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Abstract

Background: Linear mixed-effects models (LMM) are a leading method in conducting genome-wide association
studies (GWAS) but require residual maximum likelihood (REML) estimation of variance components, which is
computationally demanding. Previous work has reduced the computational burden of variance component
estimation by replacing direct matrix operations with iterative and stochastic methods and by employing loose
tolerances to limit the number of iterations in the REML optimization procedure. Here, we introduce two novel
algorithms, stochastic Lanczos derivative-free REML (SLDF_REML) and Lanczos first-order Monte Carlo REML
(L_FOMC_REML), that exploit problem structure via the principle of Krylov subspace shift-invariance to speed
computation beyond existing methods. Both novel algorithms only require a single round of computation involving
iterative matrix operations, after which their respective objectives can be repeatedly evaluated using vector
operations. Further, in contrast to existing stochastic methods, SLDF_REML can exploit precomputed genomic
relatedness matrices (GRMs), when available, to further speed computation.

Results: Results of numerical experiments are congruent with theory and demonstrate that interpreted-language
implementations of both algorithms match or exceed existing compiled-language software packages in speed,
accuracy, and flexibility.

Conclusions: Both the SLDF_REML and L_FOMC_REML algorithms outperform existing methods for REML
estimation of variance components for LMM and are suitable for incorporation into existing GWAS LMM software
implementations.

Keywords: GWAS, Linear mixed-effects models, Variance components, REML, Conjugate gradients, Stochastic trace
estimation, Stochastic Lanczos quadrature

Background
Linear mixed-effects modeling (LMM) is a leading
methodology employed in genome-wide association stud-
ies (GWAS) of complex traits in humans, offering the dual
benefits of controlling for population stratification while
permitting the inclusion of data from related individuals
[1]. However, the implementation of LMM comes at the
cost of increased computational burden relative to ordi-
nary least-squares regression, particularly in performing
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residual maximum likelihood (REML) estimation of
genomic variance components. Conventional REML algo-
rithms require multiple O

(
n3

)
or O

(
mn2

)
matrix oper-

ations, where m and n are the numbers of markers and
individuals, respectively, rendering them infeasible for
large biobank scale data sets. Further, common numeri-
cal methods for REML estimation rely on sparse matrix
methods suitable for traditional LMM applications (e.g.,
pedigree data or experiments with repeated measures
[2]) that are inapplicable to genomics variance compo-
nents models since these models involve dense related-
ness matrices. As a result, the problem of increasing the
computational efficiency of REML estimation of genomic
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variance components has generated considerable research
activity [3–8].
In the case of the standard two variance component

model (1), the estimation of which is the focus of the
current research, previous efforts toward increasing com-
putational efficiency fit into two primary categories: 1.,
reducing the number of cubic time complexity matrix
operations needed to achieve convergence; and 2., sub-
stituting stochastic and iterative matrix operations for
deterministic, direct methods to obtain procedures with
quadratic time complexity. The first approach is embod-
ied by the methods implemented in the FaST-LMM and
GEMMA packages [3, 5, 6], which take advantage of
the fact that the genetic relatedness matrix (GRM) and
identity matrix comprising the covariance structure are
simultaneously diagonalizable. As a result, after perform-
ing a single spectral decomposition of the GRM and a
small number of matrix-vector multiplications, the REML
criterion (3) and its gradient and Hessian can be repeat-
edly evaluated using only vector operations. The second
approach is exemplified by the popular BOLT-LMM soft-
ware [7, 8], which avoids all cubic operations by solving
linear systems via the method of conjugate gradients (CG)
and employing stochastic trace estimators in place of
deterministic computations.
In the current research, we propose two algorithms,

stochastic Lanczos derivative-free residual maximum
likelihood (SLDF_REML; Algorithm 3) and Lanczos
first-order Monte Carlo residual maximum likelihood
(L_FOMC_REML; Algorithm 4), that combine features of
both approaches (Fig. 1). Here, we translate the simulta-
neous diagonalizability of the heritable and non-heritable
components of the covariance structure to stochastic

and iterative methods via the principle of Krylov sub-
space shift-invariance. As a result, we only need to com-
pute the costliest portions of the objective function once
(via stochastic/iterative methods), computing all subse-
quent iterations of the REML optimization problem only
using vector operations. We develop the theory under-
lying these methods and demonstrate their performance
relative to previous methods via numerical experiment.

Results
Across 20 replications per condition for random subsam-
ples of n=16,000 to 256,000 unrelated European-ancestry
individuals, both SLDF_REML and L_FOMC_REML
produced heritability estimates for height consistent
with those generated by the GCTA software package
(Figs. 4 and 5). For large samples, the novel algorithms
achieved greater accuracy than either version of BOLT-
LMM (e.g., for n=250,000, mean-squared error was
1.74×10−6 for BOLT-LMM v2.3.2 versus 1.24×10−7

for L_FOMC_REML). Particularly, the time required per
additional iteration after initial overhead computations
was low for the novel algorithms (e.g., t=20.07 min for
BOLT-LMM v2.3.2 versus 2.06 min for L_FOMC_REML;
Table 2), enabling increased precision at minor cost.
With respect to total timings, SLDF_REML dramatically
outperformed all other methods when the precomputed
GRM was available (Table 2 and Fig. 3), which we expect
whenever the number of markers exceeds the sample
size. Examining methods taking genotype matrices as
inputs, SLDF_REML and L_FOMC_REML performed
similarly, whereas BOLT-LMM v2.3.2 converged more
quickly than either in smaller samples (Fig. 3), though
the differences for n=256,000 were relatively minor (e.g.,

