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Abstract

Background: In recent years, deep learning methods have been applied to many natural language processing tasks
to achieve state-of-the-art performance. However, in the biomedical domain, they have not out-performed
supervised word sense disambiguation (WSD) methods based on support vector machines or random forests,
possibly due to inherent similarities of medical word senses.

Results: In this paper, we propose two deep-learning-based models for supervised WSD: a model based on
bi-directional long short-term memory (BiLSTM) network, and an attention model based on self-attention
architecture. Our result shows that the BiLSTM neural network model with a suitable upper layer structure performs
even better than the existing state-of-the-art models on the MSH WSD dataset, while our attention model was 3 or 4
times faster than our BiLSTM model with good accuracy. In addition, we trained “universal” models in order to
disambiguate all ambiguous words together. That is, we concatenate the embedding of the target ambiguous word
to the max-pooled vector in the universal models, acting as a “hint”. The result shows that our universal BiLSTM neural
network model yielded about 90 percent accuracy.

Conclusion: Deep contextual models based on sequential information processing methods are able to capture the
relative contextual information from pre-trained input word embeddings, in order to provide state-of-the-art results
for supervised biomedical WSD tasks.
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Background
In the health and biomedical domain, valuable informa-
tion can be mined from a huge amount of unstructured
data, such as scientific literature, clinical narratives in the
electronic health records, and health-related postings on
social media [1]. Similar to natural language processing
(NLP) in the general domain, knowledge discovery and
information extraction require specialized tasks such as
syntactic parsing, named entity recognition (NER), and
relation extraction. In NER, an important step is to decide
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the correct sense of an ambiguous word or phrase based
on its context. Otherwise, the accuracy of downstream
NLP applications such as sentiment analysis and text
classification will suffer.

In the biomedical NLP area, well-curated medical ter-
minologies and lexicons lay a solid foundation. The Uni-
fied Medical Language System (UMLS), which consists
of over 200 biomedical terminologies and ontologie, has
more than ten million terms and three million concepts.
The terms with the same meaning are mapped to the same
concepts. For example, myocardial infarction and heart
attack are mapped to the same concept, which is assigned
a concept unique identifier (CUI). Biomedical NER is usu-
ally realized by correctly recognizing and mapping an
entity mentioned in the sentence to a concept in the
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UMLS. For instance, the term nursing has two concepts in
the UMLS: Discipline of Nursing and Breast Feeding. In the
sentence “Breastfeeding is in general safe but needs appro-
priate observation of the nursing infant.” nursing refers to
Breast Feeding, whereas in another expression “Strategic
research, technological innovation and nursing”, nursing
refers to Discipline of Nursing.

Biomedical texts often contain a series of lexical ambi-
guities, such as abbreviations and polysemous terms. For
instance, the acronym CRF may refer to chronic renal
failure, or corticotropin-releasing factor. Some terms have
different but very similar meanings. For instance, malaria
may refer to the disease malaria, or the malaria vac-
cine. When extracting information from biomedical texts,
selecting the correct meaning (“sense”) for an ambigu-
ous term based on its context is called word sense
disambiguation (WSD) [2].

Biomedical WSD has been a long-standing challenge
for more than 20 years. Many biomedical WSD methods
have been developed. As far as 2004, Liu et al. evalu-
ated supervised methods including decision lists [3] and
Naive Bayes. In 2006, Xu et al. [4] improved the super-
vised approaches and indicated that the error rate of
supervised approaches is proportional to the similarity
of senses. Also, it is very expensive to generate a labeled
corpus. Researchers tried to reduce the labeling costs by
several different approaches. Wang et al. [5] proposed an
interactive learning method to reduce labeling expense
while outperforming the active learning approach. Semi-
supervised learning is another type of approaches. In
Liu et al. [6], labeled data is first generated automati-
cally from UMLS and MEDLINE databases, then used
to train supervised algorithms. Similarly, Yu et al. used
MEDLINE abstracts to create labeled data for their super-
vised training algorithms [7]. Besides these efforts, Xu et
al. leveraged knowledge from dictated dispatch discharge
in the clustering analysis and estimated sense frequency
for WSD [8]. In addition, Duque et al. completed the
same task by incorporating external knowledge resource.
They leveraged co-occurrence information in a graph-
based unsupervised WSD method [9]. Yepes et al. [10]
conducted a study comparing four different knowledge
based methods. The best results were obtained via a WSD
method using the semantic types assigned to the concepts
in the UMLS Metathesaurus. The context of the ambigu-
ous word and semantic types of the candidate concepts are
mapped to journal descriptors. The journal descriptors
are compared to choose among the candidate concepts.
Sabbir et al. [11] used a concept mapping tool MetaMap
to label a corpus of PubMed abstracts with UMLS CUIs.
They used the Word2Vec algorithm [12] to generate con-
cept embeddings. They used cosine similarity and K-NN
algorithm to disambiguate the words in the MSH WSD
dataset, reporting state-of-the-art results achieved by an

unsupervised system. However, Sabbir et al. pointed out
that their approach may be considered weakly supervised
because of the use of MetaMap. Rais et al. [13] introduced
No Distance Sense Relate, a modification of the Sense
Relate Algorithm. No Distance Sense Relate ignores the
distance of the context word from the word being disam-
biguated, therefore all the terms in the context have an
equal weight. No Distance Sense Relate method, evaluated
on the MSH WSD dataset, consistently yielded a higher
accuracy with a window size of 3. However, with a window
size of 2, Sense Relate method yielded a higher disam-
biguation accuracy than No Distance Sense Relate. It was
concluded that depending on the window size, the dis-
tance between the target word and the terms in the con-
text can influence the accuracy of the model differently.
Recently, with the promise of deep neural networks in
NLP tasks, specialized neural network architectures have
been developed for WSD. Typical approaches include
the recurrent convolutional neural networks evaluated by
Festag and Spreckelsen [14], and the LSTM network pro-
posed by Yepes [15]. These approaches indicate that a
large amount of high-quality, annotated data is required
to achieve satisfactory performance in WSD.

