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Abstract

Background: In cancer research, robustness of a complex biochemical network is one of the most relevant
properties to investigate for the development of novel targeted therapies. In cancer systems biology, biological
networks are typically modeled through Ordinary Differential Equation (ODE) models. Hence, robustness analysis
consists in quantifying how much the temporal behavior of a specific node is influenced by the perturbation of
model parameters. The Conditional Robustness Algorithm (CRA) is a valuable methodology to perform robustness
analysis on a selected output variable, representative of the proliferation activity of cancer disease.

Results: Here we introduce our new freely downloadable software, the CRA Toolbox. The CRA Toolbox is an
Object-Oriented MATLAB package which implements the features of CRA for ODE models. It offers the users the
ability to import a mathematical model in Systems Biology Markup Language (SBML), to perturb the model parameter
space and to choose the reference node for the robustness analysis. The CRA Toolbox allows the users to visualize and
save all the generated results through a user-friendly Graphical User Interface (GUI). The CRA Toolbox has a modular
and flexible architecture since it is designed according to some engineering design patterns. This tool has been
successfully applied in three nonlinear ODE models: the Prostate-specific Pten−/− mouse model, the Pulse Generator
Network and the EGFR-IGF1R pathway.

Conclusions: The CRA Toolbox for MATLAB is an open-source tool implementing the CRA to perform conditional
robustness analysis. With its unique set of functions, the CRA Toolbox is a remarkable software for the topological
study of biological networks. The source and example code and the corresponding documentation are freely
available at the web site: http://gitlab.ict4life.com/SysBiOThe/CRA-Matlab.

Keywords: Ordinary differential equation models, Conditional robustness analysis, MATLAB package, Signaling
networks

Background
In Systems Biology, mathematical modeling and compu-
tational software are important tools to unravel the com-
plexity of biological systems and predict their behavior
under different perturbations [1]. Typically, many models
consist of a set of Ordinary Differential Equations (ODEs)
which allow understanding and reproducing the dynamic
behavior of molecular interactions through simulations
and integration of the ODEs [2]. To support mathematical
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modeling of biological networks, the use of software tools
has grown substantially in recent years. These software
are designed to assist the users at different stages of the
modeling process, from model generation to parameter
estimation and model analysis.
In cancer research, the use of systems biology

approaches is particularly useful to elucidate mechanisms
of tumorigenesis and tumor resistance. Computational
predictive models, integrated with patient data, help sci-
entists in the validation of new and durable therapies [3].
In order to discover effective and targeted drugs, robust-
ness is one of the most relevant properties of cancer
signaling networks to investigate. Robustness is defined as
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the ability of a biological system to maintain its function-
alities against internal and external perturbations [4]. In
more detail, cancer robustness is a quantitative measure
of the tumor proliferation attitude against extracellular
inputs. Thus, understanding new ways to reduce robust-
ness of the cell proliferation activity is a key issue in
cancer systems biology. Since cell growth is driven by pro-
tein interaction networks, the proliferation activity can
be quantified by looking at the activation of a protein
involved in the proliferation process [5]. In mathematical
modeling, this can be done by perturbing model param-
eters and analyze how the concentration of the protein
of interest changes over time. An algorithm developed
for this purpose is the Conditional Robustness Algorithm

(CRA) proposed in [5]. This algorithm, through compu-
tational perturbations and simulations, identifies a small
number of nodes in the cancer network which influences
most the activity of the proliferation indicator. As a result,
by conditioning these nodes with specific drugs, it may be
possible to reduce the tumor robustness.
Robustness of mathematical model problem is well

studied in literature except when the models are based on
nonlinear ODE. A class of methods is aimed at analyzing
the geometry and the volume of the feasible region, which
is the region in the parameter space that allows the system
to properly work [6]. Moreover, there are other algorithms
that infer the robustness of a model looking at its topol-
ogy, such as the number and the structure of positive and