Fig. 1 Time complexity analogies with respect to existing and proposed methods. Heuristically, the novel algorithms (bottom right) are to the
stochastic, iterative algorithm implemented in the BOLT-LMM software [7, 8] (bottom left) as the direct methods exploiting the shifted structure of
the two component genomic variance component model (1) (e.g., FaST-LMM and GEMMA [3, 5]; top right) are to standard direct methods (top left).
For simplicity, we assume here that the number of markers is equal to the number of observations and omit low-order terms related to the spectral
conditioning of the covariance structure and the number of random vectors generated by the stochastic methods; further details are provided in
Table 1. neval denotes the number of objective function evaluations needed to achieve convergence
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t =91.09 min for BOLT-LMM v2.3.2 versus 102.21 min
for L_FOMC_REML; Table 2). The older version of BOLT-
LMM, v2.1, performed significantly more slowly than any
of the other implementations examined (e.g., average wall
clock time was 177.95 min at n=256,000), demonstrating
the importance of implementation optimization.
As the computations needed to compute the Lanc-

zos decompositions in L_FOMC_REML and BOLT-LMM
v2.3.2 are equivalent in time and memory complexity,
we expect that an optimized compiled-language imple-
mentation of L_FOMC_REML would reduce the overhead
computation time by a significant linear factor (≈3 for
n=256,000, comparing the sum of the overhead time and
single objective function evaluation time for BOLT-LMM
v2.3.2 to its total running time; Table 2). Consistent with
theory, the wall clock times per objective function eval-
uation for the novel algorithms were trivial given the
Lanczos decompositions (e.g., for n=256,000, t = 2.06 ver-
sus 20.07 min for L_FOMC_REML and BOLT-LMM v2.3.2,
respectively; Table 2 and Fig. 2).

Discussion
We have proposed stochastic algorithms for estimating
the two variance component model (1), both of which
theoretically offer substantial time savings relative to
existing methods. Our methods capitalize on the prin-
ciple of Krylov subspace shift invariance to reduce the
number of steps involvingO

(
n2

)
orO(mn) computations

to one, whereas existing methods perform equivalent
computations at each iteration of the REML optimiza-
tion procedure. For large samples, when taking geno-
type matrices as inputs, our interpreted-language imple-
mentations of L_FOMC_REML and SLDF_REML [9] pro-
duced more accurate variance component estimates than
the highly-optimized, compiled BOLT-LMM implemen-
tations, while taking similar amounts of time. Thus,
we expect comparably-optimized implementations of the
novel algorithms to compute high accuracy REML esti-
mates in close to the time required by BOLT-LMM
v2.3.2 for a single objective function evaluation. Further,
in contrast to the BOLT_LMM algorithm, which requires
the genotype matrix, SLDF_REML can exploit precom-
puted GRMs to reduce operation count by an O(2m/n)

factor (Table 1), which yields dramatic time savings
when the number of markers greatly exceeds the num-
ber of individuals (Fig. 3). While GRM precomputation
is itself O

(
mn2

)
, it can be effectively and asynchronously

parallelized across multiple compute nodes, substan-
tially mitigating computational burden (though we note
that serial input/output constraints can interfere with
efficient parallelization). However, as the L_FOMC_REML
algorithm involves the computation of BLUPs of SNP
effects, L_FOMC_REML is preferable to SLDF_REMLwhen
BLUP estimates are desired for prediction (as in [10]).

There are several limitations to the proposed approaches.
First, SLDF_REML, which benefits from the ability to
take GRMs as input, depends linearly on the number
of included covariates, which might grow prohibitive
in samples spanning numerous genotyping batches and
ascertainment locations. However, as in BOLT_LMM,
L_FOMC_REML requires O(mn) matrix multiplications
for BLUP computation at each step of the REML opti-
mization procedure, whereas SLDF_REML requires only
vector operations. Thus, though the options provided by
the two novel algorithms increase researchers’ flexibil-
ity overall, the choice of whether to employ SLDF_REML
versus L_FOMC_REML is problem-specific and necessi-
tates greater researcher attention to resource allocation.
For example, even when a precomputed GRM is avail-
able, it might be preferable to use L_FOMC_REML if
BLUPs of latent SNP effects are desired. On the other
hand, if a researcher intends to sequentially analyze a
large number of phenotypes in a relatively small sample
of individuals, it might prove most efficient to compute
a GRM, despite the involved computational burden, in
order to speed subsequent computations by supplying the
GRM to the SLDF_REML algorithm. Second, neither algo-
rithm mitigates the substantial O(mn) or O

