
Zhang et al. BMC Bioinformatics 2019, 20(Suppl 16):589
https://doi.org/10.1186/s12859-019-3078-9

RESEARCH Open Access

A disease-related gene mining method
based on weakly supervised learning model
Han Zhang1, Xueting Huo2, Xia Guo1, Xin Su1, Xiongwen Quan1* and Chen Jin2

From IEEE International Conference on Bioinformatics and Biomedicine 2018
Madrid, Spain. 3-6 December 2018

Abstract

Background: Predicting disease-related genes is helpful for understanding the disease pathology and the molecular
mechanisms during the disease progression. However, traditional methods are not suitable for screening genes
related to the disease development, because there are some samples with weak label information in the disease
dataset and a small number of genes are known disease-related genes.

Results: We designed a disease-related gene mining method based on the weakly supervised learning model in this
paper. The method is separated into two steps. Firstly, the differentially expressed genes are screened based on the
weakly supervised learning model. In the model, the strong and weak label information at different stages of the
disease progression is fully utilized. The obtained differentially expressed gene set is stable and complete after the
algorithm converges. Then, we screen disease-related genes in the obtained differentially expressed gene set using
transductive support vector machine based on the difference kernel function. The difference kernel function can map
the input space of the original Huntington’s disease gene expression dataset to the difference space. The relation
between the two genes can be evaluated more accurately in the difference space and the known disease-related
gene information can be used effectively.

Conclusions: The experimental results show that the disease-related gene mining method based on the weakly
supervised learning model can effectively improve the precision of the disease-related gene prediction compared
with other excellent methods.

Keywords: Weakly supervised learning model, Differentially expressed genes, Disease-related genes, Transductive
support vector machine, The difference kernel function

Background
Neurological diseases put a serious threat to the health
of human being. To explore the pathology of neurologi-
cal diseases, it is promising to work on the identification
of functional genes or disease-related metabolic pathways
based on gene expression dataset [1, 2].

In the past, most of the researchers tended to use those
basic statistical methods [3–6] to screen differentially
expressed genes. The t-test method [7] and significance
analysis of microarrays (SAM) [8] are usual methods. The
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t-test method compares the difference between disease
samples and normal samples on gene expression to screen
differentially expressed genes. However, the estimation
of total variance is not accurate due to the small sam-
ple size. SAM controls the false discovery rate (FDR) to
correct the false positive rate in multiple hypothesis test-
ing, while the outcome is not satisfying. Nowadays, it is
more often to use feature selection algorithms [9, 10] in
machine learning to select differentially expressed genes.
Recursive feature elimination method [11–13] is a typ-
ical algorithm used in this area. Some classic machine
learning algorithms such as decision tree [14], random
forest[15] and regression model are able to be used for
multiple round training because of their grading feature
mechanism. The feature selection algorithm based on
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penalty term[16] has a regularization term in the model.
So the generalization ability of the model is improved
significantly. In addition, it can prevent over-fitting. How-
ever, the feature selection algorithms which apply to all
kinds of data are not applicable to a particular type of
data. Therefore, in 2015, Bo Liao et al. proposed a reg-
ularization feature ranking method (l2,1 feature ranking
method) [17] for gene expression dataset, which is ori-
ented to label sample data. The algorithm combines multi-
objective regression and graphical embedding. By ranking
the coefficient matrix, the top ranked genes are selected
as differentially expressed genes. Top ranked genes can
effectively distinguish disease samples from normal sam-
ples. However, many sample labels contain a portion
of the weak labels. If the method is used directly to
select differentially expressed genes, the performance is
unsatisfactory.

According to the accuracy of the label information, the
label information of the samples usually includes weak
and strong labels. Differentially expressed genes selected
from normal samples and disease samples with strong
label are more reliable than those selected from normal
samples and disease samples with weak label. However,
disease samples with weak label also contain some helpful
information.

