JSON file produced when saving an experiment in the
general file management menu. The latter file is used for
archival purposes and, while containing all information
for reproducing the analysis results (definition of outliers,
background wells, and well groups), it does not contain
the analysis results themselves.

Results
Reporter gene experiments with a constitutive phage
promoter in E. coli
As a typical WellInverter use case, we will discuss the
analysis of reporter gene experiments carried out with a
transcriptional fusion of a constitutive promoter and a gfp
reporter gene in E. coli. By definition, constitutive promot-
ers are not regulated by any transcription factor, so that
transcription initiated from a constitutive promoter only
depends on the activity of the gene expression machin-
ery, that is, the concentrations of (free) RNA polymerase
and precursor pools [27, 28]. Changes in the activity of the
gene expression machinery reflect changes in the global
cell physiology. The latter occur due to a change in the
environment, such as the gradual depletion of the growth
substrate, and they affect the expression of all genes of
the bacterium. This makes constitutive promoters a useful
control for assessing the regulatory effect of transcription
factors on a target promoter. In particular, the specific
effect of a transcription factor should subsist after correct-
ing for the effect of the global cell physiology captured by
the activity profile of the constitutive promoter [7, 28]. As
an alternative to constitutive promoters, measurements of
the growth rate have been used as a read-out of the global
cell physiology [8].
It is not easy to ascertain that a promoter is constitutive,

as this requires establishing a negative result, the absence
of an effect from (known and unknown) transcription fac-
tors of the bacterial cell. Usually, promoters are considered
constitutive if there exist a-priori arguments that they are
not subject to regulation by host factors and if their activ-
ity profiles closely resemble those of known constitutive
promoters. For instance, the pRM promoter of phage λ

[29] used in this study is not a native E. coli promoter and
the known regulators of pRM in λ phage can be assumed
absent in E. coli cells not infected by the phage. Moreover,
the activity profile of the pRMpromoter was found similar
to that of the well-known synthetic promoter ptet [7].
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Fig. 3 Excerpt of the grammar for defining input data file formats, here for parsing data files produced by a Tecan microplate reader. The grammar,
specified in EBNF format [39], defines the overall structure of the file and consists of a header describing the experiment (experimentHeader)
followed by zero, one or several measurement blocks (measure). experimentHeader is defined in the second expression and paramRow,
one of the elements of experimentHeader, is further specified in the third definition. The full grammar definition is supplied with the
stand-alone version of the software

There also exists a more theoretical approach for test-
ing the constitutiveness of a promoter. Klumpp et al. [28]
developed a model predicting how the steady-state con-
centration of a reporter protein expressed from a consti-
tutive promoter in E. coli varies with the growth rate. The
predictions of this model were found to agree quite well
with the observed concentrations of the LacZ reporter
expressed from known constitutive promoters. In this
study we will carry out this additional test for the pRM
promoter, by computing the growth-rate dependency of
the steady-state GFP concentration from reporter gene
data and by comparing the observed relation with the
theoretically-predicted curve.
The wild-type E. coli strain used in the reporter

gene experiments described below is a derivative of the
BW25113 strain [40]. The wild-type strain was trans-
formed with a pUA66 reporter plasmid carrying a tran-
scriptional fusion of the pRM promoter region and
the gfp sequence encoding the fast-folding and long-
lived GFPmut2 reporter, as described previously [11].
The folding time of GFPmut2 is on the order of a
few minutes [3], while its half-life is almost 20 h [7].
The pUA66 reporter plasmid is a low-copy plasmid that
is kanamycin-resistant and has the pSC101 origin of
replication [3].
Wild-type strains without and with the reporter plas-

mid, henceforth referred to as WT and WT pRM-gfp,
respectively, were recovered from glycerol stock (-80oC)
and grown overnight (about 16 h) at 37oC, with shaking at
200 rpm, in M9 minimal medium [41] supplemented with
0.2% D-glucose and mineral trace elements. Kanamycin
(50 mg/ml) was added in the case of WT pRM-gfp. The
overnight cultures were diluted to an OD600 of 0.02 into
a 96-well microplate. The wells of the microplate con-
tained 150 μl of M9 minimal medium or LB medium
supplemented with different carbon sources (D-glucose,

sodium acetate, glycerol, D-galactose, D-maltose) at a final
concentration of 0.1% as well as a sterile 2-mm glass
bead to improve aeration. No antibiotics were added at
this stage. A transparent cover was put on the plates to
avoid evaporation, and the microplate cultures were then
grown at 37oC in a microplate reader (Tecan Infinite 200
PRO). The absorbance (600 nm) and the fluorescence
(485/535 nm) were read every 2 min, preceded by a 30-s
stirring step (orbital and linear shaking, 5 mm amplitude).
In the remainder of this section, we analyze the results of

the above reporter gene experiments using WellInverter.