Fig. 1 UML class diagram. Classes implemented for the development of the CRA Toolbox. The diagram shows the relations between the different
classes, the signatures of the methods and the applied design patterns
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negative loops [7]. However, these techniques are typically
applied tomathematical models whose parameters are not
kinetic. Another and different category of methods is the
Global Sensitivity Analysis (GSA) class of algorithms [8].
They are similar to CRA and are involved in the analysis of
the uncertainties in kinetic model parameters through the
sampling of the parameter space. Despite that, GSA and
CRA have clear distinct goals. GSA is typically interested
in the variation of a performance index with the respect
to the model parameters. Since many times this is basi-
cally implemented through the derivatives, GSA tools are
useful when an optimization of the system is required [9].
In the CRA algorithm, on the other hand, the purpose is
not to maximize or minimize a certain optimization func-
tion, but the main interest is in finding the conditioning
set, which is the subset of parameters that more likely is
able to impose a specific behavior to one output of the
model.

Fig. 2 Flowchart of the CRA Toolbox.The flowchart sums up the
different steps necessary to perform the CRA

In order to facilitate the study of cancer robustness
and the application of CRA, we develop the CRA Tool-
box, a software package for MATLAB. It is an open
source tool which allows non expert users to apply the
CRA to any ODE model in a simple and quick way. The
CRA Toolbox consists in a easy to use Graphical User
Interface (GUI) and in a set of functions which can be
easily extended by the users in order to achieve specific
requirements.
In the following subsection, we briefly describe the CRA

method implemented in the toolbox. A detailed descrip-
tion of the method can be found in [5].

Conditional Robustness Algorithm (CRA)
The main underlying theoretical principle of CRA is the
definition of conditional robustness proposed by Kitano in
[10]: it is the quantitative measure of the ability of a system
S to maintain a specific property τ against some pertur-
bations of the parameter vector p of S. The mathematical
formulation is the following:

Rn
τ ,P :=

∫
P
fP(p)ζ S

τ (p)dp

where fP(p) is the probability density function of p, P is
the parameter space and ζ S

τ (p) is a function that quantifies
and represents the property τ that is under investigation.
The CRA is a stochastic approach for performing con-

ditional robustness analysis of mathematical models, such
as ODE models representing biochemical interaction net-
works. Its purpose is to quantify the influence of each
model parameter on the behavior of a specific output
node. Let denote with S the following ODE system:

S =
{
ẋ = f (x,u, p), x(0) = x0
y = h(x, p)

where x ∈ Rn is the state space vector that contains the
species included in the biological model under study; p ∈
Rq denotes the parameter vector; u ∈ Rj and y ∈ Rm are
the input and output vectors respectively. The key features
of this algorithm are:

• simultaneous perturbation of model parameters;
• definition and computation of the evaluation

function;
• estimation of the conditional probability density

functions (pfds) for each model parameter.

The parameter vector p is perturbed through Latin
Hypercube sampling (LHS) and the model S is integrated
for each one of the NS samples generated in Rq. This pro-
cedure allows the collection of NS vectors of the observ-
ables y. Then, the CRA is based on the definition and
the in silico computation of an evaluation function on a
specific output node i.e., on a specific observable yi. In



Bianconi et al. BMC Bioinformatics          (2019) 20:385 Page 4 of 19

more details, the evaluation function can be formalized as
follows:

ζ : P −→ R, zi = ζ S
τ (p) (1)

where the index i represents the selected output variable
of the model. Thus, the evaluation function, that depends
on the time behavior of yi (which, in turn, depends on
the selected parameter vector p), can be considered as a
user defined summary statistic that stands for a specific
property of the chosen output node yi. The set of com-
puted evaluation functions, for a specific output node yi,
has cardinality equal to NS, i.e. the number of sampled
parameter vectors. Let denote withfZi(zi) the pdf of the set
of evaluation functions previously defined.
The CRA algorithm aims at quantifying the influence of

each model parameter on a specific output node through
fZi(zi). In more detail, it is interested in the estimation of
the distribution of the parameter vector p only when the
lower and upper tail of fZi(zi) are selected. To this purpose,
the domain of fZi(zi) can be partitioned into two regions
by the definition of L(α) and U(α) as:

L(α) =
{
zi ≤ a :

∫ a

0
fZi(zi)dzi = α

}
(2)

U(α) =
{
zi ≥ a :

