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Abstract

Background: Determining the association between tumor sample and the gene is demanding because it requires
a high cost for conducting genetic experiments. Thus, the discovered association between tumor sample and gene
further requires clinical verification and validation. This entire mechanism is time-consuming and expensive. Due to
this issue, predicting the association between tumor samples and genes remain a challenge in biomedicine.

Results: Here we present, a computational model based on a heat diffusion algorithm which can predict the
association between tumor samples and genes. We proposed a 2-layered graph. In the first layer, we constructed a
graph of tumor samples and genes where these two types of nodes are connected by “hasGene” relationship. In the
second layer, the gene nodes are connected by “interaction” relationship. We applied the heat diffusion algorithms in
nine different variants of genetic interaction networks extracted from STRING and BioGRID database. The heat
diffusion algorithm predicted the links between tumor samples and genes with mean AUC-ROC score of 0.84. This
score is obtained by using weighted genetic interactions of fusion or co-occurrence channels from the STRING
database. For the unweighted genetic interaction from the BioGRID database, the algorithms predict the links with an
AUC-ROC score of 0.74.

Conclusions: We demonstrate that the gene-gene interaction scores could improve the predictive power of the
heat diffusion model to predict the links between tumor samples and genes. We showed the efficient runtime of the
heat diffusion algorithm in various genetic interaction network. We statistically validated our prediction quality of the
links between tumor samples and genes.
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Background
Traditionally, the linkage and mapping between genes
and diseases are well researched using genome-scale-
sequence-based associations studies [1]. The studies of
the disease causal genes are essential, but because of their
time-consuming approach to experimental validation,
these methods are considered expensive. The sequencing
of the genes and associations studies performs better for
carefully selected functional gene candidates. This process
is complicated and demands specialized knowledge [2].
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Phenotypically similar diseases are often caused by func-
tionally related genes [3], which strongly motivates the
use of graph analytics and network science to study the
functional relevance of the genes.
The genetic variation accounts for a proportion of sus-

ceptibility to common diseases such as diabetes, cardio-
vascular disease, and tumor. In the context of the tumor,
DNA methylation is one of the early diagnostic mark-
ers of cancer. The differential DNA methylation status of
each gene in each tumor can be verified and successfully
accomplished using gene expression data in the laboratory
settings. However, identifying the methylated DNA genes
can only be obtained through laborious and tedious exper-
iments. Consequently, DNA methylation-based (DNAm)
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studies in tumors are complicated further by disease het-
erogeneity [4].
In this study, we have used DNA methylation data.

The DNA methylation is most intensely studied in epige-
netic modifications in mammals and has important roles
in studying tumorigenesis [5, 6]. A causal relationship
between inflammation and cancer has long been accepted
in multiple tumor types, supported by the evidence that
the methylated gene observed in early dysplastic lesion
[7]. The DNA methylation represents an early and crucial
step in the gene-regulation pathway by which normal tis-
sue experiences neoplastic transformation for the devel-
opment of cancer. Further, a judgment of the methylation
profiles within neoplastic tissues help the diagnosis of
the disease, predicting the clinical behavior, and designing
specific treatment plans for individual patients.
Every tumor samples are extracted from the individ-

ual patients. Thus conducting biological experiment to
identify methylated cancer genes for each tumor samples
is expensive and cumbersome. Therefore, computational
methods can be a complementary approach [8, 9] because
such models are faster and cheaper to perform than
biological assessment.
There are large number of studies on tumor-type iden-

tification in a laboratory setting. Tumor tissues(biopsy)
remain the main method for analyzing cancer in most
cases. When signs and symptoms indicate the probabil-
ity of tumor growth in a patient, a biopsy is performed to
extract tissue samples from the patient by a pathologist.
If the cells in the tumor tissues are identified as malig-
nant, then genomic analysis of tumor DNA allows for the
personalized treatments for cancer [10]. As cancers are
genetic diseases [11] it is the outcome from the mutations
in the cells. If the tumor is malignant then cells do not
reproduce sexually [12] so, geneticist finds it even harder
to track the links between tumors and genes by using
classical inheritance method.
From the computational point of view, a number of

graph-based approaches have been explored [13–15] to
prioritize disease-gene associations. The major assump-
tion of most of the graph-based approach is that gene
causing the corresponding disease links to each other
in a molecular network [16, 17]. The identification of
new links or edges, i.e. new genetic interactions, is the
most prominent task in biological network analysis. Most
of the studies for gene-disease predictions make use of
homogeneous networks, where all entities have the same
type as well as the edges. In homogeneous networks,
any shared neighbor between entities is considered the
right approach for link predictions. However, in heteroge-
neous networks, the neighbors of an entity (or node) could
have different types, and the number of shared neighbors
can be a faulty parameter for predictions since it does
not fully cover the graph’s heterogeneity. As a result, a

different approach is required to predict novel links in a
multi-layered network. Supervised machine learning has
been used to predict gene-disease associations in hetero-
geneous networks. A popular approach makes use of the
different relationship types in the multi-relational graph
as a training feature for link prediction [18, 19]. In other
gene-disease association studies from [20–22], the rela-
tions from the heterogeneous gene-disease graph have
been exploited as features to prioritize the genes. One spe-
cific challenge in supervised link prediction is the need for
training data, which has to be labeled for the two different
types such as link and no link which is a time-consuming
process.
Despite so much interesting research related to link pre-

diction, all the above work avoid the impact of information
diffusion mechanism on the link prediction. In the con-
text of biological networks, the diffusion-based approach
is considered important to identify genes and underlying
diseases [23]. Classically, diffusion is studied mostly in a
homogeneous networks [24, 25] where the information is
diffused in single channels. Whereas, in the case of dis-
ease it propagates from different types of objects for e.g.
disease propagate among genes and genes interact with
each other. This process can be modeled as a 2-layered
graph. In the context of our work, the first layer is tumor
sample and gene association and second is the gene-gene
interaction layer.

Related work
In the context of general link prediction, matrix factoriza-
tion is widely used. In matrix factorization, the networks
are represented as matrix and entries are represented
as the relationships. Menon et al.[26] claimed that link
prediction is the problem of matrix completion. The
low rank matrix decomposition based on Singular Value
Decomposition (SVD) [27, 28] are used to predict links.
For the multi-relational link prediction, tensor-based fac-
torization is prominently used. The strength of tensors is
that the multi-relational graph can be expressed in higher-
order tensors which can be easily factorized. Unlike
graphical models such as Markov Logic Networks (MLN)
or Bayesian Networks, these models do not require a
priori knowledge that needs to be inferred from data
[29]. The matrix or tensor based factorization has three
shortcomings. First, these methods do not account the
structural property exhibited by networks such as high
sparsity and skewed degree distribution [30]. Second,
matrix or tensors based factorization methods requires
the latent features or components to predict the links.
It is difficult to estimate the number of latent features
in advance that can give the best predictions. Third, if
computational cost is an issue then matrix or tensor fac-
torization can be very expensive and time-consuming
[31, 32].
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With the boom in neural network embedding, the
problems of matrix factorization are overcome. Network
embedding is the method to learn a low-dimensional
representation of nodes in the network preserving net-
work structure [33]. In recent studies, a node2vec [34]
approach can analyze different network neighborhoods to
embed nodes based on the assumption of homophily (i.e.
network communities) as well as structural equivalence
(i.e. structural roles of nodes) for link prediction in a
homogeneous network for same the edge type. The study
by Zitnik et al.[30] extended the node2vec algorithm in a
multi-layered network called OhmNet, where each layer
represents molecular interactions in different human tis-
sues and reported accurate predictions for tissue cellular
functions.
In recent years, the node embeddings techniques [30,