(
n2

)
memory

complexity common to all algorithms for REML esti-
mation of genomic variance components, requiring that
researchers have access to high-memory compute nodes
to work with large samples (though we note that neither
of the novel algorithms substantial increases this bur-
den either). Finally, for the same reasons that the spectral
decomposition-based direct methods implemented in the
FaST-LMM and GEMMA packages [3, 5, 6] are restricted
to the simple two component model (1) (i.e., whereas the
GRM and identity matrix are simultaneously diagonal-
izable, the same doesn’t hold for arbitrary collections of
three or more symmetric positive semidefinite matrices),
the shift-invariance property exploited by the proposed
methods does not extend to multiple genomic variance
components. Given that the two component model is
insufficient for precise heritability estimation for many
complex traits [11], our novel algorithms apply to the par-
ticular, though common, tasks of variance component and
BLUP estimation for LMM in association studies.
Despite these limitations, the proposed algorithms have

clear advantages over existing methods in terms of flex-
ibility, accuracy, and speed of computation. We provide
both pseudocode and heavily annotated Python 3 imple-
mentations [9] to facilitate their incorporation into exist-
ing software packages. Further, though our algorithms are
restricted to the two variance component model, they can
be used to generate the inputs necessary for estimation
of more complex models, such as the mixture model esti-
mated via variational approximation implemented in [7],
and thus have applications to non-infinitesimal models.
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a

b

Fig. 2 Overhead versus iterative optimization procedure timing results. Trimmed mean wall clock time for overhead computations and iterative
REML optimization procedures across twenty replications per condition on the log10 scale (a) and natural scale (b). Error bars reflect per condition
standard errors and lines connect per condition means

Finally, we suggest that the methods presented in our the-
oretical development, in particular stochastic trace esti-
mation and stochastic Lanczos quadrature, are likely to
find uses in REML estimation of other models of inter-
est to researchers in genomics. In particular, we suggest
the development of models that exploit Krylov subspace
shift-invariance to speed up variance/covariance compo-
nent estimation for the case of multivariate phenotypes

as a target for future research. Such models necessar-
ily involve the computation or approximation of Hessian
matrices, thereby introducing additional complexity in
comparison to the univariate case considered above. How-
ever, the extension of fast cubic complexitymethods based
on the spectral decomposition of the covariance matrix
[3, 5] to the multivariate case [6] suggests the potential for
multivariate analogues of the algorithms presented here.
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Table 1 Time complexity of stochastic algorithms

Method Overhead Objective function evaluation

SLDF_REML

⎧
⎨

⎩
with precomputed GRM

with genotype matrix

O
(
n2 · (nrand + c) · nκ

)
O(n · c · nκ )

O(2m · n · (nrand + c) · nκ ) O(n · c · nκ )

L_FOMC_REML O(4m · n · nrand · nκ ) O(m · n · nrand)
BOLT_LMM O

(
n · c2 + m · c) O(4m · n · nrand · nκ )

n denotes the number of individuals,m the number of markers, and c the number of covariates. nrand indicates the number of random probing vectors and is fixed at 15 in all
numerical experiments. nκ reflects the number of conjugate gradient iterations required to achieve convergence at a specified tolerance and can be bounded in terms of the
spectral condition number of H0. As noted in [8], implicit preconditioning of H0 can be achieved by including the first few right singular vectors of the genotype matrix (or
eigenvectors of the GRM) as covariates

a

b

Fig. 3 Timing results. Trimmed mean wall clock time across twenty replications for per condition on the log10 scale (a) and natural scale (b). Error
bars reflect per condition standard errors and lines connect per condition trimmed means
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Conclusions
The proposed algorithms,SLDF_REML andL_FOMC_REML,
unify previous approaches to estimating the two vari-
ance component model (1) by exploiting the simultane-
ous diagonalizability of the covariance structure com-
ponents while avoiding matrix operations with cubic
time complexity. As a result, the most expensive oper-
ations only need to be performed once, as with the
spectral decomposition performed in the FaST-LMM and
GEMMA software packages [3, 5, 6], but these opera-
tions consist only of matrix-vector products, as in the
BOLT-LMM software package [7, 8]. All but one itera-
tion of the REML optimization procedure requires only
vector operations, yielding increased speed and numeri-
cal precision relative to existing methods. Furthermore,
the unique strengths of the two methods lead to a flexible
approach depending on researcher goals: SLDF_REML
is capable of operating on precomputed GRMs when
available, whereas L_FOMC_REML can generate BLUPs of
latent SNP effects without added computational burden.
We recommend these algorithms for incorporation into
GWAS LMM implementations.

Method
We consider the two component genomic variance com-
ponents model commonly employed in LMM association
studies [1], which is of the form

y = Xβ + 1√
m
Zu + e,

u i.i.d.∼ N
(
0, σ 2

g

)
, e i.i.d.∼ N

(
0, σ 2

e
)
, (1)

where y is a measured phenotype, the c � n columns
of X ∈ R

n×c are covariates (including an intercept term)
with corresponding fixed effects β , and Z ∈ R

n×m is
a matrix of n individuals’ standardized genotypes at m
loci. Without loss of generality, we assume that X has
full column rank; in the case of numerical rank defi-
ciency we can simply replace X by the optimal full rank
approximation generated by its economy singular value
decomposition or rank revealing QR decomposition. The
latent genetic effects u ∈ R

m and residuals e ∈ R
n are

random variables with distributions parametrized by the
heritable and non-heritable variance components, σ 2

g and
σ 2
e , respectively. The REML criterion corresponds to the

marginal likelihood of σ 2
g , σ 2

e |KTy , where KT projects to
an (n− c)-dimensional subspace orthogonal to the covari-
ate vectors such that the null space of KT is exactly the
column space of X [12]. In other words KT : R

n →
S ⊂ R

n−c such that R
n = S ⊕ col X. The trans-

formed random variable KTy has the marginal distribu-
tion KTy ∼ MVN

(
0, σ 2

g
1
mKTZZTK + σ 2

e KKT
)
, which

we reparametrize as KTy ∼ MVN
(
0, σ 2

g KTHτK
)
,

where

Hτ = 1
m
ZZT + τ In, τ = σ 2

e /σ 2
g . (2)