∫ ∞

a
fZi(zi)dzi = α

}
(3)

where α is the level of probability that represents the area
under the lower and upper tail of fZi(zi) and a is the
corresponding threshold value in the domain of the pdf.
The partition defined in the domain of fZi(zi) allows

the estimation of two conditional pdfs for each param-
eter, fpi|L and fpi|U , respectively. These two pdfs are
the distributions of the parameters of S when the val-
ues of the evaluation function belong to the lower and
upper tail of fZi(zi) respectively. Here the purpose of
the estimation of fpi|L and fpi|U is to select a subset
of the NS samples of the parameters that give rise to
the most divergent behaviors of the evaluation func-
tion. The two conditional densities defined above are
employed for the calculus of the Moment Independent
Robustness Indicator (MIRI) according to the following
formula:

μi =
∫

|fpi|U − fpi|L|dpi, i = 1, ..., q (4)

The MIRI is an index that measures the level of sepa-
ration between fpi|U and fpi|L for each parameter of the
model. An high value of the MIRI for a parameter pi
means that the perturbation of the parameter space along
the pi direction leads to high variation of the evalua-
tion function. Thus, the higher the value of a MIRI, the
higher is the influence of that parameter on the dynamical
behavior of the selected output node.

Fig. 3 Pathway of the Prostate-specific Pten−/− mouse model [13]
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Finally, the output of CRA is the vector μ that contains
the value of the MIRI associated to each parameter of the
model. For further details about CRA, see [5].

Implementation
The CRA Toolbox is an open source software developed
as a MATLAB package. Its core is a set of functions that
the user can run locally in a MATLAB environment by
downloading the folder containing the toolbox. This soft-
ware automates all the functionalities required by CRA to
perform robustness analysis of an ODE model.
The CRA Toolbox includes a GUI that runs within

MATLAB to encourage the employment of the software
also for non expert users. In more detail, the tool firstly
performs the import of a mathematical model written in
Systems Biology Markup Language (SBML) and saved in
.xml file format. Then, it allows the user to set the tuning
parameters to regulate the parameter space perturbation
and themodel integration, such as the specific ODE solver
to use. Before selecting the reference node from a scroll-
bar that lists all the outputs of the model, it is necessary to

Table 1 List of the kinetic parameters of the Prostate-specific
Pten−/− mouse model and their corresponding nominal values
[13]

Parameter name Value

λA 0.6931

rp1 0.323432

ra1 0.1

rm 6.702665

rp2 1.426189

ra2 1.061691

αXD 2.096368

αDC 3.077551

αDR 0.739121

αXR 0.144144

αCI 0.408862

αIR 0.354526

αDCDR 0.1

αDRR 0.4722

kCX 0.1

kRC 1.459617

πD 5.051123

πC 4.111938

πR 0.1

μC 0.978832

μR 0.564691

μI 0.213819

μD 0.650308

start the simulations by clicking on a specific button. Once
the in silico measures are completed, the tool requires the
selection of a specific evaluation function in a predefined
list and the method for the computation of the lower and
higher tail of the pdf of the evaluation function. Finally, it
is possible to plot and save in a user defined directory all
the in silico measures, the estimated pdfs and the boxplot
of MIRIs. In order to guarantee the reliability of results,
the toolbox supports the generation of multiple realiza-
tions of the entire procedure and of the resulting MIRIs
and pdfs. In order to speed up the model simulation we
use parallel processing through the Parallel Computing
ToolboxTM [11].
Moreover, we also provide an alternative implemen-

tation of the CRA Toolbox that allows the user to run
the algorithm in batch mode directly from the com-
mand line. The core functions and the architecture of
the software remains unchanged, but for this version we
removed the GUI and we also avoided the use of Sim-
biology to enhance the portability of the code. Indeed,
in this version of the software, the mathematical model
can be given in input as a Matlab function where all
the ODEs are specified and it is not required to use
the SBML language and the corresponding Simbiology
Object.
The source code of the CRA Toolbox is written accord-

ing to the Object-Oriented programming paradigm as
it is shown in the UML class diagram in Fig. 1. For a
detailed description of all the components of the tool see
(Additional file 1). The architecture of the software is
modular because we implement it using software engi-
neering design patterns to model relationships and inter-
actions between classes. As an example, we use the behav-
ioral Strategy pattern [12] twice between the three main