35] seems prominent because thesemethods have demon-
strated high accuracy but it has also some limitations.
These methods actually require learning steps which
might be unfeasible for large-scale networks with millions
of nodes [36]. Similarity-based propagation methods are
also well studied in predicting the links in bipartite net-
works. This is the classic network based propagation in
recommender system that predicts most relevant objects
for users [37, 38].
In the biological context, diffusion-based approach

for predicting disease and genes are well studied.
Network propagation has become a demanding technique
in computational systems biology with the focus on pro-
tein function prediction, disease gene prioritization, and
patient stratification [39]. Similarly, network propagation
approach are used to study the cluster-wide variety of
cancer types [40, 41].
The study by Cowen et al.[23] reported that network-

based propagation is a powerful data transformation
method of broad utility in genetic research. Network
propagation magnifies a biological signal based on the
belief that genes underlying similar phenotypes influ-
ence to interact with one another [42]. The work by
Ruffalo et al.[43] suggested that using network propa-
gation can predict the cancer driver genes which tend
to cluster in the network. There are different vari-
ants of network propagation proposed such as ran-
dom walks [44], PageRank [45] and heat diffusion
[46] algorithms. These methods are successfully applied
to study biological problem. Among them heat diffu-
sion algorithm showed potential in prioritizing the dis-
ease gene association [47, 48] and performs the best
among all network-based diffusion approaches. Similarly,
the HotNet algorithm [49] based on heat diffusion
algorithm shows promising results to identify mutated
genes. From the computational perspective, heat diffu-
sion is fast to compute [39, 50, 51] and robust in memory
usage [52].

The heat diffusion discussed above is different in
two important ways. First, those heat diffusion-based
approach is applied in a homogeneous network, meaning
where nodes and the edges are of the same type. Second,
we use 2 layered networks; the first is used for selecting
seed nodes to carry tumor information and the second
for diffusing the carried information in a genetic inter-
action network to predict the association between tumor
samples and genes. Our approach is similar to Dawn-
Rank[53]. However, there are three key differences which
are as follows. (i) Choice of the ranking algorithm which
is heat diffusion instead of PageRank, (ii) Using informa-
tion from multiple patients tumor sample data, (iii) Using
methylated genes instead of the gene expression data.

Methods
Graph data model
We used 2 layered graph [54] to model our graph. The
main motivation for using 2 layered graph is that using a
single layer of Tumor and Gene graph information is not
sufficient to model the complex process like tumor sam-
ples and gene link prediction. Tumors which are genetic
disorders, it is important not to ignore the information
about genetic interaction. Due to this, we need a separate
layer to model genetic information. When gene interac-
tion graphs are available, it is natural to incorporate them
as additional information sources. This will improve the
prediction accuracy of the model. The previous studies
[55, 56] also showed that by the integration of multiple
graphs can achieve higher accuracy than any single graph
alone.

Construction of network layer 1
Figure 1 shows the first layer which is the bipartite graph
between tumor samples and genes. This network is con-
structed fromCOSMIC (Catalogue Of SomaticMutations
In Cancer) Methylation RDF Data1. We use the COSMIC
database because it uses the expert-curated information of
somatic mutations in human cancers [57]. COSMIC has
divided the datasets into logical categories, namely “Com-
plete Mutation Data”, “Non-Coding Variants” and “DNA
Methylation Data”. Our focus is on the “DNAMethylation
Data" so we preprocessed the COSMIC RDF methylation
data which has the properties: id, sample name,location,
gene names and methylation status. Each sample name is
a tumor sample of the patient and is extracted from differ-
ent location of the body for example “TCGA-CV-A6JN-
01" is a tumor sample and location is “Upper Aerodigestive
Tract”.
Figure 2 shows the gene across different anatomi-

cal location from COSMIC Methylation RDF data. The
tumor samples in the datasets are taken from ten different

1http://bioopenerproject.insight-centre.org/dataset

http://bioopenerproject.insight-centre.org/dataset
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Fig. 1 2-Layered Network of Tumor sample and Gene. Layer 1 is the
bipartite graph of Tumor samples and Genes. Layer 2 is the undirected
graph of Genes. Tumor sample is represented by red node and Gene
is represented by green node in the figure. The Links between Tumor
sample and Gene is directed link represented by directed arrow and
the links between gene is undirected link represented by line

anatomical locations. The gene name in the datasets is
the accepted HGNC2 (HUGONomenclature Committee)
identifier which provides the unique gene symbols and
names for human loci.
The methylation level reported in the data is based on

the beta value. The beta-value is the estimate of methy-
lation level using the ratio of intensities between methy-
lated and unmethylated genes. The genome location is
based on the CpG targeted by the probe in the cod-
ing region. Our bipartite network consists of two disjoint
sets of nodes: one set corresponds to the tumor samples;
the other set corresponds to all the methylated genes in
each tumor samples. The edge between the tumor sam-
ple and gene is based on the fact reported in the data.
For instance, “TCGA-B6-A0RG-01” is a tumor sample
and “HOXC4” is a methylated gene reported in the data
then we link this relation by “hasGene” edge which is[
TCGA-B6-A0RG-01 hasGene−−−−−→ HOXC4

]
.

2https://www.genenames.org/

Construction of network layer 2
Network layer 2 is the interaction graph between genes
as shown in Fig. 1. For the construction of network layer
2, we used 9 different variants of protein interaction
channels. One from BioGRID and eight from STRING
protein-protein interaction databases. These 2 databases
are publicly available.
The prior studies by [47, 58, 59] modeled gene inter-

action graph as the undirected graph. We took the same
approach and modeled our gene interaction graph as the
undirected graph.
We used the protein-protein interaction links with

weights for the homosapiens class from latest STRING
version 10.5 database. There are eight different weighted
channels of the protein-protein interaction networks
available in STRING which are as follows: co-expression,
co-occurrence, database, experimental, fusion, neighbor-
hood, textmining and combined.
From BioGRID Api3 we constructed Gene-Gene physi-

cal network. BioGRID database provides the protein inter-
actions curated from the biomedical literature [60] and
has provided well validated physical interactions. The pre-
vious studies by [61–64] has shown that the potential of
prioritizing the genes based on the physical properties.
This network is the unweighted network.
To transform the original protein interaction network

into a gene interaction network for both STRING and
BioGRID data, we took the following approaches: (i)
Protein names were mapped to their encoding genes by
parsing of EnsEMBL files [65]. (ii) In the case of genes
encoding multiple proteins, we took the edge of maxi-
mum (integrated) weight connecting any pair of proteins
encoded by such genes. Similar technique for protein to
gene mapping has also been used by the prior studies [48].
Table 1 shows the detailed summary of the nodes and

edges used in the construction of the network.

Solution approach
Our main aim is to predict the links between tumor sam-
ple and genes. For this, our first step is to use graph as
an input. The input graph is the 2-layered network. This
input graph has the missing links between the tumor sam-
ples and genes. In Fig. 3 shown by red arrows are the
missing links that we want to predict.
Our second step is to apply the heat diffusion algorithm.