To make optimal use of the label information, we
designed a disease-related gene mining method based
on weakly supervised learning model. In the first part,
to more effectively select differentially expressed genes
at different stages of the disease progression, we pro-
pose a differentially expressed gene screening method.
First, the normal samples are selected as the initial train-
ing set with the mid-term-stage and the late-stage dis-
ease samples respectively. We use the l2,1 feature ranking
method in [17] to select differentially expressed genes.
Then the classifier is used to classify the candidate weak
label samples and the samples which are classified to
the disease class are iteratively used to extend the dif-
ferentially expressed gene set until it converges. There-
fore, we obtain a differentially expressed gene set at
different stages of the disease development. At the same
time, it is possible to generalize the feature gene selec-
tion ability of the model. In the second part, we pro-
pose a difference kernel function utilizing the biological
meaning of gene expression data for the differentially
expressed gene set. The difference kernel function helps
to more accurately represent the relation between the
two genes by transforming the expression value features
of the initial data under different experimental condi-
tions into the difference features of the expression value
changes. We use transductive support vector machine
(TSVM) [18] based on the difference kernel function to
select disease-related genes in the differentially expressed
gene set.

Using Huntington’s disease (HD) gene expression
dataset, we demonstrate the effectiveness of the disease-
related gene mining method based on the weakly super-
vised learning model. The weakly supervised learning
model selects differentially expressed genes. Gradient
boosting decision tree (GBDT) [19] classify the samples
using the selected genes. It is demonstrated from the
experiments that the weakly supervised learning model
has an advantage over other algorithms. The performance
of the difference kernel function in distinguishing disease-
related genes from non-disease-related genes is good by
many different criterion.

Methods
The framework of the disease-related gene mining method
based on weakly supervised learning model
In order to screen disease-related genes from the HD gene
expression dataset accurately, we designed the following
framework of the disease-related gene mining method
based on weakly supervised learning model as shown in
Fig. 1. The framework consists of the following steps.
Firstly, we screen the differentially expressed genes based
on the weakly supervised learning model. Then, we screen
the disease-related genes in the obtained differentially
expressed gene set using TSVM based on the difference
kernel function. In the step, the known disease-related
gene information is utilized effectively. The difference
kernel function we designed can reflect the feature of data
objectively and improve the prediction precision.

Fig. 1 The framework of the disease-related gene mining method
based on weakly supervised learning model
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The weakly supervised learning model
Definition of weak labels
The HD gene expression dataset used in the present study
[20] contains six sample labels based on the number of
CAG repeats, namely Q20, Q80, Q92, Q111, Q140 and
Q175. Samples with Q less than 26 are normal. Samples
with Q less than 35 are not sick but the offspring may
be sick. There are still some normal samples even though
the disease of samples with Q not less than 36 becomes
more serious as Q increases. Therefore, the sample label
information cannot identify normal samples and disease
samples precisely. We assume that samples with Q less
than 36 are normal and samples with Q greater than 140
are late-stage disease samples.

In order to extract differentially expressed genes in
different stages of disease development, we define the
samples of Q175 and Q111 as late-stage and mid-term-
stage samples respectively. The samples of Q140, Q92
and Q80 are defined as weak label samples of the late-
stage and mid-term-stage disease samples. We defined
the above label definition method as a two-label scheme.
Although weak label disease samples increase the dif-
ficulty of screening differentially expressed genes, it is
worth noting that these samples also provide some useful
information. In the present study, all the label information
is used to screen disease-related genes highly correlated
with Q. Therefore, the selected genes may be related to the
onset and progression of Huntington’s disease.

l2,1 regularization feature ranking method
l2,1 feature ranking method is a supervised feature selec-
tion method proposed in [17]. We select the top ranked
features by sorting the coefficient matrix. The objective
function of the l2,1 feature ranking method as follows [17]:

min
W ,b

m∑

i=1
‖ W T xi + b − yi ‖2

+ λ

2

m∑

i,j=1

∥∥∥W T xi − W T xj

∥∥∥
2

Si,j + γ ‖ W ‖2,1

(1)

Assume that we have m samples and n genes. The
gene expression data matrix is X = [x1, x2 · ··, xm] ∈Rn×m.
xi∈Rn means the ith sample. Y∈Rc×m denotes the tar-
get matrix. If the ith sample belongs to the jth class
yj,i = 1, 0 otherwise. For coefficient matrix W∈Rn×c, wi

and wj denote the ith row and the jth column of W. In
the method, heat kernel is used to measure the affinity
between samples, as defined in Eq. 2. � (xi) represents a
set of samples that share the same label with xj.

