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Abstract

heterogeneous across multiple samples.

preserving DEG

Background: Integrated analysis that uses multiple sample gene expression data measured under the same stress
can detect stress response genes more accurately than analysis of individual sample data. However, the integrated
analysis is challenging since experimental conditions (strength of stress and the number of time points) are

Results: HTRgene is a computational method to perform the integrated analysis of multiple heterogeneous
time-series data measured under the same stress condition. The goal of HTRgene is to identify “response order
preserving DEGs” that are defined as genes not only which are differentially expressed but also whose response order
is preserved across multiple samples. The utility of HTRgene was demonstrated using 28 and 24 time-series sample
gene expression data measured under cold and heat stress in Arabidopsis. HTRgene analysis successfully reproduced
known biological mechanisms of cold and heat stress in Arabidopsis. Also, HTRgene showed higher accuracy in
detecting the documented stress response genes than existing tools.

Conclusions: HTRgene, a method to find the ordering of response time of genes that are commonly observed
among multiple time-series samples, successfully integrated multiple heterogeneous time-series gene expression
datasets. It can be applied to many research problems related to the integration of time series data analysis.

Keywords: Integration analysis, Multiple time-series gene expression data, Stress response, Response order

Introduction

Over the past two decades, the rapid development of
molecular measurement technologies, such as microarray
[1] and RNA sequencing (RNA-Seq) [2], have improved
scalability and accuracy and reduced time and cost in
measuring expression levels of all genes in a cell, which
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is known as transcriptome data. Analyzing transcriptome
data can be very helpful in understanding complex bio-
logical mechanisms. Among many research questions,
understanding how plants respond to environmental
stress such as drought, salt, cold and heat is an important
research problem. Then, using large-scale parallel mea-
surement techniques, transcriptome data are measured
under stress conditions to identifying stress response
genes.

Analysis of detecting differentially expressed genes
(DEGs) has been widely performed [3] to identify stress
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response signaling genes from transcriptome data that

are measured under stress condition. However, detect-
ing DEGs in different samples showed discordant results
even though the experiments were conducted with the
same stimulus on the same species. For example, Kreps
[3] and Matsui [4] reported 2086 and 996 DEGs for cold
stress in Arabidopsis, respectively, and only 232 DEGs,
about 16% of the union of two DEG sets, were commonly
determined. This result shows the requirement of a robust
analysis of gene expression datasets.

Motivation and related works

The motivation of this paper is to propose a more robust
DEG detection method by integrated analysis of multiple
gene expression data of a stress. The integrated analy-
sis for DEG detection is now possible since time-series
gene expression datasets measured under the same stress
are increasing and they are available for integrated analy-
sis. For instance, the OryzaExpress database [5] provides
624 gene expression datasets from 37 experimental series
with their experimental conditions. Its improved version,
PlantExpress [6] provides microarray gene expression
data of 3884 and 10,940 samples for rice and Arabidop-
sis species, and the Rice Expression Database (RED) [7]
provides 284 RNA-seq gene expression data that were
measured under various experimental conditions in rice
species.

The integrated analysis for DEG detection will be a
new type of approach of DEG detection because there are
many DEG methods so far but existing methods mainly
focused on individual experimental analysis and did not
consider the interrelationships with other samples. For
instance, the pair-wise DEG detection approach that com-
pares the expression value of gene before and after stress
treatment using statistical models, such as DESeq [8],
edgeR [9], and limma [10] and the time-series DEG detec-
tion approach that considers time domain information,
such as maSigPro [11], Imms [12], splineTC [13], and
ImpulseDE [14] did not consider multiple sample analy-
sis. We expect that integrated analysis will provide robust
DEG results since it is well known that when more data is
used for the analysis, the signal to noise becomes clearer
and the accuracy of the results improves.

Challenges and our approach

Heterogeneous meta-properties [15, 16] is a challenge
for the integrated analysis of multiple time-series gene
expression datasets. Meta-property is external informa-
tion of data that is related to the experimental design
and condition, e.g., tissue of samples, age of sam-
ples, time points, and so forth. When we collected
the multiple time-series data from the gene expression
database, the meta-properties are usually heterogeneous
since they are independently created by different research
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groups. For instance, suppose that two datasets of heat
stress experiments were generated with different meta-
properties: 14 days old, 43°C heat stress, < 0,2,8 > hours
vs. 21 days old, 38°C heat stress, < 0, 2,4, 10 > hours.

Generally, DEG detection analysis of stress data inves-
tigates the change of gene expression levels before and
after the response time to the stress. However, heteroge-
neous meta-properties cause the difficulty to specify the
response time.

e Different environmental conditions cause the
difference in the biological system’s response timing
to stress. For example, the response time of the same
gene is delayed in stress-resistant condition sample
(e.g. 4h in mature and low temperature-treated
sample) relative to stress-sensitive condition sample
(e.g. 2h in infant and high temperature-treated
sample).

¢ Different time points cause unmeasured time points
in the time series dataset. Therefore, we may not
know the expression levels in another sample data.

The unspecified response time issue makes the inte-
grated analysis of time-series data much more challeng-
ing than analysis of an individual time-series data. In
order to address the unspecified response time issue,
our work is based on an idea that the response order
of genes will be preserved even if the response time of
genes is delayed or advanced across multiple samples. It is
based on the biological knowledge that biological adapta-
tion to stress is a deterministic and sequential process; a
gene activates the target genes and this regulation contin-
ues according to a deterministic stress response pathway.
Based on this idea, we developed HTRgene, a method to
identify “response order preserving DEGs” for multiple
time-series samples.