Here, 1
mZZT , which indicates the average covariance

between individuals’ standardized genotypes, is often
referred to as the genomic relatedness matrix (GRM).
The REML criterion, or marginal log likelihood, can be
expressed as a function of τ :

�
(
τ |KTy

)
∝ − (n − c) ln

(
σ̂ 2
g (τ )

)
− σ̂ 2

e (τ )−1yTPτ y

− ln
(
det

(
KTHτK

))
, (3)

where Pτ = K
(
KTHτK

)−1 KT , and, as implied by
the REML first-order (stationarity) conditions, σ̂ 2

e (τ ) is
the expected residual variance component given τ and
σ̂ 2
g (τ ) = σ̂ 2

e (τ )/τ [12, 13]. In practice, K is never explicitly
formed.
Naïve procedures for maximizing the REML criterion

require evaluating (3) or its derivatives at each iteration
of the optimization procedure. Previous methods either
reduce the number of necessary cubic time complexity
operations to one by exploiting problem structure, or sub-
stitute quadratic time complexity iterative and stochastic
matrix operations for direct computations (Fig. 1). Here,
we unify these approaches via the principle of Krylov
subspace shift invariance to achieve methods that only
require a single iteration of quadratic time complexity
operations.
In what follows, we first present a brief survey of the

Lanczos process, its applications to families of shifted lin-
ear systems, and its use in constructing Gaussian quadra-
tures for spectral matrix functions. We assume familiarity
with the method of conjugate gradients, an iterative
procedure for approximating solutions to symmetric pos-
itive definite linear systems, and Gaussian quadrature, a
method for approximating the integral of a given function
by a well chosen weighted sum of its values; if not, see [14]
and [15], respectively. We present these methods toward
the goal of efficiently evaluating the quadratic form and
log-determinant terms appearing in the REML criterion
(3). We then present the details of the SLDF_REML and
L_FOMC_REML algorithms, both of which exploit prob-
lem structure via Lanczos process-basedmethods in order
to speed computation. Finally, we derive expressions for
the computational complexity of the present algorithms,
which we confirm via numerical experiment.

Preliminaries
The notation in this section is self-contained. Our pre-
sentation borrows from the literature extensively; fur-
ther details on the (block) Lanczos procedure [14, 16],
conjugate gradients for shifted linear systems [17, 18],
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stochastic trace estimation [19, 20], and stochastic Lanc-
zos quadrature [21–23] are suggested in the bibliography.

Krylov subspaces
Consider a symmetric positive-definite matrix A and
nonzero vector b. Define the mth Krylov subspace by the
span of the firstm−1 monomials in A applied to b; that is,
Km(A, b) = span

{
Akb : k = 0, . . . ,m − 1

}
. Krylov sub-

spaces are shift invariant—i.e., for real numbers σ , we
have Km(A, b) = Km(A + σ I, b).

The Lanczos procedure
The Lanczos procedure generates the decomposition
AUm = UmTm, where the columns u1, . . . ,um ofUm form
an orthonormal basis for Km(A, b) and the Jacobi matri-
ces Tm ∈ R

m×m are symmetric tridiagonal. Choosing
u1 = b/‖b‖, successive columns are uniquely determined
by the sequence of Lanczos polynomials {pk}m−1

k=1 such
that each uk = pk−1(A)u1 and each pk is the charac-
teristic polynomial of Jacobi matrix Tk consisting of the

first k rows and columns of Tm. The Lanczos proce-
dure is equivalent to the well-known method of conjugate
gradients (CG) for solving the linear system Ax = b
in that the mth step CG approximate solution x(m) is
obtained from the above decomposition using only vec-
tor operations (see Algorithm 1). The number of steps
m prior to termination corresponds to the number of
CG iterations need to bound the norm of the residual
below a specified tolerance:

∥∥Ax(m) − b
∥∥ < ε. The rate

of convergence depends on the spectral properties of A
and can be controlled in terms of the spectral condition
number κ(A). In the present application, the fact that
all complex traits of interest generally have a non-trivial
non-heritable component results in well-conditioned
systems [7, 9].

Solving families of shifted linear systems
Having applied the Lanczos process to the seed system
Ax = b, shift-invariance can be exploited to obtain the
mth step CG approximate solution x(m)

σ to the shifted
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linear system Aσ xσ = (A + σ I)xσ = b, only using vec-
tor operations [17]. It can be shown that any positive
shift by σ ≥ 0 improves the rate of convergence such
that

∥
∥
∥Aσ x(m)

σ − b
∥
∥
∥= δm

δm+σ

∥
∥
∥Ax(m) − b

∥
∥
∥, where δm > 0 is

the mth diagonal element of the Lanczos Jacobi matrix
corresponding to Km(A, b).