Analysis of reporter gene data
Access to WellInverter is gained by either typing the
server address in the web browser or running a local
installation of the application. The file produced by the
microplate reader is then imported via the New experi-
ment option in the Experiment menu, in this case using
the plug-in for Tecan files with data in row format. This
uploads the primary data into the application, including
the experimenal settings of themicroplate reader stored in
the data file. If the experiment has been imported already,
the data and the actual state of the analysis can be accessed
via the Open experiment option.
Figure 4 shows the WellInverter plot of a typical time-

course measurement of absorbance and fluorescence in a
microplate well containing a WT pRM-gfp culture grow-
ing in M9 minimal medium with 0.1% glucose. The mea-
surements have been corrected for outliers due to the use
of glass beads by means of the manual outlier identifica-
tion functionality of WellReader. At around 500 min, a
break in the growth curve occurs because all glucose in
the medium has been consumed. Growth continues at a
lower rate until about 650 min, utilizing the acetate that
was produced by overflow metabolism during growth on
glucose [42].
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Fig. 4 Primary data of a reporter gene experiment. The plot in the WellInverter interface shows (in logarithmic scale) the fluorescence and
absorbance measurements in well A6 of the microplate, containing a WT pRM-gfp culture growing in M9 minimal medium with 0.1% glucose.
Outliers have been filtered using the trend curve defined by the orange band

The data in Fig. 4 need to be corrected for background
absorbance and fluorescence. We correct the absorbance
by subtracting a fixed background value, the observed
mean of the absorbance over all M9 minimal medium
wells on the plate. This value (0.084) is entered into the
Default background value field of the Parameters menu.
As described in the “Implementation” section, the fluo-
rescence background can be corrected in several different
ways. We here use calibration curves, which generally
lead to robust results. The fluorescence emitted by the
WT culture is used for the construction of the calibration
curve [11]. In the example at hand, we construct a cali-
bration curve for each of the different growth conditions
(media compositions), where each condition corresponds
to a row of the microplate. In the case of M9 minimal
medium with 0.1% glucose, corresponding to the first
row, the background well for the WT pRM-gfp cultures
growing in wells A5-A12 is chosen to be A3. Figure 5
shows the calibration curve relating the absorbance to
the fluorescence, obtained by fitting a smoothing spline
to the data. The original fluorescence signal (blue) and
the background-corrected signal (green) for well A5 are
also shown. As expected, the background-corrected flu-
orescence signal starts from values close to 0, reflecting
the fact that the population density of the E. coli cells
in the beginning of the experiment, after dilution of the
overnight preculture, is very low and that the fluorescence
emitted by the cells at this stage is consequently negligible.
The growth rates of the WT pRM-gfp cultures are

computed in the Plots window. Figure 6 shows the

background-corrected absorbance (in logarithmic scale)
and the growth rate for a group of wells containing M9
minimal medium with 0.1% glucose. The mean (green
dots) and the standard deviation (green band) are plot-
ted, in the interval between 200 and 800 min, as well as
the background-corrected absorbance and the growth rate
for one well (A5, blue). The observed growth rate during
exponential growth in M9 minimal medium with glucose
is around 0.0125 min−1, corresponding to a doubling time
of around 55 min, as expected in these conditions [43].
Absorbance values that are well below the background
absorbance level (0.084) are not reliable and come with
large uncertainty bands, so we do not compute growth
rates here. For absorbance values higher than 0.1 the
growth starts to decline, probably due to oxygen trans-
fer limitations at high bacterial densities. After glucose
exhaustion around 500min the growth rate drops towards
0. The computation of the growth rate needs a regulariza-
tion parameter that can be set in the Parameters window.
Here we choose a value in the range that was shown in
previous work, by means of simulation studies, to lead to
good results [22]. As a visual check of the effect of regular-
ization, WellInverter also allows the absorbance predicted
by the model for the estimated growth rate to be plotted
and compared with the measured absorbance values.
The activity of the pRM promoter in the different