Methods

HTRgene algorithm

HTRgene is an algorithm to identify “response order
preserving DEGs” by the integrated analysis of multiple
heterogeneous time-series gene expression datasets. To
define “response order preserving DEGS’, stress response
time is defined based on a study of Chechik and Yosef
[17, 18]. They reported when a cell is exposed under
stress, the expression level of a gene increases or decreases
at a certain time point and remains stable. Thus, we
defined the response time point of a gene as a time point at
which the expression level of the gene statistically changes
before and after the time point. Then, “Response order
preserving DEGs” are defined as genes not only which are
differentially expressed but also whose response order is
preserved across multiple samples. Below are the detailed
definitions of response time and response order preserv-
ing DEGs.
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Definition 1 Suppose that time-series sample i is mea-
sured at l; time points, resulting in eg;j, the expression
level of a gene g in sample i at time point j. Then, let Ag;;
be a set of expression levels of a gene g in sample i after
time point j including j, i.e., {egj, ..., e€gi1). Let also Bg;;
be a set of expression levels of a gene g in sample i before
time point j excludingj, i.e., {egi1,...,€qij—1}.

A response time (RT), té, is a time point of a gene g in
sample i where a statistical test of significance of expression
level difference is maximized between Bg,i,té and A it
A response time vector, Ry, is a vector of response times of
a gene g for m samples, i.e., < té, oty >

The order of two response time vectors R;,l and Rjgz is
determined as Ry < Ry, ift, < t,, for at least one sample
and ty < t,, for all samples.

A longest response schedule is a longest consistent order-
ing of genes for a set of binary ordering of two genes based
on response time vectors.

Response order preserving DEGs are defined as DEGs
belonging to the longest response schedule.

A response phase is the position of response in the response
schedule.

Below introduce two computational issues in discover-
ing response order preserving DEGAS.

e Complexity issue: The number of genes determines
the complexity of determining and ordering response
times. It is known that 27,416 coding genes exist in
Arabidopsis [19], which results in very high
complexity.

¢ Noise issue: Noise often occurs when measuring
gene expression. The noise of the expression value of
a gene can cause the noise of response time followed
by the entire response ordering, resulting in the
overall result unstable.

HTRgene’s idea to reduce complexity and noise effect
is to determine and order the response times at the gene
cluster level, not at the gene level. Figure 1 showed the
four step workflow of HTRgene: 1) selecting consensus
DEGs (i.e., genes that are differentially expressed in com-
mon across multiple time-series samples), 2) clustering
the DEGs based on the co-expression pattern, 3) detect-
ing the response times for each gene cluster, 4) ordering
the clusters according to the response times, resulting in
“response order preserving DEGs”

Step 1: Normalization and detection of consensus DEGs

The input of HTRgene is a set of time-series gene
expression data from a single platform, either microar-
ray or RNA-Seq. Scale normalization methods are used
depending on the data platform. Quantile normalization
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using the affy R package [20] is used for microarray
data, and variance stabilization transformation using the
DESeq package [8] is used for RNA-Seq data. After scale
normalization, HTRgene performs base normalization to
set the expression value at the initial time point (T = 0)
to zero. Different base normalization methods are used
depending on the shape of data distribution. For instance,
when plotting expression levels of a gene, the plot follows
a normal distribution, so substitution-based normaliza-
tion (Eq. 1) is used for normal-shaped data. However,
log-fold-change-based normalization (Eq. 2) is used for
log-scale-shape distribution data, which is the standard
practice for RNA-Seq data.

The expression level e, ;i of gene ¢ measured in time-
series sample i at time point j in a replicate & is adjusted as
follows for microarray data:

IR|

1
€gijk — ] Z €g,i,0,k» (1)
k
and as follows for RNA-Seq data:
IR|
log(egijkx +1) — m Z log(egiox + 1. (2)
k

From normalized time-series gene expression data,
HTRgene discovers consensus DEGs that are differentially
expressed across multiple time-series samples. First, dif-
ferential expression tests are performed using the limma
[10] tool for each time point against the initial time point
(T = 0). If a gene is differentially expressed in at least
one time domain in the sample, the gene is considered a
DEG in a single time-series sample. After detecting sin-
gle sample DEGs for each sample, a gene x sample matrix
is constructed, where the (i,j) element is 1 if gene i are
determined as a DEG in sample j or O otherwise.

Then, a statistical test is performed to investigate the
number of samples in which a gene could be a consensus
DEG for multiple samples. The elements of the gene x
sample matrix are randomly shuffled, and how many sam-
ples contain DEGs is counted to generate a background
distribution of DEG frequency. Then, the p-value of DEG
frequencies is measured, and Benjamini-Hochberg multi-
ple correction [21] is performed. Then, the genes whose
DEG frequencies are significant (adj.p < 0.05) are con-
sidered consensus DEGs.