For the execution of the heat diffusion algorithm, we need
seed nodes. The seed nodes carry information about tumor
samples. This information is available from the network
layer 1 and diffused to gene-gene interaction layer. Once the
diffusion process is over, then we get the association score
between every tumor samples and genes. These associa-
tion scores provide tumor samples and genes prediction.

3https://wiki.thebiogrid.org/doku.php/biogridrest

https://www.genenames.org/
https://wiki.thebiogrid.org/doku.php/biogridrest
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Fig. 2 Visualization of the genes shared across the different anatomical location on the cosmic methylation data. The size of the ring means how
many genes in the dataset are the members of the anatomical location of the body. An arc indicates how often this gene is shared across the
connected segments

Model description
Heat diffusionmodel
Heat diffusion is the usual physical phenomenon. In a
medium, heat always flows from a high temperature to
a low temperature. The heat diffusion-based approaches

Table 1 Network summary of 2-layered tumor-gene graph

Property Value

Number of tumor samples 4086

Number of genes 4071

Number of relations between tumor samples and
genes (hasGene)

222252

Co-occurrence 1166

Co-expression 208470

Database 23169

Experimental 170642

Fusion 98

Neighborhood 18929

Text mining 322883

Combined 358627

Physical 18395

have been successfully applied in various domains such as
web spamming in web graph analysis [66], recommender
system [67, 68] and disease-gene prioritization [47]. To
make it self-contained, we will briefly introduce the heat
diffusion model for weighted and unweighted undirected
graphs which is adapted from Yang et al.[66].

Heat flow on an undirected and unweighted gene-gene
interaction graph
We inferred the unweighted graph as the graph which has
no edge weights. In the case of undirected and unweighted
graph, the edge (gi, gj) is considered as a pipe from where
the heat flows and connects gene nodes gi and gj.
In an undirected graph, the heat can be modeled as

follows. For instance, at time t, every gene node gi obtains
M(i, j, t,�t) amount of heat from its neighbor gene node
gj for a time of �t. We have two assumptions here:

• The heat obtainedM(i, j, t,�t) is proportional to the
time period �t.

• The heat obtainedM(i, j, t,�t) is proportional to the
heat difference fj(t) − fi(t).

• d(gj) is the degree of the gene node gj.



Timilsina et al. BMC Bioinformatics          (2019) 20:462 Page 6 of 20

Fig. 3 2 layered graph is constructed using 2 different data source (i) COSMIC methylation data for tumor samples and genes (ii) STRING or
BIOGRRID database for genetic interaction. The input is 2-layered graph with missing links between tumor samples and genes. The heat diffusion is
applied to the 2-layered graph containing missing links. The output is the final link prediction from the heat diffusion graph. Red node is a Tumor
sample node and the green node is a Gene node. The Links between Tumor sample and gene node is represented by directed line whereas links
between gene nodes is represented by undirected line. The red line is missing link and dotted black line a predicted link by heat diffusion algorithm

• f (0) is the initial heat vectors of the genes.
• f (1) is the final heat vectors of the genes.

Furthermore, based on this assumption the amount of
heat transfers between gene nodes is expressed as:

f(1) = eαH
∗∗
f(0) (1)

Where H∗∗ is the heat matrix for the undirected
unweighted graph

H∗∗
ij =

⎧
⎨
⎩

−d
(
gj

)
, if j = i

1,
(
gj, gi

) ∈ E,
0, otherwise,

(2)

Heat flow on an undirected andweighted gene-Gene
interaction graph
In the case of the weighted links between the genes,
we need to modify the heat diffusion model. Consider a
weighted graph of genes such that G = (V ,E,W ) where
V is the gene nodes such that V = {

g1, g2, g3, ..., gn
}
On a

weighted graph, in the pipe (gi, gj). W = wij | gene weight
score associated with edge (gi, qj). Suppose, at time t, each
gene node gi receives RH = RH(i, j, t; �) amount of heat
from gj during a period of �t. We made four assumptions
as follows:

• RH is proportional to the time period �t.
• RH should be proportional to the weight wji of the

undirected edge (gj, gi).
• RH should be proportional to the heat at node gj.

• RH is zero if there is no link between gj to gi. As a
result, gi will receive

∑
j:(gj ,gi)∈E σjwjifj(t)�t amount

of heat from its neighbors that are connected to it.
• σj = α

d(gj) where d(gj) is the out degree of the gene
node gj and α is the thermal conductivity.

Simultaneously, node gj diffuses DH(i,t,� t) amount of
heat to its neighboring nodes. We consider that:

• The heat DH(i,t,� t) should be proportional to the
time period �t.

• The heat DH(i,t,� t) should be proportional to the
heat at node gi.

• Each node has the same ability to diffuse the heat.
• The heat DH(i,t,� t) should be distributed to its

neighboring nodes proportional to the weight on
each edges.

• τ is the flag to check whether the node has any
outgoing links. If there is any outgoing links then
τ = 1 else τ = 0

Thus heat diffusion between gene nodes is given by,

f(1) = eαH∗f(0), (3)

The H∗ which is the heat matrix for the undirected
weighted graph is modeled as,

H∗
ij =

⎧⎪⎨
⎪⎩

−( τi
di )

∑
k:(i,k)∈E wik , if j = i

wji
dj , (gj, gi) ∈ E,
0, otherwise,

(4)
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The matrix eαH∗ is called as diffusion kernel which
means the heat diffusion process continues infinitely
many times from the initial heat diffusion. The parameter
α is called as thermal conductivity. Higher the value of α

faster is the spread of heat in the network. If α is infinitely
large then heat diffuse from one node to another quickly.
In the context of gene-gene interaction, studies by

[69–71] shown that the genes can randomly interact
between adjacent genomic fragments. Thus, in order to
capture that behavior, we add uniform random relations
among different genes. Let γ denotes the probability
of not forming random interactions and (1- γ ) is the
probability of taking a “random jump”. This behavior is
also called “teleport” operation in the computation of
PageRank [45] in web graph. The real world application
considers the random edges [66] so, we followed the same
setting of γ = 0.85 as in PageRank in all of our experiment.
Without any prior knowledge, we set g = 1

n1 where g is
a uniform stochastic distribution vector, 1 is the vector of
all ones, and n is the number of genes. We employed the
above information and adapted our model as:

f (1) = eαRf (0),R = γH + (1 − γ )g1T (5)

Where H can be replaced either H∗ or H∗∗ depending
upon the kind of graph used.

Computational complexity
When the gene interaction graph is large, then the direct
computations of eαR is time-consuming so we adopted the
discrete approximations by Yang et al.[66]:

f (1) =
(
I + α

M
R
)M

f (0), (6)

where M is the positive integer and I is the identity
matrix. In order to reduce the computational complexity,
we apply three methods: (1) Since f (0) is a vector, we iter-
atively calculate (I + α

MR)Mf (0) by applying the operator
(I + α

MR)M to f(0). (2) For matrix R, we apply a data struc-
ture which only stores information of non-zero entries,
since it is a sparse matrix. (3) For every heat source which
is tumor samples in our case, we bind it by diffusing heat
to its neighbors. The selection of α and M parameters is
detailed described in “Experiments” section. Specifically,
after using the discrete formalization of the complexity
of the heat diffusion algorithm in our model is given by
O(M|E|T), where M is the number of iterations, T is the
number of tumor nodes and |E| is the number of edges in
the gene-gene interaction graph.
In the next section, we focus on howwe use the diffusion

model to predict Tumor samples and Gene relationships.