Si,j =
{

e− ‖xi−xj‖2

t2 if xi ∈ �
(
xj

)
or xj ∈ � (xi)

0 otherwise
(2)

The above objective function [17] consists of three
parts. The first part considers the global structure
information of the data; The second part considers the
local structure information of the data. l2,1 regulariza-
tion term is add in the objective function to guarantee
that some row coefficients shrink to zero. The coeffi-
cients’magnitude can measure the importance of a fea-
ture. The top-ranked features are selected by sorting{‖ wk ‖}n

i=1 in descending order.

The differentially expressed genes screening method based
on the weakly supervised learning model
The model consists of the following steps. Firstly, we
select normal samples and late-stage disease samples
(Q175) as the initial training set to screen differentially
expressed genes related to late-stage disease. In addi-
tion, we select normal samples and mid-term-stage dis-
ease samples (Q111) as the initial training set to screen
differentially expressed genes related to mid-term-stage
disease. Then, we use the l2,1 feature ranking method to
select the feature genes and add them to the differentially
expressed gene set. Additionally, the classifier is trained
on the training set while the remaining candidate weak
label samples are classified. Samples classified to the dis-
ease class are added to the training set and repeat the
above steps until the differentially expressed gene set con-
verges. Finally, the final set is the intersection of the two
differentially expressed gene sets. The above model makes
full use of the strong and weak sample label information
and generalizes the ability of model to select feature genes,
thus a stable and complete differentially expressed gene
set is obtained by the model. Figure 2 is a flow chart of the
differentially expressed gene screening method based on
the weakly supervised learning model.

Based on the above analysis, we summarize the pro-
posed iterative algorithm in Algorithm 1. M is a parameter
to control the number of differentially expressed genes
selected per iteration. θ is a parameter to control the
convergence condition. It denotes the proportion of the
updated differentially expressed genes to the differentially
expressed gene set.

The single-label scheme
Weak labels have different selection approaches in our
weakly supervised learning model. Defining correspond-
ing weak labels will get more accurate disease-related gene
set according the disease progression. In order to verify
that screening disease-related genes in the differentially
expressed gene set related to disease progression is more
accurate, we use Q140, Q111, Q92 and Q80 as the weak
label of the late-stage disease samples(Q175) to select
differentially expressed genes related to the late-stage dis-
ease. We defined the above label definition method as a
single-label scheme. Firstly, normal and late-stage disease
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Fig. 2 A basic flow chart of the differentially expressed gene
screening method based on weakly supervised learning model

samples are used as the initial training set. Then, weak
label samples classified to the late-stage disease class are
added to the training set to select differentially expressed
genes through algorithm 1. Although the single-label
scheme utilized the supervised effect of the weak label
samples in the selection of differentially expressed gene
set, it can only obtain a differentially expressed gene set
related to the late-stage disease progression. In contrast,
the differentially expressed gene set selected by the two-
label scheme is more stable and complete because it is
related to different stages of the disease progression.

Transductive support vector machine based on the
difference kernel function
Data have domain-specific features. Common kernel
functions may have limitations. If the prior knowledge of
the domain is known, we can design a mapping function
ϕ(x) to effectively elevate the result. In HD gene expres-
sion dataset, the feature of data is different experimental
condition, namely the severity of HD disease according
to the number of CAG repeats. Because disease-related

Algorithm 1: The differentially expressed gene
screening method based on weakly supervised
learning model

Input : Initial training set; Parameters M and θ ;
1 repeat
2 Use l2,1 feature ranking method to select genes

according to the training set;
3 The top ranked M genes are selected and

added to the differentially expressed gene set;
4 The proportion of the updated genes to the

differentially expressed gene set is less than θ ,
achieve convergence, otherwise enter step 5;

5 Train GBDT using the training set, then
classify the candidate weak label samples;

6 Add samples classified to the disease class to
the training set and the rest to the next
candidate sample set;

7 until convergence;
Output: The differentially expressed gene set;

genes and non-related genes are linear non-separable in
the original gene expression dataset, linear classifiers are
not available. We designed a mapping function ϕ(x) on
basis of understanding the biological knowledge of gene
expression data. The mapping function can achieve the
transformation from the feature space of the original data
to the difference space. In difference space, each feature
represents changes between the original adjacent features.
In addition, linear classifiers can be used in difference
space to achieve better results. The mapping function ϕ(x)

is formulated as Eq. 3.