Step 2: Co-expression-based clustering of genes

To determine the response time points of the multi-
ple time-series samples, clustering of genes is performed
across different samples. To address a three dimension
issue of multiple time-series samples (genes x sam-
ples x time points), our clustering analysis considers an
approach that TimesVetor [22] proposed. The expres-
sion values of the time and the sample dimensions are
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Fig. 1 Overview of the HTRgene algorithm. The input of HTRgene is a set of multiple time-series gene expression data of the same stress (e.g cold
stress) that is collected from databases. Step 1 normalizes the data and detects consensus DEGs. Step 2 partitions the consensus DEGs into gene
clusters with high co-expression patterns. Step 3 determines a response time vector RE, for each gene cluster. Step 4 orders gene clusters based on
their response time. The final output of HTRgene, response order preserving DEGs and their response phases, are produced
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concatenated to generate a single vector for each gene.
Then, clustering analysis is performed for the gene expres-
sion vectors using the cosine distance and the skmeans
[23] method. In this way, K gene clusters are produced,
{C1,...,Ck}. Among them, small-sized clusters with less
than three member genes are discarded.

Step 3: Detection of response time for each gene cluster
The goal of this step is to determine the response time
vector RE,' for each gene cluster C;. Determining an opti-
mal response time vector is a computationally complex
problem because of its exponentially increased search
space. To handle the big search space issue, a hill-climbing
approach is used to determine the optimal RT solution
suggested in [24]: 1) an RT is initialized, 2) candidates
of RT are generated, and 3) a new RT is selected that
improves the separation score. Repeating substeps 2 and
3 are terminated when no candidate RTs improve the
separation score.

Initializing R}i using a hierarchical clustering

The hierarchical clustering of genes is used to gener-
ate the initial R¢,. Since the goal is to determine a time
point as a stress response time, hierarchical clustering is
performed on the time dimension, progressively merging

adjacent time points based on gene expression values. To
set the initial Rc;, a response time r; is determined for
each sample i for all genes in C; and then R, is a vector
< t1 e tSC ,.. t’c"’ > where ts is a response time for
each sample s. For convenience, we will omit C; when we
discuss an RT.

Generating and selecting a new candidate Rc

After initialization of a RT, candidates of R are generated
by moving an element of Rtoa nearby time point. Then,
the quality score of R for each candidate R is computed
by performing a t-test on the gene expression difference
before and after a R vector as follows.

Let EXP, " and EXP, ! be sets of expression values of
gene gj € C The expression values of gene gj of sample
s; before the response time point are assigned to EX. gjre,
and the expression values after the response point are
assigned to EXP, %t Then, Tstat" is defined as the abso-
lute value of t—statlstics with an assumption of two-sample
equal variance. Then, Tstat"C, the quality score of a clus-
ter C;, is defined as an average of quality scores of all
genes in C;. .

After measuring Tstat"C: for each candidate RT vec-
tor R, an RT that improves the separation score most is
selected as a new RT.
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Step 4: Ordering of gene clusters according to response
time

Among all clusters, the goal is to select and order a set
of clusters that are consistent in terms of response times.
To do this, the concept of ResponseSchedule is defined.
Informally, a response schedule S is the most extended
consistent sequence of response time vectors without any
conflict. Here, "conflict" means that the order between
two response time vectors can not be determined. For
instance, two response time vectors < 1,2,3,4 > and
< 1,3,2,4 > conflict since the second and third elements
have disagreeing orders.

In this study, S is extended using a greedy search strat-
egy. S is initialized to an empty set, and each cluster is
considered in the order of quality scores Tstat®c,. The
cluster with the highest quality score is added to S. Then,
the cluster C; with the next best quality score is tested
whether C; has conflicts with any of the clusters that are
already included in S or not. If so, C; is added to S, oth-
erwise, C; is discarded. This process ends when there is
no cluster to be considered. Finally, the “response phases”
are defined as the positions of the clusters remaining in
ResponseSchedule S.

Determination of the number of clusters

The number of gene clusters was chosen empirically by
examining how many ground truth genes were included
in the clustering result. In our experiment, the top-ranked
DEGs (i.e., top 10% DEGs among consensus DEGs in step
1) were selected as ground truth genes. Then, HTRgene
was performed for the number of clusters, K, increased
from 50 to half of the number of consensus DEGs by 50.
Finally, K was selected to maximize the F1 score, which
measures the association between the resultant genes and
the top-ranked DEGs. The best K was 200 in both cold and
heat experiments.

Alternatively, the user can use genes with stress-related
Gene Ontology (GO) terms to determine the number
of clusters. However, in this paper, genes with cold/heat
stress related GO terms are used to evaluate the perfor-
mance of tools in further analysis (“Performance com-
parison with existing methods” section). Thus, we used
top-ranked DEGs rather than stress-related genes to eval-
uate the performance of the clustering algorithm without
any prior knowledge.

Results and Discussion

HTRgene analysis of Heterogeneous time-series dataset of
cold and heat stresses

HTRgene analysis was performed for heat and cold stress
time-series data in Arabidopsis. Raw data of each stress
were collected from GEO [25] and ArrayExpress [26].
This study focused on detecting genes and aligning them
according to their response time to a single stress factor.
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Thus, the recovery phase data were excluded from the
dataset. The collected raw data were processed and quan-
tile normalized using the aff£y R package [20]. Tables 1
and 2 showed the heterogeneous meta-properties of 28
and 24 time-series sample datasets for cold and heat
stress, respectively.

The HTRgene analysis outputted 425 and 272 candidate
response genes that were assigned to 12 and 8 response
phase gene clusters for cold and heat stress datasets,
respectively. Figure 2 showed the heat map of 425 candi-
date genes to cold stress. It showed response times of gene
clusters defined by the HTRgene method were clearly
propagated along the time axis in a conserved ordering
across multiple samples. In the next section, whether the
response orders were consistent with actual stress sig-
naling mechanisms or not were investigated through the
literature review.