Table 2 List of the initial conditions of the Prostate-specific
Pten−/− mouse model state variables and their corresponding
values [13]

State variable Species Value

A Androgen 1

X1 CSPC 1

X2 CRPC 0

Dm Mature DC 1

C2 CTL in prostate 1

R2 Treg in prostate 1

I2 IL2 in prostate 1

DC Functional DC 1

DR Regulatory DC 1

C1 CTL in lymphoid 1

R1 Treg in lymphoid 1

I1 IL2 in prostate 1
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Fig. 4 Evaluation functions available in the CRA Toolbox. Nominal time behavior of C2 (blue line) and the three evaluation functions measured for
robustness analysis

classes of the tool: once between the TimeBehavior and
EvaluationFunction classes and the other between Time-
Behavior and Tail classes. This makes the code easily to
extend because if a user wants to add another type of eval-
uation function or wants to implement another method
for the pdf tail calculus, he does not have to change any
other part of the code.

Results
In this section we show how to use the CRA Toolbox
and we report the results of the application of CRA to
three different ODEmodels: the Prostate-specific Pten−/−
mouse model, the Pulse Generator Network and the
EGFR-IGF1R pathway. The second and the third examples
are used in order to verify that the CRA Toolbox produces
results in agreement with those in [5]. Figure 2, Additional
files 2 and 3 contain a flowchart and two images to guide
the user in the use of the tool.

Prostate-specific Pten−/− mouse model
In this section, we use the ODE model proposed in
[13] to illustrate the functionalities of the CRA Tool-
box. This model was developed to study the interactions
between prostate cancer and immune microenvironment.
In more detail, it is a prostate-specific Pten−/− mouse
model for analyzing the effect of the combined therapies
with vaccines andAndrogen deprivation therapy (ADT) in
prostate tumor. The original model consists of two com-
partments, prostate and lymphoid, 11 state variables and
four types of therapeutic strategies, resulting in a sys-
tem of 15 ODEs and 29 parameters. The pathway of the
model is shown in Fig. 3. In this example, we analyze
a simplified version of this model because we consider

only the off-treatment condition (sham-castration). As a
result, the mathematical model consists of 12 ODEs and
23 parameters. Equations of the model are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ = λA(1 − A)

Ẋ1 = rp1AX1 − ra1(1 − A)X1
−rm(1 − A)X1 − kCXC2X1

Ẋ2 = rp2X2 − ra2X2 + rm(1 − A)X1 − kCXC2X2
Ḋm = −αXD(ra1(1 − A)X1 + kCXC2X1 + ra2X2

+kCXC2X2) − πDDm
Ċ2 = αDCDm + pCπCC1 − kRCR2C2 − μCC2
Ṙ2 = αDRDm + pRπRR1 + αIRI2 + αXR(X1 + X2)

−μRR2
İ2 = αCIC2 − μI I2
ḊC = pDπDDm − αDCDRDC
ḊR = αDCDRDC − μDDR
Ċ1 = αDCDC − μCC1 − kRCR1C1 − πCC1
Ṙ1 = αDRRDR + αIRI1 − μRR1 − πRR1
İ1 = αCIC1 − μI I1

(5)

Parameter values and initial conditions of state vari-
ables are shown, respectively, in Tables 1 and 2. Since
initial condition of androgen is set to 1, i.e. A0 = 1, the
concentration of androgen keeps unchanged. Moreover,
parameters pC , pR and pD represent probabilities fixed all
to 0.5 in [13] and thus they are not perturbed in the CRA
procedure.
We apply the CRAToolbox to the ODEmodel by setting