Tumor gene predictions in a toy network
With the diffusion model described in the above section,
we can now make the prediction by the following
approach:
Let us consider a toy network as shown in Fig. 4.

Network layer 1 is a Tumor sample and Gene layer and the
network layer 2 is a gene-gene interaction layer. The initial
temperature from Tumor X to Gene A,B,C and D in first
layer at t = 0 is given by the vector f (0):

Fig. 4 2-Layered Toy Networks of Tumor and Gene. The red arrow means the absence of link and the black arrow means presence of link
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The initial values of the vector f (0) is given by: f (0) =
[1, 1, 1, 0]T . We see in this vector the position of Gene
D is 0 because there is no connection from Tumor X
to Gene D.
The network layer 2 is a unweighted network so we

model the heatmatrix using the equation 2. Thus, our heat
matrix is:

H =

⎡
⎢⎢⎣

−1 1 0 0
0 −1 0 0
0 0 −1 1
0 0 1 −1

⎤
⎥⎥⎦

Then heat diffusion at t = 1 with α = 1, is given by:

f (1) = eαHf (0), (7)

Thus the computed f (1) vector is given by f (1) =
[ 1.0, 1.0, 0.5, 0.43]. Now normalizing the each vectors in
f (1) by sum of all the numbers in f (1) then f (1) =
[0.34,0.34,0.17, 0.14]. Here the interesting thing to observe
is at the position ofGeneD. This value was initially 0 after
diffusion and normalization we saw the value to be 0.14.
This value is the likelihood of Tumor X to form link with
Gene D.

Experiments
From Eq. 6 we observed the two parameter α and M. We
used the AUC-ROC evaluationmetric which is commonly
used in medical sciences and machine learning communi-
ties for quantifying the accuracy of prediction algorithm

[72]. The brief description of this metric is provided in
the “Evaluation metrics” section. The parameters alpha
(α) and iterations (M) are estimated from 10-fold cross-
validation on the training sets and applied the learned
parameter in the test sets. Thus, AUC-ROC reported in
the test set is the average score across ten folds.

Impact of parameter α
Parameter α also known as thermal conductivity plays
important role in heat diffusion process. If α is set to high
then heat diffuses faster. Contrarily, heat diffuses slower.
We varied α from the range 0 ≤ α ≤1. When α is set to 0,
that means no diffusion and the temperature distribution
will remain exactly at the initial values than the structure
of the graph.
To demonstrate impact of α in both STRING and

BioGRID graph, we noticed the AUC-ROC score at dif-
ferent values of α in 25% testing set. As shown in the Fig. 5,
we observed the increasing trend of AUC-ROC score with
change in diffusion parameter α. The high AUC-ROC
score of 0.74 forBioGRID and 0.85 for STRING in fusion
channel is observed. After α ≥1, there is no change in the
AUC-ROC scores.

Impact of parameter M
The parameterM illustrates how distant the heat diffuses.
From Fig. 6, we detected that when M = 5 for BioGRID
and M = 6 for STRING graphs heat diffusion algorithm
attains better performance in 25% testing set. After
that, in both the graph the AUC-ROC score is

Fig. 5 Impact of Parameter α. The prediction accuracy assessed by varying diffusion parameter ranging from 0 to 1 with the step of 0.1 in BioGRID
and STRING Network to predict tumor samples and genes. Blue curve represents BioGRID and green curve represents String network respectively
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Fig. 6 Impact of ParameterM. The prediction accuracy assessed by varying iterations in BioGRID and STRING Network to predict tumor samples and
genes. Blue curve represents BioGRID and green curve represents String network respectively

constant. This means the heat diffusion algorithm is
converged.

Physical meaning of parameter α andm
The value for alpha and number of iterationM are compu-
tationally determined in the cross-validation mode in the
training sets. These 2 parameters are quite hard to deter-
mine in advance without accessing any data. It has to be
noted that the optimal performance obtained bymaximiz-
ing alpha and M in our studies is based in terms of link
prediction accuracy results. The mechanistic meaning of
alpha is that if it approaches infinity the diffusion reaches
to equilibrium then all the connected nodes receive the
same diffusion contribution which is similar as PageRank.
If we set alpha as 0 then there is no diffusion. Due to this,
we need to find the optimum alpha that can balance the
extent of heat which diffuses from genes to its immediate
neighbors and to the rest of the network.
Similarly,Mwhich is the number of iteration, the impact

of this parameter is that how far the heat diffuses from the
seed genes. The physical meaning of the scalar parameter
M is the total time of diffusion, which controls the amount
of heat to which the initial signal is allowed to spread over
the network. The probabilistic interpretation for this com-
putations is that if the input values are preference binary
vector which is in our case (1 means genes having an asso-
ciation with tumor samples and 0 means no association)
of starting positions for heat diffusing across the edges of
the genetic interaction graph, the final value is the posi-
tion distribution after M iterations. If M tends to infinity
then the probability distribution approaches to a uniform
distribution over all the genes.

Runtime performance
We performed the run time performance of the algorithm
across all our gene-gene interaction graph. Table 2 shows
the computational time for computing the link predic-
tion between Tumor samples and Genes. From the study
by [66] demonstrated that heat diffusion requires maxi-
mum of 30 iteration to converge. In a disease and gene
prioritization setting, Nitsch et al [47] claimed that within
2 iterations heat diffusion gave reliable ranking of genes
based on diseases.
From Fig. 6, we observed the impact of parameterM. At

iteration = 6 the heat diffusion algorithm converged for
Fusion channel in STRING data and for iteration = 5 for
the physical channel in BioGRID data. For the rest of the
channels, algorithm converged in less than 6 iterations.

Table 2 Runtime comparison on various gene-gene interaction
channels

Data Total run time

Iteration 2 Iteration 6 Iteration 30

Cooccurrence 29.05s 63.37s 242.24s

Experimental 27.01s 68s 267.60s

Fusion 45.65s 74.41s 278.78s

Neighborhood 25.62s 67.13s 260.46s

Textmining 29.55s 75.20s 264.93s

Coexpression 26.23s 65.97s 247.96s

Physical 25.46s 65.56s 234.31s

Combined 24s 61.15s 230s

Database 25.57s 57.28s 233s
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This means in maximum the algorithm takes 74.41 s to
give us the prediction results for 4086 tumor samples and
4071 genes.

Degree biasedness
The heat diffusion process modeled using Eqs. 1 and 2 is
biased towards the node having a high degree. The node
having a high degree is influential because it is connected
to many other nodes. Whereas Eqs. 3 and 4 is not biased
towards the node having a high degree because each of
the nodes is normalized by their degree. This makes every
node to have the unit influence. To illustrate this, we ran
our experiment in the setting of 75% train set and 25% test
set to predict tumor samples and genes associations. The
result is shown in Table 3.
From the results shown in the Table 3, we observed that

after degree normalization the results are improved.