Comparison with known cold stress pathway

The HTRgene analysis for cold stress data discovered 425
response order preserving DEGs belonging to 12 response
phase clusters. The results were compared to known
cold stress pathway genes summarized in review papers
[27-29]. Figure 3a shows a three-level structure of the cold
stress pathway: signal transmission, transcription factor
(TF) cascade, and downstream gene level pathways.

The cold stress signal, in the signal transmission level
pathway, affects membrane rigidity and changes the con-
centration level of Ca>*. Then, the activation status of
proteins are sequentially changed, such as CBL-CIPKs,
CPKs, CLRK, MEKK1, MKK2, MPK3/4/6, CAMTAS3,
and ICE1 [27, 29]. HTRgene analysis did not include
these genes as the result. We could biologically interpret
why HTRgene analysis result did not include the sig-
nal transmission level pathway genes; the actions in the
signal transmission level pathway, such as phosphoryla-
tion, ubiquitination, and SUMOylation [27-29], affect the
proteins’ structures but not their expression levels.

CLRK is a Ca?*/CaM-regulated receptor-like kinase
that activates MEKK1-MKK2-MPK4/6 [30] and it could
induce the expression of TFs such as MYB15 and ICE1
[31]. MEKK1 (MAP kinase kinase 1) activates MKK2
(Mitogen activated protein kinase kinase2) by phospho-
rylation and then MKK2 phosphorylates MPK4/6 under
cold stress [32]. HOS1 (High Expression of Osmotically
Responsive 1), an ubiquitin E3 ligase, reduces expres-
sion of ICE1 (Inducer of CBP Expression 1) target genes
by ubiquitinating ICE1 [33], which is a basic helix-
loop-helix transcription factor could regulate the expres-
sion of MYB15 and CBFs in low temperature signaling
pathway [33].

CAMTA3 and ICE1 were activated genes at the last
stage of the signal transmission level pathway. In the TF
cascade level pathway, CAMTA3 and ICE1 bind to MYB,
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Table 1 Heterogeneous meta-properties of 28 time-series gene expression dataset for cold stress treatment

No.  Sample ID Eco-type  Geno-type (NT:  Age (days) Tissue Temperature Time points (minutes (m) or hours

non-transgenic) O (h) after treatment)

1 E-MTAB-375 Columbia  NT 14 rosette leaf (low light) 4 Oh, 5m, 10m, 20m, 40m, 1h, 80m,
100m, 2h, 140m, 160m, 3h, 200m,
220m, 4h, 260m, 280m, 5h, 320m,
340m, 6h, 10h40m, 21h20m

2 E-MTAB-375 Columbia  NT 14 rosette leaf (dark) 4 Oh, 5m, 10m, 20m, 40m, Th, 80m,
100m, 2h, 140m, 160m, 3h, 200m,
220m, 4h, 260m, 280m, 5h, 320m,
340m, 6h, 10h40m, 21h20m

3 GSE5621 Columbia  NT 14 shoot 4 0Oh, 30m, 1h, 3h, 6h, 12h, 24h

4 GSE5621 Columbia  NT 14 root 4 Oh, 30m, Th, 3h, 6h, 12h, 24h

5 GSE3326 Columbia ~ NT 14 seedlings 0 0h, 3h, 6h, 24h

6 GSE3326 Columbia icel 1 seedlings 0 0Oh, 3h, 6h, 24h

7 GSE55835 Columbia  NT 42 leaves -3 0h, 8h, 24h, 72h

8 GSE55835 Rschew NT 42 leaves -3 0h, 8h, 24h, 72h

9 GSE55835 Tenela NT 42 leaves -3 0Oh, 8h, 24h, 72h

10 GSE5534 Columbia  NT 10 seedlings (plate) 4 Oh, 1h, 24h, 168h

11 GSE5535 Columbia  NT 10 seedlings (soil) 4 Oh, 1h, 24h, 168h

12 GSE53990 Columbia  NT 28 9-11th adult leaves 4 0Oh, 48h, 120h

13 GSE53990 Columbia  rcf 28 9-11th adult leaves 4 0Oh, 48h, 120h

14 GSE39090 Columbia  NT 14 seedlings 4 Oh, 12h, 24h

15 GSE39090 Columbia  rcf 14 seedlings 4 Oh, 12h, 24h

16 GSE37130 24 NT 20 seedlings 4 0Oh, 3h, 24h

17 GSE37130 Columbia  NT 20 seedlings 4 0Oh, 24h

18 GSE43818 Columbia  NT 21 entire aerial part 4 0Oh, 24h

19 GSE43818 Columbia  camtal/2/3 21 entire aerial part 4 0Oh, 24h

20 GSE55906 WS-2 NT 11 entire aerial part 4 0h, 24h

21 GSE55906 WS-3 CBF2DN " entire aerial part 4 0Oh, 24h

22 GSE55907 Columbia  NT 12 seedlings 4 0Oh, 24h

23 GSE64575 Columbia  NT 10 entire aerial part 4 0h, 24h

24 E-MEXP-1345  Columbia  NT 45 leaf tip 4 0h, 24h

25 GSE19254 Columbia  NT 38 aerial tissues 4 0Oh, 48h

26 GSE19254 Columbia  sfr3 38 aerial tissues 4 0Oh, 48h

27 E-MEXP-3714  Columbia ~ NT 11 aerial tissues 1 0Oh, 2h

28 E-MEXP-3714  Columbia  ahk2ahk3 1 aerial tissues 1 0Oh, 2h

CG1, and ICEI-box DNA cis-elements and initiate gene
expression regulation of (DREB)/C-repeat binding factor
(CBF) family including CBF1/DREB1B, CBF2/DREBIC,
and CBF3/ DREBIA, respectively [28]. CBFs are known
as “master switches” of the cold acclimation response [34]
because they regulate many downstream genes that con-
fer chilling and freezing tolerance to plants by binding to
CRT/DRE elements [35—37]. The HTRgene analysis result
included CBF1, CBF2, and CBEF3 in the second response
phase clusters “p2”.