WT pRM-gfp cultures can also be computed in the
Plots window. Figure 7 shows the background-corrected
absorbance (in logarithmic scale) and pRM activity for
a group of wells containing M9 minimal medium with
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Fig. 5 Substraction of background fluorescence. Upper: Calibration curve constructed from the fluorescence and absorbance data in well A3,
defined as the background for wells A5-A12. The calibration curve is a smoothing spline with a user-defined smoothing parameter. The curve can
be extrapolated outside the range of observed absorbance values, a feature that is not needed in this experiment. Lower: The primary fluorescence
data (blue) and the data after background substraction (green) for well A6

0.1% glucose and another group of wells containing
M9 minimal medium with 0.1% galactose. Both the
mean and standard deviation are plotted, along with the
background-corrected absorbance. The promoter activi-
ties start to drop at the end of exponential growth on
glucose and settle at a low level after glucose exhaustion.
Note that both the growth rate and the promoter activ-
ity are lower during growth on galactose than on glucose
(the growth rate is given by the slope of the absorbance
curve in logarithmic scale). The lower promoter activity is
probably due to the lower activity of the gene expression

machinery, for example the lower concentration of free
RNA polymerase, at a lower growth rate [44].
As explained in the section on the Estimation algo-

rithms, the reporter protein concentration can be
estimated by dividing the (background-corrected) flu-
orescence by the (background-corrected) absorbance.
Moreover, a smoothed estimate of the reporter concen-
tration can be obtained by computing the protein con-
centration from the fluorescence data while assuming that
the reporter and the host protein have the same half-
life. Figure 8 shows the results thus obtained for the WT
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Fig. 6 Computation of growth rate. Mean absorbance and growth rate curves and an uncertainty band defined by the standard deviation for a
group of wells containing WT pRM-gfp cultures growing in M9 minimal medium with 0.1% glucose (green). In addition, the plot shows the
time-varying absorbance and growth rate for one sample well in the group (A5, blue). The plot zooms in on the interval [200, 800]

pRM-gfp cultures growing in M9 minimal medium with
0.1% glucose or in M9 minimal medium with 0.1% galac-
tose. In both situations, we see that the estimated reporter
concentration is steady during exponential growth on the
carbon source and increases upon growth arrest. The
reporter concentration is lower in the conditions with

faster growth, expressing that the higher promoter activity
of the constitutive promoter is outweigthed by the higher
rate at which the reporter protein is diluted out [28].
While WellInverter allows one to quickly explore the

results of an experiment, for many purposes it will be
necessary to analyze the data in more detail, to compare

Fig. 7 Computation of promoter activities. Mean absorbance and promoter activity curves and an uncertainty band defined by the standard
deviation for groups of wells containingWT pRM-gfp cultures growing in either M9minimal mediumwith 0.1% glucose (blue) or 0.1% galactose (red)
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Fig. 8 Computation of reporter concentrations. Mean absorbance and reporter concentration curves and an uncertainty band defined by the
standard deviation for a group of wells containing WT pRM-gfp cultures growing in M9 minimal medium with 0.1% glucose (blue) or 0.1% maltose
(green). Upper: Reporter concentration estimates obtained by dividing fluorescence by absorbance. Lower: Smoothed estimates of reporter
concentrations obtained by computing the protein concentration while setting the degradation constant of the host protein equal to the
degradation constant of the GFP reporter in the Parameterswindow (0.00065 min−1). Notice that the two estimates are not shown on the same scale

and integrate the results over different conditions, etc.
This will require the use of more flexible, general-purpose
scientific software, such as Matlab, R or Python. More-
over, in some cases one may wish to relax the simplifying
assumptions that underlie the models presented in the
“Estimation algorithms” section. For example, as
explained in [22], the models can be generalized so as
to distinguish between the transcription and transla-
tion processes and to explicitly take into account the

maturation of the reporter protein. The WellFARE pack-
age contains more sophisticated and time-consuming
variants of the estimation algorithms implemented
in WellInverter to analyze such extended models. In
order to allow further analysis of the data, beyond the
functionalities supported by WellInverter, the data and
the analysis results can be exported. The Export screen
allows the user to define the wells and analysis results to
export (Fig. 9).
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Fig. 9 Export of results. Definition of wells and results to be exported to a JSON file for further analysis