ϕ(xi) = mQi − mQi+1 (3)

mQi = 1
nQi

nQi∑

j=1
xj (4)

Where Q =[ 20, 80, 92, 111, 140, 175]T denotes the set of
Q. The dimension of the original gene expression dataset
is n = n20 + n80 + n92 + n111 + n140 + n175. nQi denotes
the number of Qi samples. In Eq. 4, mQi is the average
of samples that share the same Q. We map the origi-
nal gene expression dataset into a difference space by the
mapping function ϕ(x). Each new feature represents the
difference between the average of two adjacent Q samples,
thus the difference kernel function maps the original gene
expression dataset to the difference space of expression
value changes. In the difference space, the affinity between
genes can be measured accurately. With the development
of disease, if the changes of expression values are similar,
the distance between genes get closer after the functional
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mapping. It is indicated that the two genes are related
during the disease progression. Therefore, differentially
expressed genes associated with disease-related genes in
the training set are very likely to be disease-related genes.
Based on the above biological theory, the classification
of genes is more biologically meaningful. Disease-related
genes and non-disease-related genes can be better distin-
guished in the difference space.

We use TSVM [18] based on the difference kernel
function (difference_TSVM) to further predict disease-
related gene in the differentially expressed gene set.
TSVM is a semi-supervised learning method based on
support vector machine (SVM) [21]. Thereinto, the
choice of kernel function is crucial. In the study, we
design a mapping function ϕ(x) on basic of the gene
expression dataset. The difference kernel function is
defined as

k
(
xi, xj

) = ϕ(xi)
T · ϕ (xi) (5)

In TSVM, we train SVM with the genes in the training
set to get parameters. The inner product of the original
data in the SVM dual form is replaced by the differ-
ence kernel function k

(
xi, xj

)
. Thus, the difference_TSVM

method is generated to select disease-related genes.

Results and discussion
Gene expression data
The gene expression dataset is about HD, which can be
download from http://www.hdinhd.org [20]. The dataset
were gotten from the striatum tissue of HD mice by
using RNA-seq technology and contains six sample labels
based on the number of CAG repeats. There are 48
Q20 samples, 32 Q80 samples, 32 Q92 samples, 32 Q111
samples, 32 Q140 samples and 32 Q175 samples in the
dataset. Samples with Q20 are normal. The disease of
samples becomes more serious as Q increases for the
rest samples. The gene expression dataset is composed
of 23,351. Thereinto, some genes have been confirmed
whether they are related to disease through biologi-
cal experiments. The training set contains 88 disease-
related genes and 428 non-disease-related genes in the
training set.

We conducted a preprocession to filter out noisy and
redundant genes. Firstly, We filtered out the genes with
expression value of 0, because they are not expressed dur-
ing the disease progression. Then we select genes with
large variance. Finally, we normalize the gene expression
data for every sample.

Evaluation
To verify the performance of the method, we use accu-
racy, true positive rate (TPR) and false positive (FPR) to
evaluate the prediction accuracy of disease-related genes.

TPR is defined as the ratio of correctly predicted pos-
itive samples to all positive samples. FPR is defined as
the ratio of incorrectly predicted samples to all negative
samples. Precision is defined as the ratio of correctly pos-
itive samples to all the predicted positive samples. Recall
is defined as the ratio of correctly positive samples to all
the positive samples. The receiver operating characteris-
tic (ROC) curves [22] are created by using TPR and FPR.
The precision-recall (PR) curves are created by using Pre-
cision and Recall. the area under ROC curves(AUC) and
the area under PR curves are used as evaluation criteria
for the prediction accuracy of disease-reated genes.

Performance comparison between differentially expressed
gene screening method based on weakly supervised
learning model and other algorithms
In the differentially expressed gene screening method
based on the weakly supervised learning model, we set
the number of differentially expressed genes selected
per iteration M = 1500 and the convergence con-
dition θ = 0.05 through multiple experiments. For
l2,1 feature ranking method, we set the parameters to
default values.

We use the weakly supervised learning model to select
differentially expressed genes. Then, GBDT is trained on
the differentially expressed gene set to classify samples.
For the selection of differentially expressed genes, three
competitive methods are chosen for comparison includ-
ing variance selection method, chi-square test [23] and l2,1
feature ranking method [17]. In order to ensure fairness,
the number of genes selected by the competitive meth-
ods is equal to the weakly supervised learning model. We
select normal samples and samples at different stages of
disease(Q175, Q140, Q111) as the initial training set to
select differentially expressed genes respectively. The clas-
sifier is trained on the three differentially expressed gene
set to classify samples.