To infer the correct sense of an ambiguous word, exist-
ing WSD methods often leverage the information of the
context. However, merely focusing on the co-occurrence
of ambiguous words may not be sufficient to determine
their correct senses. Consider the word contract in this
example: “Since one of the workers contracted leukemia,
the company hired a well-known law firm to protect itself
in case of the potential lawsuit,”. The presence of “work-
ers”, “company”, “firm” and “law” may overweight the
word “leukemia”, indicating that to contract in this con-
text means making a legal agreement with someone, rather
than its correct sense catching or becoming ill with a
disease. We thus believe that it is necessary to use a
sequential information processing system to resolve this
issue and capture semantic relations in the context. More-
over, the local context of the target ambiguous word may
not provide enough information for WSD. Say, in order to
decide the correct meaning (sense) of the word nursing in
the sentence “The absolute need to articulate the gender
issue in nutrition, nursing and medical academic curric-
ula is stated.”, a large context is required even for humans.
Typically, a suitable context should be part of the para-
graph. Since most paragraphs in our dataset are usually
within 200 words, we will use the entire paragraph to infer
the meaning of each ambiguous term.

In this work, we apply deep contextual representations
[16] to establish two supervised WSD systems: (1) a WSD
system based on both a multi-layer bidirectional Long
Short-Term Memory (BiLSTM) neural network model,
and (2) a WSD system based on the self-attention model.
Note that this work is based on our previous work [17]:
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We apply the same BiLSTM neural network model from
[17], but we further build an attention model with the
self-attention architecture introduced in [18]. Also, we
further expand our previous research on universal WSD
systems in this work. The contributions of this work are
three-fold:

First, we build a deep contextual representation of a tar-
get ambiguous word, using the output from two layers
of the BiLSTM network or the attention architecture.
In contrast to [16], in which weighted summation of
the lower layers is applied, we perform a max-pooling
operation to extract related features from the con-
text. Our models take pre-trained word embeddings as
inputs. However, note that our BiLSTM network and
attention model are not pre-trained on any other gen-
eral NLP datasets, but trained end-to-end on the WSD
dataset.

Second, our contextual representation is not only “deep”
but also “wide”: We use the outputs at multiple time
steps, rather than only using the output at time-step t,
where xt is the target word embedding. Then, we perform
the max-pooling operation along the time-step. As our
results show, larger and wider contexts lead to significant
improvements in prediction accuracy.

Third, we make efforts to develop universal models for
biomedical WSD. All the existing methods (e.g., [14, 15])
build a model for each ambiguous word separately. In
contrast, we design universal WSD models by concate-
nating the embedding of the target ambiguous word with
the max-pooled output. Then we train both the BiLSTM
neural network model and the self-attention model on all
the words in the dataset. Experimental results show that
this concatenation design significantly increases the pre-
diction accuracy of our universal BiLSTM neural network
model. Furthermore, the prediction accuracy on some
words are higher when using the universal network than
the word-specific ones.

The rest of this paper is organized as follows: We pro-
vide a detailed explanation on both of our models in the
“Methods” section, in which all the four structures and the
hint layer are discussed in detail. In the “Results” section,
the results and operating details of our experiments are
provided. Then, we provide a comprehensive analysis
on our models in the “Discussion” section, including
the advantages and potential weaknesses of the BiLSTM
neural network model against the self-attention model.
Finally, we conclude this work with a summary and our
future research plans in the last section.

Methods
In this section, we shall introduce our methods in detail.
We provide two approaches: a WSD method based on a
BiLSTM neural network, and a WSD method based on the
self-attention model introduced in [18].

Note that both of our BiLSTM neural network model
and our attention model share the same upper layer struc-
ture: We designed four different transformation structures
to operate on the outputs of the two BiLSTM layers or
the two attention layers (both our BiLSTM model and
our attention model are always a stack of two identical
layers). Then, a max-pooling layer shall operate on the
chosen transformation structure to generate a dense
embedding. Finally, an optional concatenation between
the target ambiguous word embedding and the dense out-
put embedding may be implemented before the softmax
result.

The novelty of our work lies in the four transformation
structures and the optional concatenation in the upper
layer. We will introduce this architecture together with the
BiLSTM model in the first subsection. Then in the second
subsection, we will provide a detailed introduction to the
attention architecture.

WSD Method based on the BiLSTM Network
In this subsection, we shall first introduce the structure of
an LSTM cell. Then, our adjustments to the LSTM output
and the concatenation of the target word embedding to
the max-pooled vector in the upper layer of our neural
network model are introduced in detail.

Long Short-Term Memory Networks
Long Short-Term Memory (LSTM) is a gated Recurrent
Neural Network (RNN) introduced by Hochereiter and
Schimdhuber in 1997 [19] and refined by Gers in 1999
[20]. The structure of an LSTM cell is shown in Fig. 1.
Mathematically, the operation within an LSTM cell can be
described as:

it = σ(Wxixt + Whiht−1 + bi) (1)

ft = σ(Wxf xt + Whf ht−1 + bf ) (2)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (3)

ot = σ(Wxoxt + Whoht−1 + bo) (4)

ht = ot tanh(ct) (5)

Here, σ represents the sigmoid function: σ(x) = 1/(1 +
exp(−x)). And as we mentioned above, there are three
“gates” operating in an LSTM cell: The forget gate is
denoted as ft ; the input gate as it ; and output gate as ot .
Within an LSTM cell, the three gates shall operate with
the trainable matrices W to keep “valuable” information
from previous time steps and eliminate “invaluable” parts
according to the provided label. This operation is a recur-
rent process, which has been introduced in detail in our
previous paper [17]. For brevity, we will not repeat the
details here.
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Fig. 1 The structure of an LSTM cell. This figure comes from [26], with minor adjustments applied

Thanks to the ability to capture long-term seman-
tic dependencies and the superior performance on long
sequences, the LSTM is commonly used in many NLP
tasks. In this work, we will use a specific type of LSTM, the
Bidirectional LSTM (BiLSTM) [21]. In case of BiLSTM,
the input sequence will be processed in both forward
and backward directions, with independent parameters in
each direction. The outputs at each time-step from both
directions are concatenated and become the input of the
BiLSTM in the next layer, in case of multiple layers. As
such, the complete information about the whole input
sequence will be captured by the neural network node at
any time-step. In order to take advantage of this feature,
we use BiLSTM networks to better capture the semantic
relations on both sides of the target word.

Structure of the upper layer
We use the BiLSTM neural network model as the example
to show the structure of the upper layer. As we men-
tioned above, the BiLSTM neural network model and the
attention model share the same upper layer structure. In
order to build the complete architecture of our atten-
tion model, one only needs to replace each BiLSTM layer
with an attention layer, keeping all the other structures
unchanged.

For the training of the BiLSTM neural network, we use
25 words before and after the target ambiguous word as
the input in order to reduce training time. As shown in the
Results subsection, the overall performance is improved
when the network is trained with full paragraphs. Suppose

the first layer output is Y = (y1, · · · , yT ), and the sec-
ond layer output is Z = (z1, · · · , zT ), with yi and zi to
be vectors with the same dimension D, i.e., yi, zi ∈ R

D .
And after applying different layer settings, we decide that
a two-layer BiLSTM with dropout [22] provides the best
performance.