tuning parameters of the procedure as follows: number
of samples NS equal to 10000, lower boundary and upper
boundary of the LHS equal to 0.1 and 10 respectively. We
run 100 independent realizations to verify the reliability
and stability of the procedure. We choose different output
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Fig. 5 Results of the Prostate-specific Pten−/− mouse model: C2 area. Output of the CRA Toolbox when the area under the curve of C2 time
behavior is chosen as evaluation function. a Pdf of the area under the curve of C2. b Boxplot of the 100 realizations of the MIRIs. c-d Conditional pdfs
of the parameters with a MIRI value above 1

nodes and evaluation functions in order to show results of
the CRA Toolbox in a complete and comprehensive way.
Specifically, we select as output nodes both variables C2
and C1, which represent cytotoxic T lymphocyte (CTL) in
prostate and lymphoid respectively. For C2, we measure
all the three evaluation functions offered by the software,
i.e. the area under the curve, the maximum and the time
of maximum reached by the time behavior of CTL, as

shown in Fig. 4. Conversely, forC1, we perform robustness
analysis using as evaluation function only the area under
the curve. In all cases, we set equal to 1000 the dimension
of the upper and lower tail of the evaluation function pdf,
in order to guarantee a stable estimation of the conditional
parameter pdfs [5].
Results of CRA applied to variable C2 to measure the

area are shown in Fig. 5. Parameters αDC and kRC have
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MIRI values above 1, thus they have a great impact on the
chosen evaluation function. Other parameters influencing
the selected output are μR, αXD and πC , having MIRI
values between 0.5 and 1.
Similar results are obtained for the maximum value of

C2, as shown in Fig. 6. Parameters with the highest MIRI
values (∼1) are kRC and αDC as before, while parameters
rp1, αXD and μR have all MIRIs around 0.5.
Figure 7 shows results obtained for the time of maximum of

variable C2. In this case, MIRIs have values lower if com-
pared to the previous examples. The most influential param-
eters are αDC , kRC and μR, with MIRI values around 0.6.

As regards variable C1, results of the measured area are
shown in Fig. 8. Two are the parameters with MIRIs above
1: rp1 and αDC . All the remaining parameters have low
values, except for αXD and αDCDR with values around 0.5.
Table 5 contains the time necessary to perform all the

simulations.

Pulse generator network
We test the CRA Toolbox on a small toy system belong-
ing to the field of Synthetic Biology because synthetic
models are one of the best examples of the importance
of theoretical modeling in the biological reality [14]. The

Fig. 6 Results of the Prostate-specific Pten−/− mouse model: C2 maximum value. Output of the CRA Toolbox when the maximum value of C2 time
behavior is chosen as evaluation function. a Pdf of the maximum value of C2. b Boxplot of the 100 realizations of the MIRIs. c-d Conditional pdfs of
the parameters with a MIRI value above 1
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pulse generator network consists of three nodes, repre-
senting three genes, aimed at producing a transient output
response to a persistent input stimulus [14]. Figure 9
shows the interaction schema of the model. Node S1 is the
input step signal that activates both R2 and Y. R2 is the
so called repressor because it acts as a deactivator of the
product Y. The corresponding ODE model has two state

variables, eight kinetic parameters and one input signal.
The following ODEs are written using a Hill function for
the activation and repression function [5, 15]:

{
Ṙ2 = k1 (S1/K1)n1

1+(S1/K1)n1
− λ2R2

Ẏ = k12
1+(R2/K2)n2

(S1/K1)n1
1+(S1/K1)n1

− λY .
(6)

Fig. 7 Results of the Prostate-specific Pten−/− mouse model: C2 time of maximum. Output of the CRA Toolbox when the time of maximum of C2
time behavior is chosen as evaluation function. a Pdf of the time of maximum of C2. b Boxplot of the 100 realizations of the MIRIs. c-d-e Conditional
pdfs of the parameters with a MIRI value above 0.5
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Fig. 8 Results of the Prostate-specific Pten−/− mouse model: C1 area. Output of the CRA Toolbox when the area under the curve of C1 time
behavior is chosen as evaluation function. a Pdf of the area of C1. b Boxplot of the 100 realizations of the MIRIs. c-d Conditional pdfs of the
parameters with a MIRI value above 1

Nominal values for the parameters in Eq. 6 are
k1=5 nM/min, k12=20 nM/min, λ2=0.01 nM/min, λ=0.04
nM/min, K1=1 nM, K2=100 nM and n1=n2=3. We run the
CRA Toolbox setting the tuning parameters as reported
in [5]. More in detail, we set the number of realizations,
the lower boundary, the upper boundary and the number
of samples equal to 100, 0.1, 10 and 10000 respectively.