In the downstream gene level pathway, HTRgene
assigned 21 genes that were reported as downstream

genes of CBFs to the “p4,” “p6, “p7,) “p8, “p9, “p10,
“p11) and “p12” response phase gene clusters, which
were later than the response phase of CBFs. Collec-
tively, it was shown that the HTRgene analysis suc-
cessfully reproduced known biological mechanisms for
cold stress.

Comparison with known heat stress pathway

The integrated analysis for heat stress data produced 272
candidate response genes in 7 response phase clusters.
The results were also compared to the known heat stress
pathway [38]. Figure 3b shows a three-level structure of
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Table 2 Heterogeneous meta-properties of 24 time-series gene expression dataset for heat stress treatment

No.  Sample ID Eco-type  Geno-type (NT: Age (days) Tissue Temperature Time points (minutes (m) or hours

non- transgenic) ©0O (h) after treatment)

1 E-MTAB-375  Columbia NT 14 rosette leaf (normal light) 32 Oh, 5m, 10m, 20m, 40m, Th, 80m,
100m, 2h, 140m, 160m, 3h, 200m,
220m, 4h, 260m, 280m, 5h, 320m,
340m, 6h, 10h40m, 21h20m

2 E-MTAB-375  Columbia NT 14 rosette leaf (dark) 32 Oh, 5m, 10m, 20m, 40m, Th, 80m,
100m, 2h, 140m, 160m, 3h, 200m,
220m, 4h, 260m, 280m, 5h, 320m,
340m, 6h, 10h40m, 21h20m

3 GSE5628 Columbia  NT 16 shoots 38 Oh, 15m, 30m, 1h, 3h

4 GSE5628 Columbia  NT 16 roots 38 Oh, 15m, 30m, 1h, 3h

5 GSE62163 Columbia  NT 21 shoots (EBR) 43 Oh, 1h, 3h

6 GSE62163 Columbia NT 21 shoots (no EBR) 43 Oh, 1h, 3h

7 GSE63128 Columbia NT 18 leaves 38 0h, 8h, 24h

8 E-MEXP-2760 Columbia NT 35 shoot 40 Oh, 20m, 1h

9 E-MEXP-2760 Columbia mbfic 35 shoot 40 Oh, 20m, 1h

10 E-MEXP-3754 Columbia NT 21 meristem 40 Oh, 15m, 45m

11 GSE19603 Columbia  NT 56 above-ground 37 0Oh, 24h

12 GSE19603 Columbia  msh1/recA3 56 above-ground 37 0Oh, 24h

13 GSE43937 Columbia  NT 14 leaves 40 Oh, 6h

14 GSE43937 Columbia  er-105 14 leaves 40 Oh, 6h

15 E-MEXP-1725 Columbia NT 35 leaves 37 Oh, 2h

16 E-MEXP-1725 Columbia hsf4-7 35 leaves 37 Oh, 2h

17  GSE16222 Columbia NT 4 seedlings 38 0Oh, Th30m

18 GSE63372 Columbia  WT 7 seedlings 37 Oh, 1h

19 GSE63372 Columbia  HSFA6b-OE 7 seedlings 37 Oh, Th

20 GSE63372 Columbia  HSFA6b-RD 7 seedlings 37 Oh, Th

21 GSE12619 Columbia  NT 7 seedlings 37 Oh, 1h

22 GSE12619 Columbia  til1-1 7 seedlings 37 Oh, Th

23 GSE44053 Columbia NT 7 seedlings 38 Oh, 45m

24 GSE44053 Columbia NT 7 seedlings 38 Oh, 45m

the heat stress pathway: signal transmission, TF cascade,
and downstream gene level pathways.

The heat stress signal, in the signal transmission level
pathway, alters membrane rigidity and the concentration
level of ROS and Ca’*. Then, the activation status of
some proteins are sequentially changed, such as CBL-
CIPKs, CPKs, PP7, CDKA1, CBK3, and HSFA1s [38]. The
HTRgene analysis result did not contain these genes. The
result was possible because the signal transmission level
pathway transmit the stress signal through the molec-
ular actions, such as phosphorylation, dephosphoryla-
tion, SUMOylation, and protein—protein interaction [38],
which do not change their gene expression levels but alter
the proteins’ structures.