We design in total four optional structures to perform
on top of the BiLSTM to adjust its output. We use H to
represent the output of each structure. Then, these four
structures can be described as the followings:

(i) We directly use the output from the BiLSTM. That
is, H = Z.

(ii) We perform weighted summation between Y and Z.
That is, H = λY + (1 − λ)Z, where λ ∈[ 0, 1] is a
variable.

(iii) We concatenate Y and Z along time steps. That is,
since both Y and Z are T × D tensors, H will be a
2T × D tensor.

(iv) We concatenate Y and Z along each vector y and z.
That is, H will be a T × 2D tensor.

After a specific upper layer structure is chosen, we
perform a max-pooling operation along time-steps on
H to get h ∈ R

D (or R
2D in case of structure (iv)).

That is, we pick the maximum value along the time-
steps within each dimension d ∈ D (or 2D). Based
on these settings, we hope that the context vector h
can capture the context information that is sufficient for
disambiguation.
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In addition, an optional step C is provided: The target
word embedding xk and the context vector h will be con-
catenated to form the context−word embedding ξ =
[ h, xk]. Finally, the vector ξ (or h if the optional layer is
not applied) passes through two dense layers with 256 and
64 hidden units respectively, before the softmax output.
We will provide experimental results from neural network
models with or without the optional layer C. The results
confirm our assumption that the optional layer C is more
beneficial in case of the universal model than the word-
specific model, which is discussed in the “Discussion”
section. The complete network structure is shown in
Fig. 2. For clarity, we only specify the version (iii) in it.

Training
In each training step, we give a paragraph (w1, · · · , wT )

with the target ambiguous word wt marked out. There is
only one target ambiguous word in each paragraph. For
an ambiguous word w, its possible senses are labeled as
M1, M2, etc. The correct sense Mi of w of the ambiguous
word is given at the end of the paragraph. The label set
{Mi} is shared by all ambiguous words, which means the
label itself does not specify a UMLS concept, and contains
no semantic information.

Then, the corresponding pre-trained word embedding
(x1, · · · , xT ) is obtained from the embedding matrix
accordingly. We either use the full paragraph as the
input, or use a fixed-length input with 25 words before
and after xt , i.e., (xt−25, · · · , xt−1, xt , xt+1, · · · , xt+25). For
simplicity, we mostly use X = (x1, · · · , xT ) to repre-
sent the sequence in this paper without specifying what

kind of input method we use. We shall specify it when
necessary.

Implementation details
We applied exponential decayed learning rate: Starting
from 0.05, the learning rate decays every 2500 steps with
a base equals to 0.96. We used Adagrad Optimizer due to
its suitability for training on sparse data and its ability to
perform more informed gradient-based learning [23]. In
addition, we used an early stopping technique in order to
make learning process more time-efficient. Since the tar-
get ambiguous words in the MSH WSD dataset do not
have the same number of training items, we decided to
save a checkpoint when the lowest validation loss is noted.
We restored the checkpoint and stopped the training if
the prediction accuracy did not decrease after 5 epochs
on the validation set. This method applies dynamic train-
ing epochs and hence makes the training more flexible for
different input files. All our models were implemented in
TensorFlow [24].

WSD Methods based on the Attention Model
Our attention model has the same upper layers as our
BiLSTM neural network model. That is, as we men-
tioned, we only use the attention layer to replace the
BiLSTM network layer when switching from the BiL-
STM neural network model to the attention model. The
structures (i) through (iv), the max-pooling layer and
the optional layer C are all the same. We shall note
that the attention architecture in this work is mainly
based on the self-attention encoder and decoder in [18].

Fig. 2 Contextual dependent neural network with the concatenation of LSTM outputs along time-step, as well as the optional layer C. This graph
comes from our previous paper [17]
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To be specific, we only apply the encoder architec-
ture from [18], since our WSD task is not complicated
enough to apply the decoder. One can find an overall
discussion on the self-attention encoder and decoder
models in [18].

We shall use five parts in this subsection to present the
attention architecture used in this paper: Part one serves
as a general introduction, indicating that our attention
architecture is actually a stack of several identical atten-
tion layers (or identical encoder layers). Part two intro-
duces the scaled dot-product attention, the core attention
mechanism in an encoder layer. Part three indicates that in
each encoder layer, a number of scaled dot-product atten-
tions shall operate in parallel to provide multiple outputs,
which will then be concatenated and projected into one
final attention output. This process is called multi-head
self-attention (or multi-head attention in short). Part four
shows the structure of the feed-forward network, which
is located on top of the multi-head attention within an
encoder layer. Finally, part five indicates how the order
of sequence of the input words is encoded into the input
embeddings.

General attention architecture: A stack of identical layers
Our attention architecture is actually the encoder of the
Transformer in [18]. We only use the encoder of the

Transformer since our task is to provide the correct
label on the sense of the ambiguous word based on the
inputs, whose complexity is not high enough for a decoder.
The complete encoder layer is a stack of two identical
encoder layers. The structure of one encoder layer is
shown in Fig. 3.

Similar to the BiLSTM model, the input to the atten-
tion architecture is pre-trained word embeddings X =
(x1, · · · , xT ). Then, the attention architecture shall per-
form on the input to obtain an output Y = (y1, · · · , yT ).
In our model, both the input embeddings and the out-
put embeddings have the same dimensions dxt = dyt =
dmodel = 200.

Each layer of the encoder consists of two sub-layers:
A multi-head self-attention sub-layer, and a position-wise
fully connected feed-forward sub-layer. Also as shown
in Fig. 3, a residual connection is applied to each sub-
layer before a normalization. That is, suppose the input
to one sub-layer is X and the functional implementation
of this sub-layer is Sublayer(X). Then, the output of this
sub-layer is LayerNorm(X + Sublayer(X)).

Within the multi-head self-attention sub-layer, the
major attention operations are implemented by the mech-
anism called Scaled Dot-Product Attention, which is a
self-attention mechanism. These structures are shown
in Fig. 4.

Fig. 3 The structure of an identical encoder layer



Zhang et al. BMC Bioinformatics 2019, 20(Suppl 16):502 Page 7 of 15

Fig. 4 The scaled dot-product attention and multi-head self-attention

We introduce the scaled dot-product attention in the
next part, and subsequently the multi-head attention.