Examples of tumor gene prediction results
In total, we randomly selected 10 different tumor samples
from our test set covering ten different tumor anatomi-
cal locations. Of the 8 interaction channels from STRING,
we showed the result from fusion interaction chan-
nel because: (i) it gave us high mean AUC-ROC score
compare to rest of channels (see “Results” section) (ii)
as our study is related with tumor, gene fusions have
been increasingly detected by next-generation sequencing
(NGS) technologies based methods in malignant tumors
[73, 74].
We ranked the top 5 Genes predicted for each tumor

sample based on their diffusion score.
From Table 4, we observed genes LAMA4, TNFRSF1A,

IRS4 and PCDH17 are purely cancer genes4 which are
predicted by the heat diffusion algorithm. The algorithm
also identifies genes for a closely related anatomical loca-
tion, for example, ZMAT4 which is down-regulated for
lung cancer. The algorithm predicts it for closely related
anatomical location upper aerodigestive tract. Similarly,
the SRI gene is considered as a useful marker of multi-
drug resistance which may represent a therapeutic tar-
get for reversing tumor multidrug resistance [75]. This
gene is top-ranked in both STRING and BioGRID by the
algorithm. Furthermore, HOXC4 is also ranked first in
both BioGRID and STRING datasets by the algorithm for
lung cancer. The studies by [76, 77] also suggested the role
of HOXC4 involvement in lung cancer. HOX genes family
are also known to behave as oncogenes for hematological
malignancies and are often over-expressed in malignant
cells [78].
The results shown in (Table 4) are randomly selected

tumor samples from each anatomical locations and its
ranked gene associations using fusion genetic interaction

4http://ncg.kcl.ac.uk/cancer_genes.php

Table 3 Impact of degree in gene-gene interaction channels

Data Average node
degree

AUC-ROC score
without degree
normalization

AUC-ROC score
with degree
normalization

Co-occurrence 6.08 0.50 0.84

Experimental 90.35 0.52 0.71

Fusion 1.66 0.80 0.84

Neighborhood 48.22 0.50 0.81

Textmining 159.4 0.52 0.75

Co-expresion 106.01 0.52 0.74

Physical 9.03 0.50 0.68

Combined 176.92 0.52 0.75

Database 20.19 0.50 0.75

channel. We only showed the top 5 ranked genes exam-
ples for the particular tumor samples for the illustration
purpose. This might have limited our results for not show-
ing some of the potential and frequent cancer genes. So,
we particularly took out the tumor samples for the breast
and rerun our experiments this showed up the Tier 1
known cancer gene for breast such as TP53, EGFR and
BRCA1 in the top 100 list. The gene EGFR is shown up 15

Table 4 Example of tumor samples and gene predictions
(α = 1.0)

Tumor sample name Tumor
location

alpha = 1.0
STRING (Top 5
Predicted Genes)

alpha = 1.0
BioGRID (Top 5
predicted genes)

TCGA-CV-A6JN-01 Upper
aerodigestive
tract

RRBP1 SPRY2
ZMAT4 HOXA2
IRS4

HOXA2 SPRY2 IRS4
ZMAT4 RRBP1

TCGA-SX-A71W-01 Kidney EPM2AIP1 C4orf26
TM4SF1 DDAH2
FBXO2

UBC APP PLVAP
HNRNPA1 ALB

TCGA-38-7271-01 Lung HOXC4 HOXA3
HOXB3 HOXB5
HOXD3

HOXC4 APP
PRMT6 WHSC1L1
HOXB5

TCGA-HP-A5MZ-01 Liver GNE GJC2 LPPR2
ACACB CLASP1

CLASP1 LPPR2
GNE GJC2 ALB

TCGA-D5-6541-01 Large intestine EDARADD AGRN
ZMAT4 MAGI2
LAMA4

EDARADDMAGI2
LAMA4 PCDHGC3
ZMAT4

TCGA-QU-A6IM-01 Prostrate SRI ZIC2 ZIC5
LPIN1 IGF2BP1

SRI ZIC2 NAGK
POU5F1 TEAD2

TCGA-YC-A8S6-01 Urinary tract PRELID1 SRM
LSM4 POLR2E
CCT7

PRELID1 CRYAB
TNFRSF1A
STOML2 APP

TCGA-A7-A5ZX-01 Breast C11orf53 PCDH17
KIFC2 ZFR2 PON3

PCDH17 KIFC2
ZFR2 MAPK8IP2
ILF2

TCGA-EO-A3KW-01 Endometrium WT1-AS C20orf96
NLRP10 TP53I13
OR4D6

PCDHGB1 APP
PCDHA10
PCDHGA5 HSPB2

TCGA-DJ-A3VE-01 Thyroid MSLN ZMAT3
TNFRSF1A
SCNN1A MTA1

RDH5 MSLN
ZMAT3 TNFRSF1A
DUSP6

http://ncg.kcl.ac.uk/cancer_genes.php
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times in the top 100 prediction list for breast tumor sam-
ples whereas BRCA1 and TP53 are shown up 2 times. The
top 100 tumors and gene association showed the primary
histology of breast carcinoma from cosmic methylation
data. This result is shown in the Additional file 2: Table S2.
The heat diffusion algorithm has advantages for two

reasons in our datasets (i) it can give us close link pre-
diction between tumor sample and genes, (ii) it is faster
to compute and robust in memory usage, which saves
computational cost. [52].

Results
In this section, we evaluate prediction accuracy of heat
diffusion algorithm on STRING and BioGRID datasets.

Evaluation metrics
We conducted the cross-validation by partitioning all
tumor samples and gene relationships into ten folds and
deleting the hasGene information of the tumor sam-
ple in the test set. We computed heat diffusion scores
and ranked all tumor by their reconstructed tumor
sample - gene relationship and recorded the Area Under
the Receiver Operating Characteristics curve (AUC-
ROC). The AUC-ROC metric can be understood as the
probability that randomly chosen missing link is given a
higher score than a randomly chosen nonexistent link [79].
To implement the AUC-ROC in the link prediction

context, we took the following approach.

• The observed links E is randomly split into two parts:
the training set Etrain is treated as known
information, while the test set Etest is used for testing
and no information in the test set is allowed to be
used for prediction. Thus total existing edge is then,
E = Etrain ∪ Etest and Etrain ∩ Etest = φ.

• Theoretically, this metric is computed as :
AUC = (n′ + 0.5n′′)/n. Where,

1 n’: Number of time the missing links (links in Etest)
have a higher score than the non-existing links.

2 n”: Number of times the scores of missing links is
equal to a number of times the score of
non-existing links (links in U − E), where U is the
universal set.

3 n: Number of independent comparison between
missing and non-existing links.

This technique has been widely discussed in the link
prediction literature [72, 79–81]. If the AUC score exceeds
0.5 which means how better the algorithm performs than
by pure chance. The proportion of the positives (links)
and the negatives(no links) in our whole set data is 0.0133.
This distribution is computed from the percentage of non
zero entries from Tumor Samples and Gene Matrix from
network layer 1.
The performance of the algorithm in 10-fold cross-

validation across different channels is shown in Fig. 7.