Growth-rate dependence of the expression of a
constitutive gene
The data for the reporter gene experiments have been
exported and analyzed separately using Python to deter-
mine the relation between the estimated growth rates
and reporter protein concentrations. For each medium,
we computed the mean and the standard deviation of
the steady-state growth rate estimated byWellInverter for
(background-corrected) absorbance values between 0.01
and 0.1. In this interval the growth rate of the cultures
is observed to be constant and maximal (see Fig. 6 and
the discussion in the previous section). Similarly, we com-
puted the mean of the steady-state concentration of the
reporter protein produced from the pRM-controlled gene.
A scatter plot of pairs of steady-state growth rate and
reporter concentration for the different media is shown
in Fig. 10 (see Additional file 2 for the data). The growth
rates are expressed in terms of the number of doublings
per hour, obtained by multiplying the estimated growth
rate with 60/ ln 2, while the reporter concentrations have
been normalized with respect to the value obtained for a
reference medium, M9 minimal medium with 0.1% glu-
cose. As can be seen, both the growth rate and the reporter
concentration change by a factor of 7-8 over the range
of conditions considered here. The uncertainties in the
estimated growth rates above 2 doublings per hour are
more important due to the higher background levels of
the LB medium used in these conditions and the diffi-
culty to maintain steady-state exponential growth over a
sufficiently long time-interval in these complex media.
The data can be compared with the theoretical predic-

tion of the reporter concentration for different growth

rates in the case that expression of the reporter is
controlled by a constitutive promoter [28]. This pre-
diction is obtained from a model of gene expression
similar to that being used in WellInverter, using litera-
ture data for the different parameters characterizing the
expression of a constitutive promoter at different growth
rates, such as the transcription and translation rate as
well as the gene copy number. The predicted relation
between growth rate and reporter concentration corre-
sponds quite well with the observed data for the pRM
promoter

(

R2 = 0.93
)

.
This R2 value should be compared with that obtained for

a non-constitutive promoter, pacs, which is subject to car-
bon catabolite repression by the complex Crp-cAMP [42].
The relation between growth rate and reporter concen-
tration for this promoter, determined in exactly the same
way as for the pRM promoter using an otherwise identical
reporter plasmid [45], is shown in Additional file 3. The
correspondence with the model predictions for a consti-
tutive promoter is very weak, as witnessed by the low R2

value of -0.11, meaning that the model does worse than
a baseline model in which it is assumed that the reporter
concentration is equal to the observed mean over all
growth rates. As a further control, we compared the data
for the pRM promoter with the predictions of a model of
a promoter repressed by a constitutively expressed tran-
scription factor. For specific parameter values, this model
predicts a constant, growth rate-independent reporter
concentration [28]. Comparison of this model with the
data shows a very poor fit (R2 = 0), a result that contrasts
with the very good fit of the constitutive promoter model
(R2 = 0.93).
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Fig. 10 Relation between growth rate and reporter concentration for the pRM promoter. The steady-state growth rate and reporter concentration
have been computed for each condition considered (Additional file 2), by taking the mean and standard deviation of the estimates of these
quantities over the interval where the cultures are in steady-state exponential growth. The scatter plot shows the mean ± the standard deviation for
each condition (blue points and lines, respectively). The growth rates are expressed in doublings per h and the reporter concentrations have been
normalized with respect to the estimate for M9 minimal medium with 0.1% glucose. The red dots connected by the red curve are the predicted
growth rates and reporter concentrations for a constitutive promoter [28]. The predictions and the data are in very good correspondence, as
exemplified by the high R2 value (0.93). The R2 value was computed as one minus the ratio of the residual sum of squares divided by the total sum of
squares [51]. In order to account for data points below 0.6 doublings/h and above 2.5 doublings/h, we linearly extrapolated the model predictions

The above analysis shows that the pRM promoter
behaves like a constitutive promoter, in the sense that the
growth-rate dependence of the reporter concentration is
in good agreement with that expected for a constitutive
promoter. This provides another argument, in addition
to those listed at the beginning of the “Results” section,
for considering this promoter a bona fide control when
assessing specific regulatory interactions.

Discussion
Reporter gene experiments using automated microplate
readers have become commonplace in microbiology lab-
oratories. However, the interpretation of the data thus
generated is far from trivial and quite time-consuming.
The difficulties encountered include the size of the data
sets and the large number of experimental conditions,
the proper substraction of background levels from the
fluorescence measurements, and especially the infer-
ence of biologically relevant quantities from the pri-
mary data. This calls for easily accessible and user-
friendly computer tools, based on solid mathematical
methods.