Scaled Dot-Product Attention
The initial inputs to the scaled dot-product attention are
the input embeddings X = (x1, · · · , xT ). But X is not the
direct input: Consider X = (x1, · · · , xT ) as the stack of
each input embedding xt , which makes X a T × dmodel
matrix. Then, three matrices are generated based on X as
the direct inputs to scaled dot-product attention as:

• The Query Q = XWQ, where WQ is a dmodel × dq
matrix and hence Q is a T × dq matrix.

• The Key K = XWK , where WK is a dmodel × dk
matrix and hence K is a T × dk matrix. And the scaled
dot-product attention follows dq = dk .

• The Value V = XWV , where WV is a dmodel × dv
matrix and hence V is a T × dv matrix.

We will introduce the operation of the scaled dot-
product attention based on each column of the matrices
Q, K and V. As such, the intuitive meaning of each matrix
can be reflected. Take the first word embedding x1 as an
example: We create its query vector q1 = x1WQ, its key
vector k1 = x1WK and its value vector v1 = x1WV . Then,
its query vector q1 will do inner product: pt = q1·kt

T with
all the key vectors k1, · · · , kT generated via kt = xtWK

(Here, the capital T on kt
T means vector transformation,

which has nothing to do with time steps of the input).
The scaled product pt represents the amount of atten-

tion the word w1 shall put onto the word wt . So, “query”

means a “consultation” from a word, and “key” means the
own property of a word. The inner product between the
query vector of one word and the key vector of another
represents how important the latter word is to the former
one, according to the level of the match between the key
and the query.

Then, a softmax is implemented on p1 through pT after
dividing them by

√
dk :

(s1, · · · , sT ) = Softmax
(

p1√
dk

, · · · ,
pT√

dk

)

= Softmax
(

q1T · k1√
dk

, · · · ,
q1T · kT√

dk

)

Finally, a weighted summation is implemented between
(s1, · · · , sT ) and (v1, · · · , vT ) to get the output z1 with
respect to the input embedding x1 as: z1 = ∑T

t=1 stvt .
The vectors z2, · · · , zT are generated similarly with

respect to x2, · · · , xT . Then, the stack of vectors Z =
(z1, · · · , zT ) is the output matrix of the scaled dot-product
attention. Since vector z has dimension dv as vector v, we
have that the matrix Z is T × dv.

In addition, the inner products between vectors q and k
can be represented by matrix multiplication. Combining
the softmax weighted summation, we can use the follow-
ing concise formula to represent the operation of scaled
dot-product attention:
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Attention(X) = Attention
(

XWQ, XWK , XWV
)
=Attention(Q, K, V)

= Softmax
(

QKT
√

dk

)

V = Z

The reason to divide the dot product between query
vectors and key vectors by

√
dk is that, the dot prod-

uct grows large in magnitude if dk is large. And a large
magnitude of the dot product shall push the softmax func-
tion into a region with small gradient. As a result, the
scaled dot-product attention shall divide the dot product
between q and k by

√
dk to control the magnitude.

However, a single scaled dot-product attention will not
be the final output of the attention mechanism in one
identical encoder layer. Instead, the final output is based
on a concatenation of multiple scaled dot-product atten-
tion mechanisms, which also generate the output tensor
with the same shape as the input embeddings X.

Multi-head attention
Instead of implementing a single scaled dot-product
attention, the authors of [18] implemented multiple of
them in parallel. That is, multiple sets of queries, keys and
values are generated based on the same input embeddings
X, and then a scaled dot-product attention is implemented
on each set in parallel. After that, the outputs from these
scaled dot-product attentions are concatenated and pro-
jected linearly to get a final output. This process is shown
in the right hand side of Fig. 4.

That is,

Multi−Head Attention(X) = Concat(head1, · · · , headh)WO = Z,

with headi = Attentioni(X) = Attention
(

XWQ
i , XWK

i , XWV
i

)
.

where the projection matrices WQ
i ∈ R

dmodel×dq , WK
i ∈

R
dmodel×dk and WV

i ∈ R
dmodel×dv for i = 1, 2, · · · , h

are independent in different heads. The final projection
matrix is WO ∈ R

hdv×dmodel . Similar to the single scaled
dot-product attention, we always have dq = dk .

In this work, we apply multiple h values. We always set
dk = dv = dmodel/h in the multi-head attention sub-layer.
No matter what values dk , dv are, the final output Z of
the multi-head attention sub-layer is always a T × dmodel
matrix. This is because the concatenation of the heads
generates a T × hdv matrix, which is used to multiply
WO ∈ R

hdv×dmodel to produce the output Z ∈ R
T×dmodel .

As a result, Z shall have the same shape as the input
embeddings X, so that the residual connection can be
implemented.

The multi-head attention is more beneficial than a single
scaled dot-product attention for several reasons. By apply-
ing multiple attention heads, the final linear projection
WO can provide the result based on independent atten-
tion outputs, which will reduce the error rate. We will
discuss this further in the “Discussion” section.

However, the final output from the multi-head atten-
tion sub-layer is not directly used as the encoder output.
A feed-forward neural network operates on the output
from the multi-head attention sub-layer in order to get a
further filtered and projected result. We shall introduce
the structure of the feed-forward network in part four
of this subsection, and provide a brief analysis on why
we need a feed-forward neural network on top of the
attention mechanism in the “Discussion” section.

Position-wise feed-forward networks
Above the attention sub-layer in one identical encoder,
there is the position-wise feed-forward network, whose
input is the output Z of the multi-head attention sub-layer.
The position-wise feed-forward network shall operate on
each column of Z separately and identically. This oper-
ation consists of two linear transformations and a ReLU
activation in between. That is, suppose Z = (z1, · · · , zT )

with zt ∈ R
dmodel . Then, we have that

FFN(Z) = (FFN(z1), · · · , FFN(zT )),
with FFN(zt) = max(0, ztW1 + b1)W2 + b2,

where the maximum (ReLU activation) is performed iden-
tically on each dimension.

While the linear transformations are the same for all
zt , the parameters {W1, W2, b1, b2} can be different from
layer to layer. We always have W ∈ R

dmodel×dmodel and
b ∈ R

dmodel , so that the final output FFN(Z) shall have the
same dimensionality as the input embeddings X.

Then, as we mentioned at the beginning of this sub-
section, the same upper layers as in the BiLSTM neural
network model are applied on top of the attention archi-
tecture here. That is, the output FFN(Z) from each of
the two identical encoder layers shall play the same role
as the output from each BiLSTM layer, so that struc-
ture (i) through structure (iv) may be performed right
after.