Lanczos polynomials and Gaussian quadrature
Additionally, the Lanczos polynomials comprise a
sequence of orthogonal polynomials with respect to the
spectral measure

μA,v(t) =
�:λ�≤t∑

j=1

(
QTv

)2

j
,

where A = Q
QT is the spectral decomposition
[21, 22]. Quadratic forms vT f (A)v involving spectral func-
tions f (A) = Qf (
)QT , e.g., for the matrix logarithm,
vT (logA)v = ∑n

i=1

[
ln(λi)

(
QTv

)2
i

]
, can be written as

Riemann–Stieltjes integrals of the form

vTQf (
)QTv =
∫ λn

λ1
f (t)dμA,v(t). (4)

The Lanczos decomposition AUm = UmTm generates the
weights and nodes for an m-point Gaussian quadrature
approximating the above integral. Denoting the spectral
decomposition of the jth Jacobi matrix Tj = WjDjWT

j for
j = 1, . . . ,m, we approximate (4) as

∫ λn

λ1
f (t)dμA,v(t) ≈

m∑

�=1
ωj,�f (θj,�),

where θj,� = {Dj}�,� and ωj,� = {
eT1 Wj

}
�
. Asm here corre-

sponds to the number of CG iterations needed to ensure
that ‖Ax(m) − v‖ is smaller than a specified tolerance, the
tridiagonal Jacobi matrices are small and calculating their
spectral decompositions is computationally trivial.

Stochastic Lanczos quadrature
Stochastic Lanczos quadrature (SLQ) combines the above
quadrature formulation with Hutchinson-type stochastic
trace estimators [21]. Such estimators approximate the
trace of amatrixH ∈ R

n×n by a weighted sum of quadratic
forms tr(H) ≈ n

nrand
∑nrand

k=1 vTk Hvk for normalized, suitably
distributed i.i.d. random probing vectors {vj}nrandj=1 [19]. The
SLQ approximate trace of a spectral function of a matrix,
tr(f (A)), is then

tr(f (A)) ≈ n
nrand

nrand∑

k=1
vTk Qf (A)QTvk

= n
nrand

nrand∑

k=1

∫ λn

λ1
f (t)dμA,vk (t)

≈ n
nrand

nrand∑

k=1

mκ∑

�=1
ωk,�f (θk,�). (5)

Whereas the number of probing vectors nrand is chosen
a priori, the number quadrature nodes mκ corresponds
to the number of conjugate gradient iterations needed to
ensure

∥
∥
∥Aσ x(mκ )

jσ − vj
∥
∥
∥ is less than a specified tolerance for

each j = 1, . . . , nrand.

SLQ and shift invariance
For a fixed probing vector vi, we can exploit the shift
invariance of Km(A, vi) to efficiently update Gaussian
quadrature generated by the corresponding Lanczos
decomposition AUm = UmTm. Again denoting the spec-
tral decomposition of the Jacobi matrix Ti = WiDiWT

i ,
the Lanczos decomposition of the shifted system is simply
AσUm = UmWm(Dm + σ Im)WT

m . Thus, given the approx-
imation (5) for tr(f (A)), we can efficiently compute an
approximation of tr(f (Aσ )) for any σ > 0. In Algorithm 2
we implement a method for estimating tr(log(Aσ )) in
O(nrand) operations given the spectral decompositions of
the Jacobi matrices corresponding to Km(A, vj) for prob-
ing vectors {vj}nrandj=1 .

Blockmethods
For multiple right hand sides B =[ b1| · · · |bc], the Lanc-
zos procedure can be generalized to the block Krylov
subspace Km(A,B) = ⊗c

j=1Km(A, bj), resulting in a col-
lection of Lanczos decompositions AUj = UjTj such that
{Uj}1 = bj/‖bj‖ for j = 1, . . . , c. This process is equiva-
lent to block CG methods in that the Jacobi matrices can
again be used to generate an approximate solution X(m)

to the matrix equation AX(m) = B. We provide an imple-
mentation of the block Lanczos procedure in L_Seed [9],
employing a conservative convergence criterion defined in
terms of the magnitude of the (1, 2) operator norm of the
residual

∥
∥AB − X(m)

∥
∥
1→2 = maxj

∥
∥
∥Abj − x(m)

j

∥
∥
∥
2
. Com-

pared to performing c separate Lanczos procedures with
respect to {Km(A, bj)}cj=1, block Lanczos with respect to
Km(A,B), with B =[ b1| · · · |bc], produces the same result
(for a fixed number of steps). However, block Lanczos
employs BLAS-3 operations and is thus more performant,
especially when implemented on top of parallelized linear
algebra subroutines.

A derivative-free REML algorithm
We propose the stochastic Lanczos derivative-free
residual maximum likelihood algorithm (SLDF_REML;
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Algorithm 3), a method for efficiently and repeatedly eval-
uating the REML criterion, which is then subject to a
zeroth-order optimization scheme. To achieve this goal,
we first identify the parameter space of interest with a
family of shifted linear systems.We then develop a scheme
for evaluating the quadratic form yTPτ y and log deter-
minant ln

(
det

(
KTHτK

))
terms in the REML criterion

(3) that use the previously discussed Lanczos methods to
exploit this shifted structure. Specifically, after obtaining a
collection of Lanczos decompositions, we can repeatedly
solve the linear systems involved in the quadratic form
term via Lanczos conjugate gradients and approximate the
log determinant term via stochastic Lanczos quadrature.