The development ofmathematical methods for the anal-
ysis of reporter gene data has been a lively research area
over the past two decades and a variety of methods have
been proposed [10, 12–21, 23]. Most of the methods have
in common that they are based on an explicit model of
the process of gene expression, although they differ in the
details of the biochemical processes considered (see, for
example, [11, 17, 23] for a discussion of gene expression
models used). The models implemented in WellInverter
are the simplest possible, reducing gene expression to a
single step lumping transcription and translation. While
the methods underlying the tool admit multi-step mod-
els [22], in our experience one-step models are suffi-
cient in most situations and avoid difficult issues with
the parametrization of intermediate transcription, trans-
lation, and maturation steps. Moreover, if not sufficient,
one-step models at least allow for an initial exploration
of the results, before exporting the background-corrected
data to tailored analysis scripts for multi-step models.
Most methods for inferring promoter activities reported

in the literature are indirect, in the sense that they first
empirically smooth the primary fluorescence time-series
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data, by smoothing splines or other techniques, and then
propagate the approximate experimental curves through
the gene expression models [10, 17, 23]. In other words,
the promoter activities are the output of a computational
procedure taking the approximate experimental curves
as input. By contrast, direct methods like those used in
WellInverter work the other way around; they treat the
promoter activity as the input giving rise to an observed
output, the fluorescence time-series data [18–20, 22]. This
has the conceptual advantage of allowing smoothing to
be defined as a regularized data fitting problem on the
quantity to be estimated, the promoter activity, and leads
to robust results. Moreover, the approach can be easily
generalized to the estimation of growth rates and protein
concentrations. It should be mentioned though that vali-
dation studies with indirect approaches have shown that
the latter can also yield excellent results [17, 23]. The sim-
ulation study in [23] comparing a direct with an indirect
method shows better performance of the latter for data
with low time resolution and no bias for low absorbance
values. This latter point suggests further work to improve
the implementation of regularization in the WellFARE
package.
Source code implementing some of the above-

mentioned methods is publicly available, but until now
few user-friendly computer tools, equipped with a graphi-
cal user interface, have been developed to assist biologists
in the analysis of reporter gene data. The exceptions that
we are aware of, such as WellReader [46] and BasyLICA
[19], do not support the same broad scope of func-
tionalities, or are based on proprietary software, or are
platform dependent, or a combination of the above. One
of the motivations for the development of the original
WellInverter software was to make the tool available as a
web application, thus avoiding technical issues associated

with the cross-platform installation of the software and
the supporting libraries. Table 1 summarizes some useful
features of available tools.
The new version of WellInverter presented in this paper

improves upon the shortcomings of the original appli-
cation in a number of important ways. The graphical
user interface has been entirely redesigned and rewrit-
ten, scalability has been ensured by the development of a
parallel computing architecture based on a generic load
balancer, and the use of a grammar-based parser gener-
ator has made it possible to easily adapt the tool to the
import of input files in multiple formats. The new version
of WellInverter has been deployed on publicly accessible
web servers hosted by the Institut Français de Bioinfor-
matique and Inria, but can also be locally installed (see
“Availability and requirements” section).
The capabilities of the tool have been illustrated on the

analysis of an E. coli dataset. The expression of a green flu-
orescent reporter protein from a phage promoter has been
related to the growth rate, and the resulting curve com-
pared with the predictions from a theoretical model. This
has provided further evidence that the phage promoter is
constitutive.
The illustrations given above concern fluorescence

reporter gene data, but WellInverter is also directly appli-
cable to the analysis of luminescence reporter gene data,
since the underlying gene expression models are the same
[17]. In the case of luminescence data, however, some
additional precautions need to be taken to deconvolve the
light signals from a well and its neighbours [47]. More
direct experimental quantification of gene products by
(absolute) proteomics [48–50] can also be analyzed by
means of the tool. In this case, however, one should be
aware that rapid changes in gene expression can only
be captured if the sampling density is sufficiently high.