Note that the attention architecture introduced in the
above four parts contains no convolutional or recurrent
structure to deal with sequential information. As a result,
an additional method is required to make use of the order
of sequence of the input words. This method is called
positional encoding, which is discussed in the final part of
this subsection as follows.

Positional Encoding
In language modeling, the order of the input sequence
usually contains important information. So a language
modeling system should have an efficient mechanism
to make use of the order of the input sequence.
Although the attention architecture in [18] has no con-
volutional or recurrent structure to process the sequen-
tial information, an encoding method is applied to
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directly encode the order of input words into the input
embeddings.

That is, for the input embeddings X = (x1, · · · , xT ), the
positional embeddings PE = (pe1, · · · , peT ) are gener-
ated with

pet,2i = sin
(

t
100002i/dmodel

)
,

pet,2i+1 = cos
(

t
100002i/dmodel

)
.

where pet,2i means the i’th dimension of the positional
embedding pet . Then a simple matrix addition X + PE
provides the actual input embeddings to the attention
architecture. In this way, the positional information is
injected into the embedding by the sinusoid function.

The reason to choose sinusoid functions is based on the
assumption that they would allow the model to easily learn
to attend by relative positions, since for any fixed k, pet+k
can be represented as a linear function of pet .

Results
In this section, we will introduce our experimental set-
tings and results. We will also compare our results with
the results from other papers. Both our BiLSTM model
and our self-attention model produce promising perfor-
mance. But in general, our BiLSTM model works better,
providing the state-of-the-art performance on the MSH
WSD dataset.

We used the same experimental settings for both of
our approaches: The word embeddings are pre-trained
with the skip-gram model by Mikolov et al. [12] on the
joint dataset Wikipedia + PubMed + PMC. And all our
models were trained on the MSH WSD dataset, consist-
ing of 203 separate files. Each file contains around 200
paragraphs, which are the training corpus of a specific
biomedical ambiguous word, whose location is marked
out in each paragraph. However, 17 out of 203 ambiguous
words do not have corresponding pre-trained embedding.
As as result, our training and evaluating were performed
on the remaining 186 words.

We used the same training method for these two
approaches: We trained a single BiLSTM neural net-
work model on all the 186 words simultaneously to get a
universal WSD network. In other words, we merged all
the 186 datasets into a large one and then trained the
models with it. We trained one BiLSTM neural network
model on each dataset of an ambiguous word w to get
186 word-specific WSD networks in total. Similarly, we
trained a universal WSD attention model on the merged
dataset, and 186 word-specific WSD attention models on
the dataset for each ambiguous word w.

We found that the model using the whole paragraph as
the input yields better results than that using 25 words

before and after the target ambiguous word in the para-
graph. However, training on the whole-paragraph input is
much more expensive than that on the 25-25-word input
for a deep neural network. As a result, we trained most
of our BiLSTM neural network models using the 25-25-
word input. That is, we chose the neural network model
with best performance on the 25-25-word input, then we
trained it using the input consisting of whole paragraphs.
On the other hand, the training of the attention model is
much more efficient than that of the deep networks. As
a result, we always used the entire paragraph as the input
for the attention model.

When training both universal and word-specific models
with both deep network and self-attention architectures,
we always randomly picked 70% of the paragraphs as the
training set, while 10% and 20% of the paragraphs were
used as the validation and testing sets, respectively.

Based on the above settings and the early stopping
technique, our best performance reached test accuracy
of 96.00%, which came from the word-specific BiLSTM
neural network model with the time-step concatenation
(structure (iii)) and without layer C, trained on the whole-
paragraph inputs. Then, since structure (iii) provides the
best result for the BiLSTM neural network model among
all the four structures, we only trained our attention
model (both word-specific and universal) with structure
(iii). After applying several different values of h in the
multi-head attention, we found that the attention model
in general is slightly less accurate than the neural net-
work models, although the training is 3 to 4 times faster
than that of the neural network models. Our best test
accuracy of the word-specific attention model is 93.94%,
coming from the model with h = 2 trained on the
whole-paragraph inputs. We show the results from our
word-specific models in Table 1.

Here, we use basic NN, sum NN, cct-T NN and cct-
V NN to refer to the BiLSTM neural network model
with structure (i), (ii), (iii), and (iv), respectively. All of
these four models were trained with the 25-25-word
input. The Cct-T NN whole-paragh refers to the BiL-
STM neural network model with structure (iii) trained on
the whole-paragraph input. Attention cct-T whole-paragh

Table 1 Average test accuracy (in percent) by word-specific
models with structure (i) through (iv), with and without layer C
Models with C without C
Basic NN 93.40 94.25

Sum NN 93.60 94.48

Cct-V NN 94.41 94.78

Cct-T NN 94.50 94.87

Cct-T NN whole-paragh NA 96.00

Attention cct-T whole-paragh 93.80 93.94



Zhang et al. BMC Bioinformatics 2019, 20(Suppl 16):502 Page 10 of 15

refers to the word-specific attention model with structure
(iii) trained on the whole-paragraph inputs. From Table 1,
we can see that the optional layer C actually reduces the
accuracy of word-specific models, which will be further
discussed in the “Discussion” section.

Finally, we randomly choose approximately 90 percent
of the paragraphs from each file as our training set, and the
remaining 10 percent paragraphs are used as our testing
set. Then, our best performing model, the BiLSTM neu-
ral network model under structure (iii) without layer C,
is trained with the whole-paragraph inputs. The training
always stops after 50 epochs, since there is no validation
set for early stopping technique. With these settings, our
testing accuracy reaches 97.14%. To the best of our knowl-
edge, this result surpasses the existing state-of-the-art
WSD performance on the MSH WSD dataset [15].

Since the training of universal network is time consum-
ing, we only train the universal BiLSTM neural network
model with structure (iii), the best performing struc-
ture. The optional layer C significantly improved the per-
formance of our universal neural network model: After
applying the optional layer C, the test accuracy of our
universal neural network model increases from 80.72%
to 88.75%. We believe that the target ambiguous word
is re-emphasized by the optional layer C, which signif-
icantly improves the prediction accuracy of the univer-
sal network. This issue will be discussed further in the
“Discussion” section.

We also trained our universal attention models with
structure (iii) on several different values of h in the multi-
head attention. The one with h = 4 provides the best
test accuracy of 82.40% with layer C, and 63.50% with-
out it. It is interesting that the best universal attention
model has four heads in the multi-head attention archi-
tecture, while the best word-specific one only has two. We
will provide our analysis on why the universal attention
model needs more heads than the word-specific ones in
the “Discussion” section.