Fig. 7 Result of 10 Fold Cross Validation in nine different gene interaction channels for predicting tumor samples and genes
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We observed that the mean AUC-ROC score is 0.84 for
fusion and co-occurrence channel. Similarly, neighbor-
hood channel has a mean AUC-ROC score of 0.83. These
three channels do not have a significant difference inmean
AUC-ROC scores. In STRING all three interactions aim
to identify pairs of genes which appear to be under com-
mon selective pressures during evolution (more so than
expected by chance), and which are therefore thought to
be functionally associated [82]. A candidate gene fusion
pair with a high score is more likely to be a driver gene
fusion of tumor progression [74]. From here onward, we
used fusion channel for the rest of our experiment.
The studies by [47, 83, 84] suggested that gene expres-

sion data potentially help in prioritize disease-gene asso-
ciations. In Fig. 7, we observed mean AUC-ROC score
of 0.79 using co-expression channel for predicting links
between tumor sample and genes. The previous stud-
ies also suggested that [47, 83, 84] gene expression data
potentially help in prioritizing disease-gene associations.
Consecutively, the other three genetic interaction

approaches (i) textmining, (ii) database and (iii) combined
channels each have mean AUC-ROC scores of 0.78. One
reason for the combined channel to perform similar as
textmining and database channel is that it contains scores
of all the channels. As textmining approach might contain
noise in the data which would have influenced the similar
mean AUC-ROC score.
For BioGRID physical interaction channel without

any weights between the gene pairs, the heat diffusion

algorithm showed mean AUC-ROC scores of 0.74. This
shows the potential of network propagation methods by
only using network topology to predict the gene associa-
tions [23, 61].

Location based prediction
To check the effectiveness of the heat diffusion algorithm,
we tried to predict the genes for each anatomical loca-
tions using STRING fusion channel. The performance of
the algorithm is shown in Fig. 8
This result is a demonstration of how tumor samples

are related to gene predictions. We observed the high-
est AUC-ROC of 0.86 for predicting lung tumor samples
and genes association. The lowest AUC-ROC of 0.72 for
predicting thyroid tumor samples and gene associations.
This means our computational network-based propaga-
tion and the data we used are not sufficient to explain
the underlying mechanism of tumor gene associations in
the thyroid section. Biologically, the study by [85, 86] has
also described the concept of aggressive clone and tumor
heterogeneity in the case of thyroid tissue. So, this makes
predicting the association between thyroid tumor samples
and gene associations difficult.

Comparison with the baseline algorithms
We compare our results from heat diffusion algorithms
with baseline link prediction algorithm. To do this we
applied several algorithms for link prediction such as
scores based on similarity metrics namely Common

Fig. 8 Area under ROC curve (AUC-ROC) scores for tumor samples and gene link prediction per location. Numbers in the brackets are counts of
tumor sample for each anatomical location
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Neighbors, Jaccard similarity, Adamic/Adar, Preferen-
tial Attachment and Resource Allocations. These algo-
rithms are also called node based topological similarity
algorithms because they can be viewed as computing a
measure of ‘proximity" or “similarity" between nodes [87].
Wealso compared the results fromheatdiffusion algorithm

with the two widely used path based similarity algorithms
called Katz and Personalized PageRank algorithm. We
used this algorithm in our 2-layered graph. From the first
layer of Tumor-Gene graph we get the initial status of
tumors for every genes. We used this status vector for
every tumor samples and applied both algorithm.

• Random Baseline This simply assign each candidate
edge a random score. This score is meant for the
benchmark to compare other algorithms.

• Node Based The link prediction metrics assigns
score of each candidate edges. These metrics
presented by [87] are widely used in link prediction
problem. However, using two different node sets
tumor samples and genes cannot be directly applied in
the context of bipartite graph because the neighbors
of nodes on opposite sides of the network do not
intersect. As the bipartite graph between tumor
samples and genes is a directed graph we use the
outgoing neighbors of tumor samples to the outgoing
neighbors of the incoming neighbors of genes. If we
consider tumors samples as x and genes as y then,
The terms used in the Equation below can be
described as:

– Nout(x) denotes outgoing neighbors of node x.
– N ′

out,in(y) can be interpreted as follows: (i) set
of all the incoming neighbors of node y. (ii)
From the list of neighbor of node y get all the
list of outgoing neighbors.

1 Common Neighbors:
score(x, y) = |Nout(x) ∩ N ′

out,in(y)|
2 Jaccard’s Coefficient: score(x, y) =

Nout(x)∩N ′
out,in(y)|

Nout(x)∪N ′
out,in(y)|

3 Adamic/Adar:
score(x, y) = ∑

z∈Nout(x)∩N ′
out,in(y)

1
log|Noutz|

4 Preferential Attachment:
score(x, y) = |Nout(x)| · |N ′

out,in(y)|
5 Resource Allocation :

score(x, y) = ∑
z∈Nout(x)∩N ′

out,in(y)
1

|Noutz|

• Path Based Path based link prediction is based on
the paths from one node to another. The two nodes
are likely to be connected if there exist more paths
between them. We employed the following metrics to
compute the score between two sets of nodes:

1 Katz: score(x, y) = ∑∞
i=1 β l · |paths<l>

x,y |
2 Personalized PageRank: score(x, y) is explained as

the probability of node y in a random walk that
returns to node x with a probability α at each step,
moving to a random neighbor with probability
1 − α

Similarly, link prediction algorithm is also evaluated
using AUC-PR metric. This metric is considered as more
informative with heavy class imbalance problem such as
link prediction [29, 88, 89]. This metric can perform
robustly in a noisy environment [90]. Hence, in this study,
we showed both AUC-ROC and AUC-PR evaluation met-
ric for the link prediction by heat diffusion algorithm for
the comparison with baseline.
The 10 Fold cross-validation result of the prediction

result is shown in the Table 5:
The heat diffusion algorithm outperformed other state

of the art methods in predicting links between tumor sam-
ples and genes using STRING data. The AUC-PR and
AUC-ROC curves are shown in Figs. 9 and 10. The stan-
dard deviation obtained from 10 fold cross-validation is
very small and due to this the curves from the other folds
superimposed with mean AUC-PR and AUC-ROC score
and are not visible in the plots.
From Figs. 9 and 10, we see the disagreement between

AUC-ROC and AUC-PR score in a link prediction task.
AUC-PR curves consider the only prediction of the pos-
itives and are generally used for problems common in
information retrieval, where negatives dominate the pos-
itives and are not considered important. For link predic-
tion problem, AUC-PR curves give credit for correctly
predicting edges but do not give credit for correctly
predicting non-edges. This metric is heavily focused on

Table 5 The result of 10 fold cross validation using heat diffusion
algorithm with baseline prediction

Method AUC-ROC AUC-PR

Common neighbor approach (CN) 0.72 0.0382

Jaccard similarity (JS) 0.76 0.0549

Preferential attachment (PA) 0.73 0.0428

Resource allocation (RA) 0.78 0.0612

Adamic adar index (AAI) 0.79 0.0645

Katz (STRING) α = 0.15,β = 0.0001 0.54 0.0161

Katz (BioGRID) α = 0.15,β = 0.0001 0.72 0.0311

Personalized pageRank algorithm (PPR) (STRING) 0.81 0.0523

Personalized PageRank algorithm (PPR) (BioGRID) 0.81 0.0543

Heat diffusion algorithm (HD) (STRING) 0.85 0.0823

Heat diffusion algorithm (HD) (BioGRID) 0.74 0.0321

Random baseline (RB) 0.5 0.0125

Random network in layer 2 (RN) 0.5 0.0012
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Fig. 9 AUC-ROC curve plot. The red dotted line is the random guess. The Blue line represents the Mean AUC-ROC score from 10 fold cross validation

predicting positives. This behavior harshly penalized for
non-edges prediction. We believe this is one of the rea-
sons for the discrepancies between the twometrics for the
prediction performed by the algorithm. Whereas AUC-
ROC is expected to be balanced metric for evaluating
the accuracy of link prediction considering both edges
and non-edges of the nodes. The prior study by [91] has
also covered the anomalies of these discrepancies in the
context of link prediction.