CBK3 is a well-known CaM-binding protein kinase that
regulates phosphorylation of HSFA1 positively in heat-
shock response [39]. PP7 (Protein phosphatase 7) acts as

“calcineurin-like” phosphatase, interacting with CaM in
plants. AtPP7 is also known as a phosphatase of HsfA1 in
heat shock response and it is involved in crypto-chrome
signaling [38, 40]. CDKA1 (Cyclin-Dependent Kinase A1)
is one of the main kinases related to transition points
in the cell cycle. It also phosphorylates HsfAl and reg-
ulates the DNA binding ability of HsfAl [38]. HSFA1ls
(Heat shock factor Al) is a major transcriptional regu-
lator during heat stress and acts in other abiotic stress
responses [41]. It has been reported that the reactive elec-
trophile species (RES) oxylipins through the four master
regulator transcription factors, HSFA1la, b, d, and e, that is
essential for short-term adaptation to heat stress in Ara-
bidopsis [42]. CPK (Calcium dependent protein kinase)
is a Ser/Thr protein kinase that acts Ca?* sensing and
kinase function involved in development and various abi-
otic stresses responses [43]. CBL-CIPKs builds a complex



Ahn et al. BMIC Bioinformatics 2019, 20(Suppl 16):588

Page 8 of 14

o0

-0.15

- 0.00
--0.15
o

nResponseGene = 425

a conserved ordering across multiple samples

Fig. 2 Heat map of a result of HTRgene analysis for cold stress data. The heat map includes 425 response order preserving DEGs that are grouped
into 12 response phase clusters, which were discovered by HTRgene analysis of 28 cold stress time-series sample datasets. The rows of the heat map
are 12 response phase gene clusters, and the numbers in parentheses are the number of genes for each cluster. The columns of the heat map are
four time-series samples with more than five time points: Sy to S4. The red or blue color of the heat map indicates up or down change in gene
expression level compared to the time point before stress (T = 0). The black lines represent the response time point of a cluster in each sample.
The heat map shows response times of gene clusters (the black line) defined by the HTRgene method are clearly propagated along the time axis in
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with Calcineurin B-like (CBL), a calcium-binding protein,
and CBL-interacting protein kinases (CIPKs). This com-
plex plays an important role in calcium signaling pathways
during cold stress [44].

HSFA1ls are the major regulators in the heat stress
TF cascade level pathway [45]. However, they did not
appear in the HTRgene analysis result. It is biologi-
cally interpretable since the molecular mechanisms that
activate them are protein-structure modifying actions.
HSFA1s that bind to HSE elements initiate gene expres-
sion regulation of heat shock responsive TFs: HSFB1A,
HSFB2A, HSFB2B, HSFA2, and HSFA7A, [38]. Then,
transcriptional upregulation is accelerated in a feed-
forward fashion that HSFBs, HSFA7A, and HSFA2 bind
to HSE elements and up-regulate themselves again [46].
Among the direct target TFs of HSFA1, HTRgene analy-
sis assigned HSFA2, HSFA7A, and HSEBs to the second
response phase “p2”

Then, the heat shock factor TFs regulate the heat
stress responsive downstream genes in the downstream
level pathway [47-49]. Among the downstream genes,
52 genes were included in late response phase clusters,

“p2 “p3, “p4” “p5, “p6, and “p7” Collectively, the agree-
ment between HTRgene result and the known heat stress
pathway showed that the HTRgene analysis successfully
reproduced known biological mechanisms for heat stress.