Among the 203 biomedical ambiguous words in the
MSH WSD dataset, 20 of them have often been used as
comparison baselines for WSD models. For instance, Fes-
tag et al. showed their disambiguation result on these 20
words in [14], applying a Recurrent Convolutional Neu-
ral Network (RCNN) as their WSD model. Jimeno-Yepes
et al. provided multiple approaches to biomedical WSD in
[25] with these 20 words. Their best performance came
from a supervised Naive Bayes (NB) model with WEKA
data mining package. We will compare the results from
both our BiLSTM model and our attention model with
the result from the RCNN model in [14], and the result
from the Supervised NB model in [25], which are shown
in Tables 2 and 3.

Table 2 shows the results from our word-specific models
(both BiLSTM neural networks and attention) and the two

baselines. According to the experience described above,
all our word-specific models were equipped with layer
C. Our word-specific attention model has h = 2 in the
multi-head attention. We can see that our word-specific
BiLSTM neural network models with all four structures
outperform the two baselines, and achieve the accuracy
higher than 95%. Our word-specific attention model per-
forms almost as good as Baseline 2, and even better than
Baseline 1. In comparison to the baselines, our word-
specific BiLSTM neural network model with structure (iii)
trained on whole-paragraph inputs achieves higher accu-
racy on some difficult words such as Phosphorylase, which
have very similar senses and are therefore difficult to dis-
ambiguate [14]. As we can see, for these 20 words, our
word-specific deep network model with structure (ii) per-
forms on average better than that with structure (iii) by
0.5%. Nevertheless, this does not hold true when we aver-
aged the results on all the 186 words. Because of that, we
also evaluated an ensemble of all our four structures. This
gave us an interesting insight into the dataset, which will
be further explained in the next section.

Table 3 shows the results from our universal models
(both BiLSTM neural networks and attention) and the
two baselines. Both of our two universal models are under
structure (iii) with h = 4 in the multi-head attention
and trained without layer C. We can see that our uni-
versal deep network model performs almost as good as
the model from Baseline 1. However, we found that our
universal attention model failed to provide results with
satisfying accuracy. It seems that the attention model is
only suitable for word-specific tasks. We believe that this
is because the attention structure is too simple to process
the large, merged data containing multiple ambiguous
words. We shall discuss this issue in detail in the next
section.

Discussion
In this section, we provide further analysis and com-
parison on WSD methods based on the BiLSTM neural
network model and the self-attention model. Then, we will
discuss some issues of the dataset. We believe that some
labels may not be accurate, which places an upper bound
on the accuracy.

Why does LSTM cell work?
In this subsection, we provide mathematical analysis on
how the gate operations in an LSTM cell resolve gradient
vanishing (or blow-up) along the time steps.

The purpose of gate operations in an LSTM cell is
to ensure that the memory is not impacted by gradient
vanishing (or blow-up), which is the major defect of a
typical RNN. Mathematical analysis shows that the gra-
dient ∂ot+K/∂ct should not vanish (or blow-up) when K
is large. Using the chain rule of partial derivative into
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Table 2 Test accuracies (in percent) on 20 words from our word-specific models and the two baselines

Words Basic NN Sum NN Cct-V NN Cct-T NN Cct-T Atten Cct-T NN wp Baseline 1 Baseline 2

AA 100.00 100.00 100.00 100.00 97.20 100.00 96.00 98.99

Astragalus 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.47

CDR 100.00 100.00 100.00 100.00 96.40 100.00 97.00 100.00

Cilia 96.15 92.31 96.15 96.15 93.80 92.00 82.00 94.87

CNS 91.18 94.12 91.18 97.06 97.20 100.00 98.00 98.48

CP 96.30 96.30 96.30 96.30 100.00 100.00 97.00 98.32

dC 97.22 100.00 97.22 97.22 100.00 100.00 98.00 98.48

EMS 97.14 97.14 97.14 97.14 100.00 100.00 98.00 100.00

ERUPTION 97.14 100.00 94.29 100.00 100.00 100.00 100.00 100.00

FAS 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.49

Ganglion 91.67 91.67 94.44 88.89 88.90 91.18 90.00 93.43

HCl 97.22 97.22 97.22 97.22 100.00 100.00 100.00 100.00

INDO 100.00 100.00 100.00 100.00 100.00 100.00 87.00 99.18

lymphogranulomatosis 94.44 100.00 94.44 100.00 95.80 100.00 83.00 83.33

MCC 87.50 100.00 100.00 100.00 100.00 100.00 97.00 100.00

PAC 100.00 100.00 100.00 90.91 100.00 100.00 94.00 100.00

Phosphorus 86.11 86.11 83.33 83.33 91.70 94.44 78.00 83.84

Phosphorylase 86.67 90.00 86.67 90.00 78.10 90.00 52.00 87.35

TMP 100.00 100.00 100.00 100.00 100.00 100.00 81.00 98.00

TNT 100.00 100.00 100.00 100.00 97.20 100.00 98.00 99.49

Average 95.94 97.24 96.42 96.71 96.82 98.38 91.30 96.54

Baseline 1 is the RCNN model by Festag in [14], and baseline 2 is the Naive Bayes Model by Jimeno-Yepes et al. in [25]. Cct-T Atten means the word-specific attention model
with structure (iii), and Cct-T NN wp means the word-specific BiLSTM neural network model with structure (iii) trained on whole-paragraph inputs. All the word specific
models here (deep network and attention) are equipped with layer C

Eqs. (1), (2), (3), (4) and (5) in the Methods” section, we
have

∂ot+K
∂ct

= ∂ot+K
∂ct+K

·
K∏

k=1

∂ct+k
∂ct+k−1

= Wco ·
K∏

k=1
ft+k .

It is easy to see that setting ft ≡ 1 is a simple way
to avoid gradient vanishing. According to Eq. (2), the
direct dependent variables of ft+k are xt+k and ht+k−1.
Due to the variance from the inputs and the complicated
interactions among the gates in LSTM cells, vectors xt+k
and ht+k−1 possess time-step independent distributions.
Accordingly, ft+k can be inferred as time-step indepen-
dent as well. Therefore, when K is large, the number of
ft+k with extremely large absolute value will be almost
equal to the number of those with extremely small abso-
lute value due to time-step independence, and hence they
shall cancel each other in the product

∏K
k=1 ft+k . As a

result, ∂ot+K/∂ct will not vanish or blow-up when K is
large. This performance guarantees that ct can be effi-
ciently updated by cross-entropy error in many steps
ahead, which explains why the LSTM cell can remember
long-term dependencies.