As different algorithms shared the same random tri-
als. So, we applied the paired t-test to find out if there
is a significant difference in the 10-fold cross-validation
prediction results between heat diffusion and other state
of the art methods at significant (α) level 0.05. The
p-values of the test are reported in Table 6. We found
that there is a significant difference between the pre-
diction performed by heat diffusion with the state of
the art algorithms. Though the heat diffusion methods

Fig. 10 AUC-PR curve plot. The Blue line represents the Mean AUC-PR score from 10 fold cross validation



Timilsina et al. BMC Bioinformatics          (2019) 20:462 Page 15 of 20

Ta
b
le

6
Th

e
fig

ur
e
in
di
ca
te
s
th
e
p-
va
lu
es

of
th
e
t-
te
st
at
si
gn

ifi
ca
nt

le
ve
lα

=
0.
05

,*
**

in
di
ca
te
s
hi
gh

ly
si
gn

ifi
ca
nt

C
N

JS
PA

RA
A
A
I

Ka
tz
(S
TR
IN
G
)

Ka
tz
(B
io
G
RI
D
)

PP
R(
ST
RI
N
G
)

PP
R(
Bi
oG

RI
D
)

RN
(S
TR
IN
G
)

RN
(B
io
G
RI
D
)

H
D
(S
TR
IN
G
)

A
U
C
-R
O
C

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

-
<
2.
2e
-1
6
**
*

-
1.
52
4e
-1
4
**
*

-

H
D
(S
TR
IN
G
)

A
U
C
-P
R

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

-
<
2.
2e
-1
6
**
*

-
<
2.
2e
-1
6
**
*

-

H
D
(B
io
G
RI
D
)

A
U
C
-R
O
C

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

8.
61
1e
-1
4
**
*

<
2.
2e
-1
6
**
*

-
2.
66
7e
-1
4
**
*

-
<
2.
2e
-1
6
**
*

-
8.
83
9e
-1
3*
**

H
D
(B
io
G
RI
D
)

A
U
C
-P
R

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

<
2.
2e
-1
6
**
*

-
0.
00
04
2
**

-
<
2.
2e
-1
6
**
*

-
<
2.
2e
-1
6
**
*



Timilsina et al. BMC Bioinformatics          (2019) 20:462 Page 16 of 20

outperform the Personalized PageRank method in both
the AUC-ROC and AUC-PR performance metrics, the
margin is not very high as shown in Table 5. The t-test
shows the p-value at α = 0.05 from the test is less than
2.2e-16 in both the case which suggests that there is a sig-
nificant difference betweenAUC-ROC andAUC-PR score
between these two methods. This holds true also in the
context of the AUC-PR score by Personalized Page Rank
Algorithm which is 0.05 and Heat Diffusion Algorithm
which is 0.03 for the BioGRID datasets.
One of the important aspects of the heat diffusion is

that it represents an exponential sum which converges
more quickly in most cases than the geometric sum of
Personalized PageRank [92]. This can be advantageous in
the large graphs to get the desired results faster. In the
biological context, similar work in prioritizing disease and
genes [47] had already shown that the heat diffusion based
ranking outperforms other diffusion methods in ranking
disease-causing genes.

Comparisonwith the hotNet2 and hotNet heat diffusion
algorithms
We compared the performance of our heat diffusion
model with HotNet2 [93] and HotNet [94] algorithms.
Both of the algorithms use heat diffusion model for the
cancer genes network analysis. HotNet2 uses a directed
heat diffusion model to determine the significance of
mutations in individual genes and the local topology
of interactions among the encoded proteins. Whereas,
HotNet uses heat diffusion model to recognize the signifi-
cantly altered subnetworks in the large genetic interaction
network. We implemented both algorithms5 and apply
in our methylation data to predict the links between the
tumor samples and genes. The result is demonstrated in
the Table 7:
The major difference between HotNet2 and HotNet is

how heat diffusion is modeled. The HotNet2 algorithm is
modeled for a directed network whereas HotNet is mod-
eled for the undirected network. As we implemented our
heat diffusionmodel for the undirected network the result
between HotNet and our approach is also similar. Though
our approach has marginal improvement of the prediction
accuracy. So, we performed paired t-test to check whether
the difference is statistically significant between the 10
fold cross validation result by both methods. The p-value
of the test (p-value = 4.489e-09) suggests there is the same
problem in prediction performed by both the methods.
The major technical difference in the HotNet and our
heat diffusion model is how we propagate the heat. We
used the discrete approximation of heat diffusion model(
I + α

MR
)M [66] which has linear complexity whereas Hot-

Net uses continuous diffusion kernel eαR which has cubic

5https://github.com/raphael-group/hotnet2/blob/master/hotnet2/network.py

Table 7 The result of 10 Fold cross validation using heat
diffusion algorithm with HotNet and HotNet2 algorithms

Methods Mean AUC-ROC score Standard deviation

HotNet2 0.73 0.001889

HotNet 0.82 0.001835

Our heat diffusion method 0.84 0.001432

complexity and for a huge graph this might be a problem.
The linear kernel used in our approach is regarded as the
randomwalk through the network which is comparable to
the exponential or continuous diffusion kernel.

Independent validation
In order to evaluate our heat diffusion model with
independent datasets we chose STRING data because
the heat diffusion model performed better in it in the
cross-validation test. So, in the independent validation,
we split our STRING data into 3 parts training (60%),
validation(20%) and test sets(20%). The parameters for the
diffusion are chosen from the training set. The model per-
formed the AUC-ROC of 0.83 and an AUC-PR score of
0.078 in the test set.

Statistical significance of the tumor-gene link prediction
To check the significance of the link prediction results,
we performed the permutation test for predicted tumor
sample and genes score. For this purpose, we partitioned
the data randomly into training (75%) and testing (25%)
sets. We recorded the heat diffusion scores in a test set
using real gene-gene interaction data. After that, we ran-
domize the gene-gene interaction graph by preserving the
degree distribution and perform the heat diffusion pro-
cess. The graph randomization process is repeated for
1000 times and p-values of the every tumor samples and
gene prediction scores are computed as follows:

p − value(tumor, genes) = 	

N
(8)

where 	 is the number of randomly produced tumor
sample -gene links which receive higher heat scores than
its actual predicted one. N is the total number of times
the test is performed. The tumor samples and gene pair
receiving higher p-values will be less likely to be an actual
tumor-gene link because this pair will have a strong asso-
ciation with several randomly produced heat scores. The
histogram of the p-values of our test is shown in Fig. 11.
We observed from the histogram that the large propor-

tion of links are statistically significant (p-value are near to
zero). However, for some links, the p-values are large, thus
we have a risk of reporting false positives for a small pro-
portion of tumor samples. This problemmay be caused by
the quality of the incomplete genetic interaction network
from the STRING database.

https://github.com/raphael-group/hotnet2/blob/master/hotnet2/network.py
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Fig. 11 Histogram of P-values from Permutation test

As we have performed the test 1000 times, it is crucial to
do the multiple hypothesis correction. The most common
method to check this is to apply a Bonferroni correction
test [95]. To do this we have to set up the new critical
value which is α = α∗

m . In our setting, α∗ = 0.05 and
m = 1000, hence the new α of the individual test would
be 0.05/1000 = 5e-05. Thus we consider those tumor-gene
links with p-values <5e-05 to be significant. From the ini-
tial permutation test, we observed that there are 130913
tumor samples and gene links to be significant. Apply-
ing the Bonferroni correction criterion, with the p-values
<5e-05 we found that only 62414 tumor samples and gene
link to be significant.