Parameters n1 and n2 remain fixed to their nominal val-
ues since they are not included in robustness analysis.
We select as reference node the observable Y and we
progressively perform the CRA using all the three evalu-
ation functions provided by the tool, i.e. the area under
the curve, the maximum value and the time of maximum.
Figure 10 shows the pdf of the area and the corresponding
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Fig. 9 Pulse generator network. Three nodes network of the pulse
generator model: solid arrows stand for activation and the T-dashed
line represents a deactivation function

boxplot of MIRIs when choosing 1000 as the dimension
of both the lower and higher tails. The other subfigures of
Fig. 10 show the conditional pdfs of each parameter that
are used for the calculus of MIRIs. Figure 11 shows the
results of robustness analysis when the maximum of out-
put variable Y is selected as evaluation function. Figure 12
reports the output generated by the CRA Toolbox about
the time of maximum of variable Y. From Figs. 10b, 11b
and 12b, it is clear how parameter λ has a great impact on
the output behavior of Y, since it influences all the three
evaluation functions with an high value of the correspond-
ing MIRI. Moreover, parameter k12 is the one with highest
value of the MIRI in Fig. 11b and thus it especially influ-
ences the maximum value reached by the Y node. Finally,
parameter K2 is the most relevant when dealing with the
time of maximum of variable Y because it has the highest
MIRI value in Fig. 12b. Table 5 reports the time required
to complete all the simulations described in this section.

EGFR-IGF1R pathway in lung cancer
The last example of application of the CRA Toolbox is
the EGFR-IGF1R pathway, which is one of the most rel-
evant interaction network for the study of cancer patho-
genesis and progression in Non-Small Cell Lung Cancer
(NSCLC). Figure 13 depicts the pathway. For detailed
information about the biological importance of this net-
work and the role of the different nodes see [16]. The
corresponding mathematical ODE model is published in
[17] (id:MODEL1209230000). The dynamical ODE model
is composed of ten equations (Eq. 7), containing two types
of kinetic laws: the law of mass action and the Michaelis-
Menten kinetics.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −p1x1
ẋ2 = −p2x2
ẋ3 = p6x1

xT3 −x3
p7+xT3 −x3

+ p14x2
xT3 −x3

p15+xT3 −x3
−p12x8 x3

p13+x3

ẋ4 = p8x3
xT4 −x4

p9+xT4 −x4
− p33u3 x4

p34+x4

ẋ5 = p27x4 x5T−x5
p28+x5T−x5

− p37u1 x5
p38+x5

−p31x10 x5
p32+x5

ẋ6 = p29x5 x6T−x6
p30+x6T−x6

− p35u2 x6
p36+x6

ẋ7 = p10x6 x7T−x7
p11+x7T−x7

− p23u2 x7
p24+x7

ẋ8 = p4x7
xT8 −x8

p5+x8T−x8
− p39x8

ẋ9 = p25x4
xT9 −x9

p26+xT9 −x9
+ p16x2

xT9 −x9
p17+xT9 −x9

+p18x1
xT9 −x9

p19+x9T−x9
− p3x9

˙x10 = p20x9
xT10−x10

p21+xT10−x10
− p22x10

(7)

Table 3 explicits names and initial concentrations of
the ten state variables, of the three input signals and of
the eight total protein parameters. Table 4 lists all the
kinetic model parameters and their nominal values. We
run the CRA Toolbox according to the guidelines in [5]:
the number of realizations, the lower boundary, the upper
boundary and the number of samples are set equal to 100,
0.1, 10 and 10000 respectively.We select as reference node
the active form of ERK protein, since it is one of the best
indicator of the proliferation attitude of lung cancer. More
in detail, we perform robustness analysis of the model
choosing as evaluation function the area under the curve
of the time behavior of ERK. Figure 14a shows the pdf of
the evaluation function and Fig. 14b the boxplot for each
one of the 39 MIRI parameters. This figure clearly shows
that four parameters have a MIRI higher than 0.6 and
thus they significantly influence the dynamical behavior
of the output node. More in detail, these parameters are:
kERK−PP2A, KMERK−PP2A, kMEK−PP2A and KMMEK−PP2A
and Fig. 14c, d, e and f show the corresponding conditional
pdfs.
Table 5 reports the time required to complete the

robustness analysis through the CRA algorithm.