The parameter space as shifted linear systems
Given a range of possible values of the standardized
genetic variance component, or heritability,

h2 = σ 2
g /

(
σ 2
g + σ 2

e

)
, h2 ∈ [

h2min, h2max
]
, (6)

we set τ0 = (1 − h2max)/h2max and define H0 = Hτ0 , noting
that for all τ ∈ 
 = {(

1 − h2
)
/h2 : h2 ∈ [

h2min, h2max
]}
,

the spectral condition number of Hτ will be less than that
of H0 as the identity component of Hτ will only increase.
Further, we have now identified elements of our parameter
space τ ∈ 
 with the family of shifted linear systems

Hτ0 = {Hσ = Hτ = H0 + σ In : σ = τ − τ0}.

For any vector v for which we have computed the Lanc-
zos decomposition H0U = UT with the first column of U
equal to v/‖v‖, we can use Algorithm 1 to obtain the CG
approximate solution xσ ≈ H−1

σ v for all σ ≥ 0 in O(n)

operations.

The quadratic form
Directly evaluating the quadratic form

yTPτ y = yTK
(
KTHτK

)−1
KTy (7)

is computationally demanding and is typically avoided
in direct estimation methods [12, 13]. Writing the com-
plete QR decomposition of the covariate matrix X =
[QX |QX⊥ ]R allows us to define KT = QT

X⊥ , noting that
substituting QX⊥QT

X⊥ for KT preserves the value of (7).
QX⊥QT

X⊥ is equivalent to the orthogonal projection oper-
ator S : v �→ v − QXQT

Xv, which admits an efficient
implicit construction and is computed in O

(
nc2

)
oper-

ations via the economy QR decomposition X = QXRX .
Then, reexpressing (7) as yTS(SHτS)†Sy, we can use
the Lanczos process to construct an orthonormal basis
and corresponding Jacobi matrix for the Krylov subspace
K(SH0S, Sy). We can then obtain the CG approximation
of yTS(SHσS)−1Sy using vector operations as, for any shift
σ , we have yTS(SHσ S)†Sy = yTS(SH0S + σ In)−1Sy (see
Lemma 1 in Additional file 1 for proof).

The log determinant
We use an equivalent formulation [12, 24] of the term
ln(det(KTHτK)), rewriting it as

ln(det(Hτ ))+ ln
(
det

(
XTH−1

τ X
))

− ln
(
det

(
XTX

))
.

The det
(
XTX

)
term is constant with respect to τ and

can be disregarded. For c � n, det
(
XTH−1

τ X
)
is compu-

tationally trivial via direct methods givenH−1
τ X, which we

can compute for all parameter values of interest in O(n)

operations having first applied the block Lanczos process
with respect to K(H0,X). Computing the block Lanczos
decomposition corresponding to K(H0,X), which is only
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performed once, unfortunately scales with the number of
covariates c, a disadvantage not shared by our second algo-
rithm (Algorithm 4). The remaining term, ln(det(Hτ )), is
approximated by applying SLQ (Algorithm 2) to a special
case of (5): We rewrite the log determinant as the trace of
the matrix logarithm

ln(det(Hτ )) = tr (log(Hτ ))

= trQ[ ln(λ1 + σ)| · · · | ln(λn + σ)]QT ,

where we have spectrally decomposed H0 = Q
QT for
some τ0 ≤ τ with σ = τ − τ0. We draw nrand i.i.d. nor-
malized Rademacher random vectors v1, . . . , vnrand , where
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each element of each vector vi takes values of either 1/‖vi‖
or −1/‖vi‖ with equal probability. The SLQ approximate
of the log determinant for the seed system is

ln(det(Hσ )) ≈ n
nrand

nrand∑

i=1

mi∑

�=1
ωi,� ln(θi,� + σ),

where the weights wi,� and nodes θi,� are respectively
derived by using the Lanczos process to construct
orthonormal bases for K(H0, vi) (in practice, we apply
block Lanczos to K(H0, (v1, . . . , vnrand))) [21, 22].

The SLDF_REML algorithm
Stochastic Lanczos derivative-free residual maximum
likelihood (SLDF_REML; Algorithm 3), conceptually sim-
ilar to the derivative-free algorithm of Graser and col-
leagues [13], applies the previously introduced Lanczos
methods to approximate the above reparametrization of
the REML criterion. Shift-invariance is then exploited
such that, with the exception of the initial Lanczos decom-
positions, the REML log likelihood can be repeatedly
evaluated using only vector operations.SLDF_REML takes
a phenotype vector y ∈ R

n, a covariate matrix X ∈ R
n×c,

either the genetic relatedness matrix ZZT ∈ R
n×n or the

standardized genotype matrix Z ∈ R
n×m (in which case

the action of the GRM as a linear operator is coded implic-
itly as v �→ Z

(
ZTv

)
), and a range of possible standardized

genomic variance component values 
 = [
h2min, h2max

]
as

arguments and generates a function REML_criterion:

 → R that efficiently computes the log-likelihood of
τ |KTy. This function is then subject to scalar optimization
via Brent’s method, which is feasible given the low cost
of evaluation and low dimension of 
. Hyperparameters
include the number of probing vectors to be used for
the SLQ approximation of the log determinant nrand, as
well as tolerances corresponding to the REML criterion,
parameter estimates, and the Lanczos residual norms.
Convergence to a given tolerance on a sensible scale is
ensured by optimizing with respect to the heritability
h2 ∈ 
 ⊆ [0, 1] and evaluating the REML criterion at
τ = (

1 − h2
)
/h2. The REML criterion can be repeat-

edly evaluated in O(n) operations, making high accuracy
computationally feasible.