Biological meaning of the tumor sample and gene
prediction
We examined the top 100 predictions performed by the
heat diffusion algorithms. The results are ranked by heat
diffusion scores. For each tumor sample and gene associa-
tion, we looked at the biological meaning of the predicted
links using the COSMIC database. This database col-
lects somatic mutations from “The Cancer Genome Atlas
(TCGA)" as well as from many smaller-scale studies and
experimental studies [96]. Our results showed that the
heat diffusion algorithm predicted 5 putative cancer gene
CDH10, CHST11, GRM3, VAV1 and CCR4 from Tier 2 of
the Cancer Gene Census6. Similarly 9 Tier 1 known can-
cer genes such as TBX3, CNBP, CUX1, KLF6, HOXC13,
FUS, BIRC3, GNAS and TNFAIP3. These genes have doc-
umented evidence of their relevance to cancer. Not only
the cancer genes but also heat diffusion identified 16
genes in which mutations are associated with altered drug

6https://cancer.sanger.ac.uk/census

sensitivity in cancer. The rest of the predicted tumor sam-
ple and genes have the evidence that themouse insertional
mutagenesis experiments support them as a cancer driver
gene [97, 98].
The results of the 100 predicted tumor samples and gene

association with diffusion scores is provided in xlsx sheet
as a Additional file 1: Table S1.
Out of the top 100 genes predicted, we found 9 tier 1 and

5 tier 2 cancer genes and 11 genes in which mutations are
associated with altered drug sensitivity. The drug sensi-
tivity information is identified by manually inspecting the
COSMIC database. However, in a total of 4071 genes, we
have a total of 244 (tier 1 and tier 2) cancer genes in our
gene-gene interaction network. So we further investigated
the statistical significance of the (14%) proportion of the
top 100 predicted genes by randomizing gene-gene inter-
action graph using the Equation 8. The p-value of the test
is 0.015 which suggest the 14 genes related to cancers out
of top 100 predictions is statistically significant.
We further performed the test randomizing the net-

work layer 1 which is the bipartite graph between tumor
samples and genes by preserving the degree distribution.
We found the nominal p-value to observe (14%) propor-
tion of the top 100 predicted genes statistically significant
(p-value <1e-3).

Discussion
We considered two different baselines to compare
the results of the algorithm. One is node-based and
another is path-based algorithms. Out of the Node-
based link predictionmetrics, Adamic/Adar and Resource
Allocation methods performed the best and Common
Neighbor approach performed the worst in the datasets.
In terms of AUC-ROC and AUC-PR, both Adamic/Adar
and Resource Allocation have similar scores. Whereas,
the heat diffusion algorithm has produced more accu-
rate predictions, surpassing Adamic/Adar and Resource
Allocation by up to 7.05% in STRING data with regard
to AUC-ROC. While in the case of BioGRID data heat
diffusion algorithm did not perform better in compari-
son with the Jaccard Similarity, Resource Allocation, and
Adamic/Adar methods. Heat Diffusion algorithm per-
formed better than Katz scores but worst in compari-
son with Personalized PageRank Algorithm for BioGRID
datasets. One reason that heat diffusion performed better
in STRING network in comparison to BioGRID is the cov-
erage of the network. The network created from STRING
is based on the assumption that it has integrated data from
different sources whichmight affect the prediction results.
Personalized PageRank algorithm surpassed all the link
prediction methods for BioGRID datasets. In terms of
AUC-ROC, Personalized PageRank algorithm gained 8%
and in terms of AUC-PR 40% relative improvement over
heat diffusion and Katz method for BioGRID datasets.

https://cancer.sanger.ac.uk/census
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The integration of gene interaction data in the diffusion
model has proved to have a significant influence on the
performance of the tumor samples and gene link predic-
tion. One thing is also important to observe that only
exploiting the link structures Personalized PageRank algo-
rithm, outperforms several link prediction algorithms in
both STRING and BioGRID datasets as shown in Table 5.
We observed heat diffusion algorithm outperform Per-

sonalized PageRank in STRING data. There is a gain of
4% in AUC-ROC scores using heat diffusion algorithms
over Personalized PageRank algorithm which means the
genetic interaction scores in heat diffusion are contribut-
ing to the improvement of prediction quality.
The heat diffusion algorithm also gives the nonexistent

links which are not in the training set. In this work we
did not further investigate about the nonexistent links
because those evidences were not reported in the TCGA
COSMIC database and we are unsure whether those are
spurious or biological meaningful links. Though it is very
relevant research direction to further investigate to find
out the biological relevance of the nonexistent links pre-
dicted by the algorithm.

Conclusion
Wepresented the heat diffusion algorithm, to predict links
between tumor samples and gene in a 2-layer network.
We used the heat diffusion algorithm to diffuse in 4086
independent tumor samples to 4071 genes. The heat is
then diffused in nine different gene interaction channels.
We noted that link prediction between tumor sample and
genes gave us the highest AUC-ROC scores in fusion, co-
occurrence and neighborhood channels in STRING data.
The heat diffusion-based method gives us decent predic-
tion even if no knowledge is available about the disease or
phenotype and outperformed some of the baseline predic-
tion such as CommonNeighbors, Preferential Attachment
and Katz methods. The other reason to choose heat dif-
fusion is less memory intensive and faster to compute.
In our experiment, we observed that the Personalized
PageRank Algorithm also gave comparable results with
heat diffusion methods. One of the advantages of using
heat diffusion over Personalized PageRank method is that
heat diffusion uses exponential sum, which converges
quickly over personalized PageRank which uses geometric
sum.

Future work
There are several directions for future work. One of the
important aspects would be the biological validation of
the results, although we showed in our experiment that
some of the top predictions per anatomical locations are
indeed cancer genes. Computationally, we can evaluate
the likelihood of identifying cancer genes if we run our
algorithm in random data.

It is important to compare our results with other forms
of somatic mutation data like copy number variation. In
this work, we have not evaluated different cancer data for
heat diffusion model. We only evaluated heat diffusion
algorithms performance with a different state of the art
link prediction algorithm for DNA methylation data. It
would be important to see how heat diffusion algorithms
perform in other somatic mutational data and compare
against DNA methylation which could be a future work.

Additional files

Additional file 1: The results of the top 100 predicted tumor samples and
genes association with diffusion scores. (XLSX 11 kb)

Additional file 2: The resutls of the top 100 predicted tumor samples and
genes association for breast carcinoma. (XLSX 7 kb)
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