The results of experiments are worthless when the Q
value of the sample label is small, so we use three groups of
disease samples with large Q value to conduct the experi-
ments. In experiments, we use ten fold cross validation to
evaluate the classification performance. As can be seen in
Figs. 3, 4 and 5, the differentially expressed gene screening
method proposed in the study outperforms other meth-
ods on the classification performance. Even though chi-
square test preforms well, it is necessary to determine the
number of differentially expressed genes in advance. How-
ever, it is impossible to know that how many differentially
expressed genes selected is suitable before experiments.
The number of differentially expressed genes selected
directly affects the classification results. The experimental
results demonstrate that the selected genes are differen-
tially expressed in normal and disease samples and related
to the disease progression.

http://www.hdinhd.org
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Fig. 3 The ROC curves of (Q20, Q175) classification results

Convergence analysis of the differentially expressed gene
screening method based on the weakly supervised
learning model
In Fig. 6, we plot the convergence curves of the model
under different parameter M. The Y-axis denotes the pro-
portion of the updated differentially expressed genes to
the differentially expressed gene set. The X-axis denotes
the number of iterations. It can be observed that our
model converges quickly and is not sensitive to the value
of the parameter M.

Performance comparison between difference kernel
function and other kernel functions
In the above differentially expressed gene screening step,
1691 differentially expressed genes were selected accord-
ing to the two-label scheme and 3136 differentially
expressed genes were selected according to the single-
label scheme. Then disease-related genes were further
selected from the two differentially expressed gene set
in the next experiment. The training set is composed of

Fig. 4 The ROC curves of (Q20, Q140) classification results

Fig. 5 The ROC curves of (Q20, Q111) classification results

516 genes, including 428 non-disease-related genes and 88
disease-related genes. We use ten fold cross validation to
evaluate the classification performance.

To verify the performance of the difference kernel func-
tion in the prediction of disease-related genes, we use
the semi-supervised learning model TSVM based on the
difference kernel function to select disease-related genes.
The method is implemented by the tool of SVM-light
[24]. We set the parameters to default values. In addition,
we conducted other experiments using the linear kernel
function and the radial basis kernel function (rbf ).

Figure 7 shows the ROC curves of TSVM based on
three different kernel functions for the two-label scheme.
However, we can see from Fig. 7 that the AUCs of the
three kernel functions are quite low. The closer the AUC
is to 1, the better the classification performance. It is
indicated that the HD pathological mechanism is com-
plicated, making it challenging to screen disease-related
genes only by the traditional algorithm model. Never-
theless, the AUC of the difference kernel function is
mildly improved compared with two other kernel func-
tions. Figure 8 shows the PR curves of TSVM based on
three different kernel functions for the two-label scheme.
The area under PR curve of the difference kernel function
is improved compared with two other kernel functions,
indicating that the difference kernel function can make
disease-related genes rank higher. The prediction preci-
sion of the difference kernel function is alse higher for
top ranked genes compared with two other kernel func-
tions. As we can see that the PR curves of the linear kernel
and rbf kernel fluctuate sharply when the recall rate is
small, indicting that they are lack of stability. Figures 9
and 10 shows the classification results of TSVM based
on three different kernel functions for the single-label
scheme. We can see that the prediction precision of the
difference kernel function is higher than two other kernel
functions.
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Fig. 6 Convergence analysis of differentially expressed gene screening method based on weakly supervised learning model

Fig. 7 The ROC curves of TSVM classification results based on three
kernel functions for the two-label scheme

Fig. 8 The PR curves of TSVM classification results based on three
kernel functions for the two-label scheme
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Fig. 9 The ROC curves of TSVM classification results based on three
kernel functions for the single-label scheme

From the above experiments, we find that the two-label
scheme is superior to the single-label scheme. Because the
two-label scheme can obtained a complete set of differen-
tially expressed genes by screening differentially expressed
genes in late-stage and mid-term-stage of disease progres-
sion. Therefore, a more accurate disease-related gene set
can be obtained by difference_TSVM using the two-label
scheme.