Enrichment analysis for clusters

GO term and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses of 12 and 7 clus-
ters for cold and heat stress, respectively, were performed
for cold stress (Fig. 4a) and heat stress (Fig. 4b). More
GO and KEGG terms were enriched in six clusters in the
early phase for cold stress and three clusters in the early
phase for heat stress. Functional terms related to tran-
scription factors were enriched in early phase clusters.
Many of nuclear targeting genes including TFs and genes
with conserved DNA binding domains were present in p1
through pé6, i.e., the early stage of signaling cascade, which
could be defined as a cold signal reception stage. Addi-
tionally, genes coded for protein modifying kinase and
genes involved in remodeling membrane properties were
found in the early phases. In the late phases, however,
many of the events happened outside the nucleus such as
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Fig. 3 Comparison of HTRgene results to known biological pathways for cold and heat stress. The known cold and heat stress pathway are
organized into signal transmission, TF cascade, and downstream gene level pathways. a Cold stress analysis. In the signal transmission level
pathway, the cold stress signal sequentially activate stress response signaling proteins, such as CBL-CIPKs, CPKs, CLRK, MEKK1, MKK2, MPK3/4/6,
CAMTA3, and ICE1 [27, 29]. In the TF cascade level pathway, CAMTA3 and ICE1 bind to MYB, CGT1, and ICET-box DNA cis-elements and initiate gene
expression regulation of (DREB)/C-repeat binding factor (CBF) family including CBF1/DREB1B, CBF2/DREB1C, and CBF3/ DREB1A, respectively [28].
The HTRgene analysis result, CBFs that are known as “master switches” of the cold acclimation response [34] bind to CRT/DRE elements [35-37] and
regulate many downstream genes that confer chilling and freezing tolerance to plants. The HTRgene analysis result included CBF1, CBF2, and CBF3
in the second response phase clusters “p2,” and the 21 donwstream genes of CBFs in the later phase clusters "p4," “p6," “p7," “p8," 'p9," “p10," "p11,"
and “p12." b Heat stress analysis. In the signal transmission level pathway, the heat stress sequentially activates stress response signaling proteins,
such as CBL-CIPKs, CPKs, PP7, CDKA1, CBK3, and HSFAT1s [38]. In the heat stress TF cascade level pathway, HSFATs that are the major regulators [45]
of heat stress response initiate gene expression regulation of heat shock responsive TFs: HSFBTA, HSFB2A, HSFB2B, HSFA2, and HSFA7A, [38]. Then,
transcriptional upregulation is accelerated in a feed-forward fashion that HSFBs, HSFA7A, and HSFA2 bind to HSE elements and up-regulate
themselves again [46]. In the downstream level pathway, the heat shock factor TFs regulate the heat stress responsive downstream genes [47-49].
The HTRgene analysis assigned heat shock factors, HSFA2, HSFA7A, and HSFBs, to the second response phase “p2." and the 52 downstream genes of
the heat shock factors to the later response phases, “p2," “p3," “p4,” “p5," “p6," and “p7."
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A. Enrichment analysis (cold stress) B. Enrichment analysis (heat stress)
Phase Type Term nGene P-val Phase Type Term nGene P-val
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pl_U GOBP regulation of transcription, DNA-templated 6 2.E-02 GOBP response to high light intensity 10 3.E-16
GOMF DNA-binding transcription factor activity 6 5.E-03 GOBP cellular response to heat 8 S.E-13
GOMF protein binding 5 5.E-02 GOBP response to hydrogen peroxide 8 4E-12
GOCC plasma membrane 7 5.E-02 GOBP protein folding 11  5.E-12
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(pl ~ pG) p3_U GOMF DNA-binding transcription factor activity 10 2.E-04 GOBP protein folding —— - 10 7611
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-~ GOMEF kinase activity 5 3.E02 OMF zinc ion binding 6 3.E02
GOMF ATP binding 6 5.E-02 GOCC cytoplasm 24 3.E-07
GOCC integral component of membrane 14  1.E-02 GOCC cytosol 8 2E-02
GOBP transcription, DNA-templated 7 1E-03 KEGG Protein processing in endoplasmic reticulum 9 2.E-
GOBP regulation of transcription, DNA-templated 7 4.E-03
p5.D GOMF DNA—b.indving transcription factor activity 6 8.E-03 / Phase Type Term nGene P-val
GOMF DNA binding 6 2E-02 GOBP response to heat 7 2.E-08
GOMF protein binding 6 2.E-02 Late phase p4_U  GOCC cytosol 7 4E-02
KEGG_Plant hormone signal transduction 5 1E05 KEGG Protein processing in endoplasmic reticulum 5 2.E-04
GOBP response to cold 6 4.E-05 (p4 ~ p7) GOCC chloroplast 8 7603
p6_u GOMF protein binding 8 4E02 (131 genes) P*Y KecG Metabolic pathways 6 5.E-02
~ GOCC membrane 9 3.E03 GOMF DNA-binding transcription factor activity 5 3.E-02
GOCC plasma membrane 13 1.E-02 \ p7_U GOCC nucleus 17  6.E-03
Phase Type Term nGene P-val
p7.U GOMF DNA-binding transcription factor activity 5 4.E-02
- GOCC Golgi apparatus 5 4.E-03
GOMF protein binding 8 1.E-02
Late phase p8_U GOCC endoplasmic reticulum 5 3.E-03
~ GOCC cytoplasm 12 1.E-02
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- GOCC plasma membrane 15 1.E-04
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Fig. 4 Enrichment analysis and TF ratio. Gene ontology (GO) and KEGG enrichment analyses were performed for cold (A) and heat (B) stress. There
were 12 and 7 clusters for cold and heat stress, respectively. More GO and KEGG terms were enriched in six early phase clusters for cold stress and
three early phase clusters for heat stress than in six later phase clusters for cold stress and four later phase clusters for heat stress. Functional terms
related to transcription factors were enriched in early phase clusters. The terms are GO biological process term “transcription, DNA-templated”, the
GO molecular function term “DNA-binding transcription factor activity”, and the GO cellular process term “nucleus”, which are highlighted by red
color. We also examined how the proportion of TFs in the cluster changes as the response progresses for cold (C) and heat (D) stress. The result
showed that the fraction of TFs was high in the early phase, while the TF fraction was decreased with the passage of time
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the micro-organelles such as Golgi, ER, chloroplast and
plasma membrane. This tendency was observed in both
cold and heat stress. We also examined how the propor-
tion of TFs to genes in the cluster changes as the response
progresses for cold (C) and heat (D) stress. The result
showed that the fraction of TFs was high in the early phase
as shown in Fig. 4c, while the TF fraction was decreased
as the signal progresses as shown in Fig. 4d.

Network analysis of clusters

We investigated how TFs are likely to regulate other
genes through TF network analysis. To construct the TF
network, a template TF network including 599 TF was
downloaded from PlantRegMap database. The template
TF network was refined by TF binding motif existence.
Then, a network clustering algorithm, GLay [50] in the
clusterMaker2 [51] package, was used to generate subnet-
work clusters (Fig. 5). To identify important TF regulators,
we compiled TFs, each of which has five or more target
genes in one cluster. They are summarized as cluster-
numbers(TFs): C1 (AGL, CDF5), C2 (ERF2, ERF4, ERF5,
ERF6), C3 (CBF1, CBF2, CBF3), C4 (STZ), C5 (ABFI,
RVE6), C6 (DREB2B), and C7 (WRKY33, WRKY40) for
cold stress and C1 (HSFB2A), C2 (HSFB2B), C3 (BZIP28),
and C4 (AT4G28140) for heat stress. Most of the impor-
tant TF regulators were in the early phase clusters, and
TGs of the TFs were present in the late half phase clusters.
The network analysis suggests that stress response might
start from hub TFs in early phases and propagates to
TGs in downstream clusters and each downstream cluster
regulates specific biological function.