Table 1 Tools for the analysis of fluorescent reporter gene data (names in bold)

Tool Method Implementation Functionalities

BaSylica web server [19] 1 Kalman filtering Wamp, mySQL, R Background correction, computation of promoter
activity, graphical user interface

Plate reader package [21,
52] 2

Spectral unmixing, Gaussian
processes

Python Background correction, computation of reporter
concentration and growth rate

PromAct package [23] 3 Smoothing splines R Computation of promoter activity

WellInverter web server
[22] 4

Linear inversion JavaScript, Python Background correction, computation of growth
rate, promoter activity, and reporter/protein
concentration, graphical user interface

WellReader package [46] 5 Smoothing splines Matlab Background correction, computation of growth
rate, promoter activity, and reporter/protein
concentration, graphical user interface

1http://genome.jouy.inra.fr/basylica
2http://swainlab.bio.ed.ac.uk/software/platereader/
3https://github.com/soumyakannan/promact
4https://team.inria.fr/ibis/wellinverter/
5https://team.inria.fr/ibis/wellreader-analysis-of-fluorescence-and-luminescence-reporter-gene-data/
Decription of some tools and comparison of key functionalities

http://genome.jouy.inra.fr/basylica
http://swainlab.bio.ed.ac.uk/software/platereader/
https://github.com/soumyakannan/promact
https://team.inria.fr/ibis/wellinverter/
https://team.inria.fr/ibis/wellreader-analysis-of-fluorescence-and-luminescence-reporter-gene-data/
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Whereas the application in this paper concerns bacteria,
the gene expression model underlying the methods imple-
mented in WellInverter is general enough to be valid for
higher organisms as well.

Conclusions
We present a novel implementation ofWellInverter, a web
application for the analysis of fluorescent reporter gene
data. We have put in place a parallel computing architec-
ture with a load balancer to distribute the analysis queries
over several back-end servers, redesigned the graphical
user interface, and developed a plug-in system for the
definition of high-level routines for parsing data files pro-
duced by microplate readers from different manufactur-
ers. This has resulted in a scalable and user-friendly web
service, accessible to a broad audience of biologists and
bioinformaticians. The practical applicability of the tool
has been illustrated by means of the analysis of the expres-
sion pattern of a fluorescent reporter gene transcribed
from a constitutive phage promoter.

Availability and requirements
Access toWellInverter can be obtained in several different
ways.
First, for researchers who wish to explore WellInverter

before deciding on its use, a demo version can be accessed
at the following address:

https://wellinverter.inrialpes.fr

The demo version does not allow the user to upload his or
her own data sets. However, sample data sets are supplied:
two primary data sets of E. coli fluorescent reporter gene
experiments as well as a completely processed version of
one of these data sets.
Second, WellInverter is accessible through the cloud of

the French Institute for Bioinformatics (IFB). The user
needs an IFB account that can be created at the following
adress:

https://biosphere.france-bioinformatique.fr/cloudweb/
login/

Analyzed data cannot be stored on the server and the user
needs to download and locally save the results before the
end of the session.
Third, WellInverter has been deployed on an Inria

server at the following address:

http://ibis-public.inrialpes.fr:8000/

Contrary to the IFB version, no user registration is
needed.
Fourth, a stand-alone version of WellInverter is avail-

able. The use of this version requires the application to be
locally installed, contrary to the options above which only

require an Internet connection and a web browser. In the
case of intensive use of WellInverter, or data protection
issues, this option may be preferable though. Moreover,
the analysis results can be locally stored.

Project name:WellInverter
Projecthomepage: https://team.inria.fr/ibis/wellinverter/
Operating system(s):Windows, Linux, and MacOS
Programming language: JavaScript
Other requirements: Java (version >7)
License: proprietary licence, free for academics
Any restrictions to use by non-academics: licence
needed

The Python library WellFARE, implementing the linear
inversion methods on which WellInverter is based, is
separately available:

Project name:WellFARE
Project home page: https://github.com/ibis-inria/wellfare
Operating system(s):Windows, Linux, and MacOS
Programming language: Python
Other requirements: NumPy package of Python
License: LGPL
Any restrictions to use by non-academics: none

The same holds for the general-purpose load balancer
pyLoadBalancer:

Project name: pyLoadBalancer
Project home page: https://github.com/ibis-inria/
pyLoadBalancer

Operating system(s):Windows, Linux, and MacOS
Programming language: Python
Other requirements: none
License: GPL
Any restrictions to use by non-academics: none

Additional files

Additional file 1: Experimental data. .zip archive containing .json file with
experimental data that can be uploaded into WellInverter as well as .doc
file with plate layout (ZIP 1191 kb)

Additional file 2: Table with data on relation between growth rate and
reporter concentration. .xlsx file with data used for plotting Fig. 10 in main
text and the supplementary figure in Additional file 3 (XLSX 15 kb)

Additional file 3: Figure showing relation between growth rate and
reporter concentration for the pacs promoter. .pdf file (PDF 106 kb)
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