Why does time-step concatenation work best?
In our experiments, we hope the contextual information
can be captured by our BiLSTM network in an explicit
process. In order to do so, we adapted the ideas behind
the ELMo model in [16], combining with our own upper
layer design to fit the WSD task better. As shown in the
“Methods” and “Results” sections, the time-step concate-
nation structure performs the best.

Our explanation is, concatenation of BiLSTM outputs
along the time-step would better preserve both out-
put layers, comparing to the basic BiLSTM model and
the weighted summation one. As a result, the max-
pooling operation will have a better chance to capture
the information from the first layer output, and hence
increasing the utilization of the first layer nodes of the
BiLSTM. In contrast, although the output vectors from
both layers are preserved as well by the concatenation
along the vector, this concatenation increases the vec-
tor’s dimension and the max-pooling dimension. Due to
this reason, redundant information may be included in
the max-pooled vector, leading to less useful information
being out-weighted. The experimental results coincide
with this analysis: Although both of the concatenation
models perform better than the basic BiLSTM model
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Table 3 Test accuracies (in percent) on 20 words from our
universal models and the two baselines

Words Univ NN Univ Attention Baseline 1 Baseline 2

AA 100.00 100.00 96.00 98.99

Astragalus 100.00 100.00 100.00 97.47

CDR 85.19 82.10 97.00 100.00

Cilia 80.77 79.80 82.00 94.87

CNS 97.06 86.10 98.00 98.48

CP 98.15 100.00 97.00 98.32

dC 94.44 82.40 98.00 98.48

EMS 91.43 98.80 98.00 100.00

ERUPTION 97.14 91.10 100.00 100.00

FAS 100.00 88.10 100.00 99.49

Ganglion 86.11 73.30 90.00 93.43

HCl 91.67 94.10 100.00 100.00

INDO 100.00 100.00 87.00 99.18

lymphogranulomatosis 88.89 75.80 83.00 83.33

MCC 83.33 92.80 97.00 100.00

PAC 81.82 81.10 94.00 100.00

Phosphorus 83.33 75.70 78.00 83.84

Phosphorylase 70.00 66.40 52.00 87.35

TMP 100.00 78.30 81.00 98.00

TNT 94.44 78.20 98.00 99.49

Average 91.19 86.21 91.30 96.54

The Univ NN means the universal BiLSTM neural network model and the Univ
Attention means the universal attention model. All our universal models (deep
network and attention) are trained without layer C

and the weight summation one, the time-step concatena-
tion structure outperforms the vector concatenation one
a little bit.

Why do we desire an attention model?
As mentioned in the “Results” section, our self-attention
model performs three to four times faster than our neural
network model. Yet, the computational efficiency does not
constitute the entire consideration on the attention mod-
els. According to the initial work [18] of the self-attention
model, three aspects are considered when evaluating a
language processing system: the computational efficiency,
the number of sequential operations required, and the
path length that signals have to travel in the system. But
since the LSTM neural network already possesses excel-
lent path length, we do not need a self-attention model
just in seeking of a longer path length. So, we only discuss
the first two aspects here.

When comparing the computational complexity
between different structures, people always use the
operations needed in each layer, i.e., the computational
complexity per layer, as the measurement. According

to the attention structure introduced in the “Methods”
section, we can see that the major operations in an identi-
cal encoder layer come from the matrix multiplications.
So by a routine calculation, we can get the computational
complexity per attention layer as O(T2 · dmodel), where
T is the length of the input and dmodel is the dimension
of the embedding. On the other hand, the computa-
tional complexity per recurrent layer is O(T · dmodel

2);
and the computational complexity per convolutional
layer is O(k · T · dmodel

2), where k is the kernel size of
convolutions. For most of the state-of-the-art language
models, the embedding size dmodel is around 150 to
500, which is necessarily larger than the average tem-
poral length T of the inputs. As a result, we shall have
T2 · dmodel � T · dmodel

2 � k · T · dmodel
2. This rela-

tionship explains why the attention model operates much
faster, and why the convolutional neural network operates
much slower than the recurrent neural network.

By the number of sequential operations required, it
means the amount of operations needed on each time step
per layer. In this case, the recurrent operation has to be
implemented at each time step, rendering an RNN with
O(T) sequential operations. The convolutional operation
with kernel width k and stride k brings O(T/k) sequen-
tial operations to a typical CNN language model (different
from the stride-one convolutions in vision, where a CNN
language model usually has a stride size same as the ker-
nel width). In contrast, the matrix multiplication in an
identical encoder layer covers all time steps, providing the
self-attention model with O(1) sequential operations. As
a result, we can see that the self-attention model pos-
sesses the advantage towards RNN or CNN structures in
terms of sequential operations. Since sequential opera-
tions decide the actual computing process in CPUs, an
attention model as a result necessarily reduces the true
CPU time required for training.

Therefore, although being slightly less accurate than a
deep recurrent neural network, we still desire an attention
model to perform word sense disambiguation.

Why does an attention model fail to yield better accuracy
than deep networks?
Although being efficient on sequential inputs, a self-
attention model is limited in some aspects. According to
the experimental results, the major defect of an attention
model is the unsatisfactory accuracy compared to deep
neural network models.

We need to pay attention to two facts: First, in the case
of word-specific WSD models, our best attention model
yields test accuracy that is 2 percent lower than that of our
best BiLSTM neural network model. In the case of univer-
sal models, our attention model failed to provide a satis-
factory result. Second, the best universal attention model
has four heads in the multi-head attention architecture,
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while the word-specific attention model only has two. We
believe that these facts from our experiments provide a
plausible reason of the sub-optimal accuracy of an atten-
tion model: The attention structure is too simple to learn
complicated representations from big and complex data.

As the analysis we did in the above subsection, the
complex structure of each LSTM cell enables the net-
work to learn complicated temporal representations from
the input data. The combination of various activation
functions within each cell as well as the stack of layers
enables the deep network to establish complicated deci-
sion regions in the input space. In contrast, the attention
model does not involve an activation function. The major
operations of a multi-head attention are paralleled matrix
multiplications. As a result, we believe that the repre-
sentation from an attention model is quite restricted by
the simplicity of its structure. This restricted ability on
representation learning makes an attention model reluc-
tantly provide satisfying results on small, word-specific
datasets, yet failed to perform on the merged, complicated
big dataset for universal learning, even with an increased
number of heads in the multi-head attention architecture.

We can clearly see the trade-off made by the attention
model: sacrificing accuracy in order to obtain computa-
tional efficiency. As a result, comparing to the efficiency, it
is an acceptable defect for the attention model to perform
less accurate than the deep network.