A first-order Monte Carlo REML algorithm
We additionally propose the Lanczos first-order
Monte Carlo residual maximum likelihood algorithm
(L_FOMC_REML; Algorithm 4), which also takes advan-
tage of the shifted structure of the standard genomic
variance components model to speed computation. We
first present the related first-order algorithm imple-
mented in the efficient and widely-used BOLT-LMM
software [7, 8], which we refer to as BOLT_LMM and

of which the proposed L_FOMC_REML algorithm is a
straightforward extension.

BOLT_LMM (First-orderMonte Carlo REML)
The BOLT_LMM algorithm is based on the observation
that at stationary points of the REML criterion (3), the
first-order REML conditions (i.e., ∇� = 0) imply that

E

[
ũT ũ|y

]
= ũT ũ, E

[
ẽT ẽ|y

]
= ẽT ẽ, (8)

where ũ and ẽ are the best linear unbiased predictions
(BLUPs) of the latent genetic effects and residuals, respec-
tively [25]. The BLUPs are functions of τ given by

ũ(τ ) = m−1/2ZTSH́−1
τ Sy,

ẽ(τ ) = τ H́−1
τ Sy, (9)

where we have defined H́τ = 1
mSZZTS + τ In. The expec-

tations (8) are approximated via the following stochastic
procedure: Monte Carlo samples of the latent variables,
ǔk

i.i.d∼ MVN (0, Im), ěk
i.i.d∼ MVN (0, S) are used to

generate samples of the projected phenotype vector

y̌k = m−1/2SZǔk + ěk , k = 1, . . . nrand.

BLUPs are then computed as in (9), yielding the
approximations

E
MC

[
ũT ũ|y

]
= n−1

rand√
m

nrand∑

k=1

∥
∥
∥ZTSH́−1

τ Sy̌k
∥
∥
∥
2
,

E
MC

[
ẽT ẽ|y

]
= n−1

rand

nrand∑

k=1

∥
∥
∥τ H́−1

τ Sy̌k
∥
∥
∥
2
.

Using the above expressions, Loh et al. [7, 8] apply a
zeroth-order root-finding algorithm to the quantity

fr(τ ) = ln
[
ũT ũ
ẽT ẽ

]

− ln
[
EMC

[
ũT ũ|y]

EMC
[
ẽT ẽ|y]

]

,

noting that fr = 0 is a necessary condition (and, in
practice, a sufficient condition) for (8). Using CG to
approximate solutions to the linear systems involved in
BLUP computations results in an efficient REML estima-
tion procedure involving O(n · m · nrand) operations for
well-conditioned covariance structures (i.e., for nontriv-
ial non-heritable variance component values). As noted
in [8], implicit preconditioning of H0 can be achieved by
including the first few right singular vectors of the geno-
type matrix (or eigenvectors of the GRM) as columns of
the covariate matrix X.

The L_FOMC_REML algorithm
The BOLT_LMM algorithm described above involves solv-
ing nrand + 1 linear systems

H́−1
τ�

Sy̌, H́−1
τ�

Sy̌1, . . . , H́−1
τ�

Sy̌nrand ,
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at each iteration of the optimization scheme in order to
compute BLUPs of the latent variables for the observed
phenotype vector and each of the Monte Carlo samples.
However, each iteration involves spectral shifts of the left
hand side of the form

H́−1
τ�+1 =

(
H́τ�

+ σ In
)−1

, σ = (τ�+1 − τ�).

As in the SLDF_REML algorithm, the underly-
ing block Krylov subspace is invariant to these
shifts (i.e., Km

(
H́τ ,Y

)
= Km

(
H́τ + σ I,Y

)
, where

Y = [
y|y̌1| · · · |y̌nrand

]
). Thus, having performed the Lanc-

zos process for an initial parameter value τ0, we can use
L_Solve (Algorithm 1) to obtain the block CG approxi-
mate solution X(m)

σ ≈ H́−1
τ+σY in O(n · nrand) operations.

We are thus able to avoid solving linear systems in all
subsequent iterations, though the relatively small number
of matrix-vector products involved in computing BLUPs
for the latent genetic effects at each step are unavoidable.
The requirement of the genotype matrix for computing
(9) prevents both L_FOMC_REML and BOLT_LMM from
efficiently exploiting precomputed GRMs.

Comparison of methods
We compare theoretical and empirical properties of our
proposed algorithms, SLDF_REML and L_FOMC_REML,
to those of BOLT_LMM.