The following experiments analyze the prediction accu-
racy of the two-label scheme. From Fig. 11, we can see
the accuracy of each group in the ten fold cross valida-
tion based on different kernel functions. The prediction
accuracy of the difference kernel function is relatively sta-
ble and high compared with two other kernel functions.
It is indicated that difference_TSVM has good robustness.
From Fig. 12, we can see the average prediction accuracy
based on different kernel functions. The X-axis denotes
different kernel functions. The Y-axis denotes average
prediction accuracy. The average prediction accuracy of
the difference kernel function is 0.766, then linear kernel

Fig. 10 The ROC curves of TSVM classification results based on three
kernel functions for the single-label scheme

Fig. 11 The accuracy of 10-fold cross-validation for the two-label
scheme

function is 0.685, then rbf kernel function is the lowest
(0.67).

In conclusion, the performance of the difference kernel
function is better than other kernel functions in selecting
disease-related genes. Because the difference kernel func-
tion considers the biological knowledge in gene expres-
sion dataset. The two-label scheme is superior to the
single-label scheme. Therefore, screening differentially
expressed gene set at different stages of the disease devel-
opment is helpful to obtain an accurate disease-related
gene set.

Performance comparison between transductive support
vector machine method based on difference kernel
function and other algorithms
In order to further verify the performance of differ-
ence_TSVM, we compare it with SVM based on rbf
and label propagation method based on semi-supervised
learning model [25]. From Fig. 13, we can see that
the ROC curves of the three methods are similar. The

Fig. 12 Comparison of average classification accuracy for the
two-label scheme
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Fig. 13 The ROC curves of classification results for the two-label
scheme

prediction accuracy of difference_TSVM is higher than
two other methods. Because the difference kernel func-
tion can map the original gene expression dataset to the
difference space. Linear classifiers can classify disease-
related genes and non-disease-related genes accurately.
The classification accuracy of the label propagation
is higher than SVM based on rbf because the semi-
supervised method can make full use of the unlabeled
data in the dataset to predict disease-related genes. From
Fig. 14, we can see the PR curves of the three method.
The classification performance of difference_TSVM is
improved compared with two other methods when the
recall rate is less than 0.3, indicating that the predic-
tion accuracy for top ranked genes of difference_TSVM
is higher. From Figs. 15 and 16, we can see the ROC and
PR curves of the experimental results for the single-label
scheme. We can know that the performance of differ-
ence_TSVM is better than two other methods.

From the above experiments, the difference_TSVM
has advantages in the prediction disease-related genes.

Fig. 14 The PR curves of classification results for the two-label scheme

Fig. 15 The ROC curves of classification results for the single-label
scheme

Compare two groups of experiments, the classification
results for the two-label scheme are more accurate. It is
indicated that considering weak and strong label informa-
tion of samples to extract differentially expressed genes at
different stages of disease development can obtain a more
accurate disease-related gene set.

The experiments demonstrate that difference_TSVM
outperform other methods in the prediction of disease-
related genes through the comparison and analysis of the
experimental results using the above two evaluation cri-
teria. The known label genes and differentially expressed
gene set were used as the training set. We used differ-
ence_TSVM to select disease-related genes in the differ-
entially expressed gene set. Finally, we select 363 disease-
related genes to further analyze molecular of disease.

Conclusion
In the study, we designed a disease-related gene mining
method based on the weakly supervised learning model.

Fig. 16 The PR curves of classification results for the single-label
scheme
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We separated the model into two steps. In the first step,
the differentially expressed genes are screened based on
the weakly supervised learning model. In the model, the
strong and weak label information at different stages of
the disease development is fully utilized. The final differ-
entially expressed gene set is the intersection of the two
differentially expressed gene sets. In our model, differen-
tially expressed genes related to the disease development
is selected accurately. We can distinguish disease samples
from normal samples using the selected genes. In the sec-
ond step, we proposed the difference kernel function to
map the original data to the difference space. In the dif-
ference space, the affinity between genes can be measure
more accurately. Then, we use TSVM based on the dif-
ference kernel function to classify differentially expressed
genes. The experiments firstly demonstrate that the dif-
ferentially expressed genes screening method is effec-
tive. It also suggests that the performance of two-label
scheme is better than single-label scheme. The difference
kernel function achieves better performance compared
with other kernel functions. Finally, the analysis of the
expermental comparison verifies the disease-related gene
mining method based on the weakly supervised learning
model improved the prediction accuracy compared with
other methods.
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