Performance comparison with existing methods

HTRgene was evaluated in comparison with existing
tools. Qualitatively, HTRgene produces more informative
output than other stress data analysis tools because it
discovers not only candidate response order preserving
DEGs but also response phases. However, DEG detection
tools, e.g., DESeq [8], edgeR [9], and limma [10], generate
DEGs only. Other pattern-based tools, such as ImpulseDE
[14] also report differentially patterned genes between
control and case time-series samples but do not provide
response phases.

HTRgene was quantitatively compared with other tools
in terms of accuracy of determining candidate stress
response genes only because the existing tools do not pro-
vide response phases. First, we determined ground truth
genes as 330 and 158 genes with GO annotation “response
to cold” and “response to heat” from the TAIR database
[19]. Then, the DEG detection tools, limma, ImpulseDE,
were compared to HTRgene in terms of accuracy of dis-
covering the ground truth genes. In addition, HTRgene
without ordering and with ordering were considered sep-
arately in order to trace how much improvement was
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made by ordering of genes. Figure 6a showed the num-
ber of candidate response genes determined from the
analysis of limma, ImpulseDE, HTRgene without order-
ing, and HTRgene with ordering; 3449, 7840, 3602, and
425 for cold stress analysis, and 5091, 8193, 2957, and
272 for heat stress analysis, respectively. Among the
genes, 41, 56, 124, and 41 were ground truth genes for
cold stress; and 73, 83, 69 and 49 ground truth genes
for heat stress, respectively. Figure 6b showed F1 scores
for the results of limma, ImpulseDE, HTRgene with-
out/with ordering analysis. HTRgene provided the best
F1 score over the other tools for both cold and heat
stress analysis. The number of DEGs, precision, recall, F1
scores, and p-value of Chi squared test are summarized in
Additional file 1: Table S1 and S2.

Characteristics of HTRgene

To detect stress response signaling genes, HTRgene is
developed to find a specific pattern, the ordering of
response time of genes preserved among multiple gene
expression time-series data. However, the problem of
determining and ordering response time has a high com-
plexity of O(n!), where n is the number of genes. We
thus use clustering analysis to reduce the complexity of
the problem from the number of genes to the number of
gene clusters. Also, we take a greedy approach to find the
longest ordering of response time. The greedy approach
scans gene cluster by gene cluster starting from gene clus-
ters of more differential expression. Thus, although our
greedy-based method could not produce the globally opti-
mal solution, the result of our approach is likely to include
differentially expressed genes, which is a very clear signal
of stress.

The results in “Performance comparison with existing
methods” section shows the positive effect of ordering
quantitatively. HTRgene methods with or without order-
ing produced about 3000 and 300 genes as the results.
Measuring association between the results and known
stress-related genes showed that ordering decreased recall
about two-fold, but, increased precision over three-fold,
resulting in the increment of F1 score and significance of
Chi squared test. Collectively, these results showed that
the ordering process of HTRgene improve DEG selec-
tion effectively by reducing the number of outputted
DEGs and improving association with known stress genes
(p < 107%),

Circadian rhythm is one of the factors that can affect
the DEG result over time in plants. In general, circadian
rhythm effects are differently measured in different time
series datasets. Thus, when multiple time series datasets
are integrated, circadian rhythm effects look like random
noise, resulting in the exclusion of circadian rhythm-
related genes in results. For example, circadian rhythm-
related genes, such as, ERD7, LKP2, and COR27, were
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Fig. 5 TF network analysis. The TF network analysis produced seven and four clusters for cold (a) and heat (b) stress, respectively. In the TF network
clusters, hub regulator TFs that regulate over the target five genes (TG) of these clusters were observed, which are C1 (AGL, CDF5), C2 (ERF2, ERF4,
ERF5, ERF6), C3 (CBF1, CBF2, CBF3), C4(STZ), C5(ABF1, RVE6), C6(DREB2B), and C7(WRKY33, WRKY40) for cold stress and C1(HSFB2A), C2(HSFB2B),
C3(BZIP28), and C4(AT4G28140) for heat stress. The rhombus nodes represent TFs, and rectangular nodes represent TGs. The blue nodes represent
early phase cluster genes and grey nodes late phase cluster genes. It shows that the hub regulator TFs of early half phase clusters regulate the TGs of
late half phase clusters
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excluded after consideration of the response ordering.
In addition, some experiments provide non-stress-treated
time-series samples for control data (e.g., cold dataset 1
and 2 in Table 1). We think it would be a good future
research to utilize these non-stress data.

Conclusion

Measuring time series data is expensive, thus a com-
putational method to integrate multiple heterogeneous
time-series gene expression datasets is a very useful tool.
However, there are several challenges for integrating time
series datasets. The main challenge is that the datasets are
heterogeneous in terms of the time-domain (the number
of time points and intervals are different) and phenotype-
domain (the tissue of samples and the age of samples are
different).

We developed and implemented HTRgene, a method to
integrate multiple heterogeneous time-series gene expres-
sion datasets to find the ordering of response time of genes
that are commonly observed among multiple time-series
samples. Our strategy of defining and using response
times is very effective in producing not only gene clusters
but also the order of gene clusters.

The utility of HTRgene was demonstrated in the inves-
tigation of stress response signaling mechanisms in Ara-
bidopsis. The HTRgene integration analysis for 28 and 24
time-series sample gene expression datasets under cold
and heat stress successfully reproduced known biological
mechanisms of cold and heat stress in Arabidopsis.
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