Discussion
The CRA is an algorithm to study the robustness of com-
plex biological networks and it allows the identification of
few parameters that have a major impact on the behavior
of a selected output variable. One of its main innovations
is the introduction of a sensitivity measure, the MIRI, that
takes advantage of all the conditional distributions of the
parameters, without reference to a specific moment. In
[18] there are the mathematical details of this class of
indicators and the comparison with the variance-based
uncertainty importance measures.
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Fig. 10 Pulse generator network results: Y area. Output of the CRA Toolbox selecting the area of Y as evaluation function. a Pdf of the area of Y. b
Boxplot of the MIRIs for the 100 realizations. c-d-e-f-g-h Conditional pdfs of parameters k1, K1, K2, k12, λ2 and λ respectively

Here we present the CRA Toolbox, a software package
for MATLAB aimed at performing the robustness analy-
sis based on the paradigm of the CRA. The tool consists
of a set of MATLAB functions that automate all the nec-
essary mathematical steps from the integration of an ODE
model until the calculus of the MIRIs. We decide to use
the Object-Oriented programming paradigm because it
allows us the development of an extendable and flexible
architecture through the implementation of different

engineering design patterns. In this way, other users
can add blocks of software to define novel evalua-
tion functions and other methods for the identifica-
tion of the pdf tails without modifying the structure
of the software and the source code of the existing
classes.
Here we tested the CRA on three ODE models that

contain different kinetic laws and different number of
state variables. All the simulations were performed on a
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Fig. 11 Pulse generator network results: maximum of Y. Output of the CRA Toolbox selecting the maximum of Y as evaluation function. a Pdf of the
maximum of Y. b Boxplot of the MIRIs for the 100 realizations. c-d-e-f-g-h Conditional pdfs of parameters k1, K1, K2, k12, λ2 and λ respectively

Intel Core i7-4700HQ CPU, 2.40GHz 8, 16-GB memory,
Ubuntu 16.04 LTS (64bit). From Table 5 it is clear how the
time to complete a realization of the CRA highly depends
both on the dimension of the model and on the number
of samples NS of the LHS. Indeed, from a computational
point of view, the most intensive part of the algorithm
is the integration of the mathematical model NS times.
Moreover, the choice of NS influences the estimation of
the evaluation function pdf, whose cost increases with
NS. On the other hand, the computation of the MIRIs
is pretty fast, independently of the type of evaluation

function selected. For more details about the choice of
the tuning parameters and the computational costs of
the CRA for different settings of tuning parameters see
Additional file 4.
One of the key ideas in [5] is that the theoretical state-

ments of the CRA do not depend on the specific modeling
technique used to represent a biological phenomenon. For
this reason, one of the possible future development of
the tool is to augment the number and types of formats
of mathematical models taken in input. Finally, the code
of the CRA Toolbox can be easily adapted to other
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Fig. 12 Pulse generator network results: time of maximum of Y. Output of the CRA Toolbox selecting the time of maximum of Y as evaluation
function. a Pdf of the time of maximum of Y. b Boxplot of the MIRIs for the 100 realizations. c-d-e-f-g-h Conditional pdfs of parameters k1, K1, K2, k12,
λ2 and λ respectively

open source programming languages such as Octave and
Python.