Why do we need a feed-forward network on top of the
attention structure?
Note that, the only activation function in an identical
encoder layer is the ReLU function in the feed-forward
sub-layer on top of the self-attention structure. Similar
to a convolutional neural network or a recurrent neural
network, the activation functions serve as filters, which
eliminate the redundant information and keep the rela-
tive representations. As a result, the errors and redundant
information from the self-attention sub-layers shall be fil-
tered out by the ReLU gate in the feed-forward sub-layer,
making the final output more efficient for disambiguating.
We believe that this is the major reason for the self-
attention model to have a feed-forward network on top of
the attention sub-layer.

It is often desirable to keep a balance between perform-
ing accuracy and computational efficiency. As a result,
the feed-forward network in [18] consists of only two
matrix transformations, in which the first transformation
is equipped with the ReLU function. As such, the activa-
tion functions in the feed-forward network serve as filters
to improve the performance, while avoiding increasing the
computational complexity of the self-attention model too
much. Otherwise, a deep feed-forward sub-layer would
consume the computational efficiency obtained by the
attention structure.

Why is multi-head attention better than a single scaled
dot-product attention?
We believe that, the reason for researchers in [18] to con-
catenate the output from each single scaled dot-product
attention to build a multi-head structure is that, the multi-
head attention enables a “vote”, or averaging on the output
from each single attention structure, so that the chance of
making mistakes is reduced.

In addition, the parallel performance of each single
attention structure shall enable the attention model to
build flexible decision regions and learn complicate rep-
resentations, which to a certain extent mediates the low
ability of the attention model on representation learning.
Meanwhile, the parallel performance in the multi-head
structure avoids increasing the computational complex-
ity: matrix multiplications can be performed in parallel in
multiple units in a GPU. Thus, a machine equipped with
multiple GPUs can speed up the attention model even
more.

The above analysis comprehensively compared our
deep BiLSTM neural network model and our self-
attention model on word sense disambiguation tasks. In
general, a deep neural network model provides more
accurate results especially on big datasets, while a self-
attention model performs much faster and can get satis-
factory results, especially on small datasets. Researchers
in the future may take our analysis into considera-
tion when choosing a WSD architecture for a specific
data set.

Is an universal WSD system possible?
As shown in the “Results” section, the optional layer C
significantly improves the performance of our univer-
sal WSD model. However, when we add the optional
layer C back to our word-specific models, it is sur-
prising that the prediction accuracies are slightly
reduced.

We believe that when training a universal network, the
optional layer C will put further emphasis on the target
ambiguous word to the dense layer, thereby leading to
a more meaningful representation in the dense layer on
the contextual information. In contrast, when training on
the dataset for a single ambiguous word, further empha-
sis is redundant and may actually overwhelm some useful
information in the max-pooled vector h, therefore slightly
disturbing the dense layer on generating contextual infor-
mation representations.

As far as we know, our universal WSD network is
the first universal model in biomedical word sense
disambiguation. Our results indicate that a universal
model is feasible for NLP tasks. We hope that our
research can draw research community’s attention to
the universal word sense disambiguation system in the
future.
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Is there any mis-labeling in the MSH WSD dataset?
After looking into the prediction output from neural net-
works with all the four upper layers, we found an inter-
esting phenomenon: When testing with some specific
paragraphs, the less accurate upper layer structures (i, ii,
iv) on average even outperformed the best one (iii).

To further examine this phenomenon, we created two
ensemble methods on neural network models: The first
ensemble method makes neural networks with structure
(i) through (iv) do a majority voting on the output. The
second method implements a weighted voting, where the
network with better performance on a validation set has a
larger weight. Ensemble methods resulted in a small gain
in accuracy (up to 0.4%).

Then, we further looked into the mistakes made by the
networks. It appears that all our models agree on the same
wrong label in 190 cases (3% of the test set). Examination
of these words and their corresponding paragraphs shows
that the disambiguation in these cases are very challenging
even to human experts. For example, the word Medullary
has two concepts in the UMLS:

• Adrenal Medulla, inner part of the adrenal gland,
(Body Part, Organ, or Organ Component)

• Medulla Oblongata, also part of the brain, (Body Part,
Organ, or Organ Component).

Both of these concepts relate to parts of the brain and have
a similar meaning, rendering disambiguation challenging.

Other words can be argued to have more than one cor-
rect sense in the given paragraph. The word Laryngeal has
two corresponding concepts in the UMLS:

• Larynx, irregularly shaped, musculocartilaginous
tubular structure, (Body Part, Organ, or Organ
Component)

• Laryngeal Prosthesis, a device, activated electronically
or by expired pulmonary air, which simulates
laryngeal activity and enables a laryngectomized
person to speak, (Medical Device).

In following paragraph from the dataset of Laryngeal:

“A comparative study of speech after total laryngectomy
and total laryngopharyngectomy. Quality of voice is an
important factor in the consideration of treatment for
advanced laryngeal cancer. This prospective study
compared the speaking proficiency of patients who used
the Blom-Singer valve after total laryngectomy and
after total laryngopharyngectomy with jejunal graft
reconstruction with that of a group of normal subjects.
The total laryngectomy group demonstrated excellent
communication ability both face-to-face and on the
telephone. They exhibited superior scores for objective
intelligibility, subjective intelligibility, acceptability, and

intonation when compared with the total
laryngopharyngectomy group. ...”

This paragraph is labeled with the second meaning
(Laryngeal) in the UMLS. However, one can argue that the
first meaning (Larynx) would be more appropriate, which
is the meaning predicted by our networks. Those exam-
ples suggest that there may be an upper bound of accuracy
on this dataset, which we think is around 97%.

Conclusions
In this paper, we propose both word-specific and uni-
versal WSD models using a deep BiLSTM neural net-
works and self-attention architectures, with four differ-
ent adjustments on the models’ outputs and an optional
concatenation layer. Experiments showed that the con-
textual information is sufficient for word sense disam-
biguation, and can be efficiently learned by deep networks
as well as attention architectures. Furthermore, obtain-
ing an explicit and wide representation of the contextual
information improves the disambiguation accuracy signif-
icantly. Finally, re-emphasizing the target ambiguous word
is crucial to our universal WSD system.

In addition, we believe that good word embeddings are
essential to all NLP tasks. However, being the state-of-
the-art language model, the skip-gram negative sampling
(SGNS) model does not capture the sense of word when
training their embeddings [12]. Therefore, we hope to
establish a language model using deep neural networks,
so that not only the embeddings of words but also the
embeddings of senses is established. As such, further
semantic information can be captured naturally by both
the word embeddings and the deep network.
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