Computational complexity
In contrast to BOLT_LMM, the Lanczos-decomposition
based algorithms we have proposed only need to perform
the computationally demanding operations necessary to
evaluate the REML criterion once. As such, we differen-
tiate between overhead computations, which occur once
and do not depend on the number of iterations needed
to achieve convergence, and per-iteration computations,
which are repeated until convergence of the optimization
process (Table 1 and Fig. 2).
The overhead computations of SLDF_REML are dom-

inated by the need to construct bases for the nrand +
c + 1 subspaces K(H0, [ v̌1, . . . , v̌nrand , x1, . . . , xc, y] ), and
are thus O

(
n2(nrand + c)nκ

)
when a precomputed GRM

is available and O(2m · n(nrand + c)nκ) otherwise. Here,
nκ denotes the number of Lanczos iterations needed
to achieve convergence at a pre-specified tolerance and
increases with h2max. Subsequent iterations are dominated
by the cost of solving c + 1 shifted linear systems via
L_Solve and are thusO(n · c ·nκ). The overhead compu-
tations in L_FOMC_REML are dominated by the Lanczos
decompositions corresponding to the 2nrand + 1 seed
systems, where the GRM is implicitly represented in terms
of the standardized genotype matrix, and is thusO(4m ·n ·
nrand ·nκ). Operations of equivalent complexity are needed
at every iteration of BOLT_LMM.

Numerical experiments
We compared wall clock times for genomic variance com-
ponent estimation for height in nested random subsets
of 16,000, 32,000, 64,000, 128,000, and 256,000 unrelated
(π̂ < .05) European ancestry individuals from the widely
used UK Biobank data set [26]. All analyses included
24 covariates consisting of age, sex, and testing center
and used hard-called genotypes from 330,723 array SNPs
remaining after enforcing a 1% minor allele frequency
cutoff. We compared SLDF_REML, with and without a
precomputed GRM, to L_FOMC_REML which requires
the genotype matrix. For the novel algorithms, absolute
tolerances for the Lanczos iterations and the REML opti-
mization procedure were set to 5e-5 and 1e-5, respec-
tively. Additionally, we compared our interpreted Python
3.6 code to BOLT-LMM versions 2.1 and 2.3.3 (C++
code compiled against the Intel MKL and Boost libraries)
[7, 8, 27, 28]. We ran each algorithm twenty times per
condition, trimming away the two most extreme timings
in each condition. Mirroring the default settings of the
BOLT-LMM software packages, we set nrand = 15 across
both of our proposed methods.
Novel algorithms were implemented in the Python

v3.6.5 computing environment [9], using NumPy v1.14.3
and SciPy v1.1.0 compiled against the Intel Math Ker-
nel Library v2018.0.2 [28–30]. Optimization was per-
formed using SciPy’s implementation of Brent’s method,
with convergence determined via absolute tolerance of
the standardized genomic variance component ĥ2. Timing

Table 2 Overhead and per objective function evaluation timings of stochastic algorithms for n=256,000

Method Overhead Per evaluation Evaluation count Total

BOLT-LMM v2.1 34.63 35.83 4 177.95

BOLT-LMM v2.3.2 10.82 20.07 4 91.09

L_FOMC_REML 89.87 2.06 6 102.21

SLDF_REML
{ with genotype matrix 90.22 1.06 9 99.73

with precomputed GRM 28.95 1.07 9 38.60

Data reflect trimmed mean wall clock time in minutes over 20 iterations per condition
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results (Table 2 and Figs. 3 and 5) do not include time
required to read genotypes into memory, or, when appli-
cable, to compute GRMs, and reflect total running time
on an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz with
32 physical cores and 1 terabyte of RAM. Timing exper-
iments excluded methods with cubic time complexity,

including GCTA, FaST-LMM, and GEMMA. Accuracy
was assessed by comparing heritability estimates gener-
ated by the stochastic algorithms to those estimated via
the direct, deterministic average-information Newton–
Raphson algorithm as implemented in the GCTA software
package v1.92.0b2 [4] (Figs. 4 and 5).

Fig. 4 Accuracy results. Comparison of heritability estimates for height generated by BOLT-LMM versions 2.1 and 2.3.2, SLDF_REML, and
L_FOMC_REML versus those generated by the deterministic algorithm implemented in the GCTA software package∗ [4], for varying sub-samples
of 16,000 to 256,000 unrelated European-ancestry UK Biobank participants. Data are comprised of twenty independent replications per condition.
Red dashed lines indicate standard errors of GCTA estimate. Points represent individual observations whereas boxes indicate the 95% confidence
intervals for the trimmed mean estimate after a Bonferroni correction for 25 comparisons. The bias evidenced by the BOLT-LMM estimators is likely
due to the combination of performing a small number of secant iterations with fixed start values and loose tolerances for determining convergence.
∗For n=256,000, memory requirements prohibited the use of GCTA, so we instead averaged ten estimates generated by the high-accuracy
stochastic estimator implemented in BOLT-REML [31] (standard errors were 6.32e-5 and 2.45e-7 for the mean REML heritability estimate and its
standard error, respectively)
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Fig. 5 Numerical experiments: accuracy versus time. Average absolute error on the log10 scale with respect to the GCTA estimate∗ versus trimmed
mean wall clock time across twenty replications per condition. Error bars reflect per condition standard errors and lines connect per condition
trimmed means. ∗For n=256,000, memory requirements prohibited the use of GCTA, so we instead averaged ten estimates generated by the
high-accuracy stochastic estimator implemented in BOLT-REML v2.3.2 [31] (standard errors were 6.32e-5 and 2.45e-7 for the mean heritability and its
standard error, respectively)

Additional file

Additional file 1: Proof of result used to efficiently compute the quadratic
form (7). (PDF 125 kb)
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