Conclusions
The CRA Toolbox is unique in the category of the
robustness analysis tools because it is the specific imple-
mentation of the CRA with all its features. It has the
scope to enlarge and facilitate the usage of this algorithm
and to disclosure it also to non expert users. This can

significantly help the oncological research of physicians in
discover novel targeted therapies. Moreover, in [19], the
Conditional Robustness Calibration (CRC) algorithm is
presented , which is an upgrade of the CRA that allows the
generation of MIRIs for a given model taking into account
multiple nodes simultaneously. This novel algorithm sug-
gests that the CRA Toolbox can be modified and extended
in the future in order to implement also the functionalities
of CRC.
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Fig. 13 Pathway of the EGFR-IGF1R model in lung cancer [16]
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Table 3 List of species included in the EGFR-IGF1Rmodel and the
corresponding initial concentrations and total protein amount

State Variable Species Value

x1 EGFR∗ 8000

x2 IGF1R∗ 650

x3 SOS 0

x4 Ras∗ 0

x5 Raf ∗ 0

x6 MEK∗ 0

x7 Erk∗ 0

x8 p90Rsk∗ 0

x9 PIK3∗ 0

x10 Akt∗ 0

u1 RafPP 120000

u2 PP2A 120000

u3 RasGab 120000

xT3 DSOS 120000

xT4 Ras 120000

xT5 Raf 120000

xT6 MEK 600000

xT7 Erk 600000

xT8 p90Rsk 120000

xT9 PIK3 120000

xT10 Akt 120000

Table 4 List of the kinetic parameters of the EGFR-IGF1R model
and their corresponding nominal values

Parameter Name Value

p1 γEGFR 0.02

p2 γIGF1R 0.02

p3 kdPIK3 0.005

p4 kp90Rsk−Erk 0.0213697

p5 KMp90Rsk−Erk 763523

p6 kSOS−EGFR 694.731

p7 KMSOS−EGFR 6086070

p8 kRas−SOS 32.344

p9 KMRas−SOS 35954.3

p10 kErk−MEK 9.85367

p11 KMErk−MEK 1007340

p12 kDSOS−p90Rsk 161197

p13 KMDSOS−p90Rsk 896896

p14 kSOS−IGFR 500

p15 KMSOS−IGFR 1000000

p16 kPIK3−IGF1R 10.6737

p17 KMPIK3−IGF1R 184912

p18 kPIK3−EGFR 10.6737

p19 KMPIK3−EGFR 184912

p20 kAkt−PIK3 0.0566279

p21 KMAkt−PIK3 653951

p22 kdAkt 0.005

p23 kErk−PP2A 9.85367

p24 KMErk−PP2A 1007340

p25 kPIK3−Ras 0.0771067

p26 KMPIK3−Ras 272056

p27 kRaf−Ras 0.884096

p28 KMRaf−Ras 62464.6

p29 kRaf−MEK 185.759

p30 KMRaf−MEK 4768350

p31 kRaf−Akt 15.1212

p32 KMRaf−Akt 119355

p33 kRas−RasGab 1509.36

p34 KMRas−RasGab 1432410

p35 kMEK−PP2A 2.83243

p36 KMMEK−PP2A 518753

p37 kRaf−RafPP 0.126329

p38 KMRaf−RafPP 1061.71

p39 kdp90Rsk 0.005
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Fig. 14 EGFR-IGF1R pathway results: ERK area. Output of the CRA Toolbox selecting as reference node ERK. a Pdf of the area under the curve of ERK.
b Boxplot of the 100 realizations of the MIRIs. c-d-e-f Conditional pdfs of the parameters with a MIRI value above 0.6
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Availability data and requirements
Project name: CRA Toolbox
Project home page: http://gitlab.ict4life.com/SysBiOThe/
CRA-Matlab
Operating system(s): Platform independent
Programming language:MATLAB
Other requirements:MATLAB
License:MATLAB
Any restrictions to use by non-academics: License
needed for MATLAB

Additional files

Additional file 1: This .pdf file is a detailed description of all the classes
and methods implemented in the tool and it is a useful guide for users to
understand how to run and use the software package. (PDF 62 kb)

Additional file 2: This .png file is a screenshot of the first part of the GUI of
the CRA Toolbox. (PNG 47 kb)

Additional file 3: This .png file is a screenshot of the second part of the
GUI of the CRA Toolbox. (PNG 60 kb)

Additional file 4: This .pdf file is the user guide of the CRA Toolbox. (PDF
327 kb)
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