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Abstract

Gaussian interaction profile

Background: Viruses are closely related to bacteria and human diseases. It is of great significance to predict
associations between viruses and hosts for understanding the dynamics and complex functional networks in
microbial community. With the rapid development of the metagenomics sequencing, some methods based on
sequence similarity and genomic homology have been used to predict associations between viruses and hosts.
However, the known virus-host association network was ignored in these methods.

Results: We proposed a kernelized logistic matrix factorization with integrating different information to predict potential
virus-host associations on the heterogeneous network (ILMF-VH) which is constructed by connecting a virus network with
a host network based on known virus-host associations. The virus network is constructed based on oligonucleotide
frequency measurement, and the host network is constructed by integrating oligonucleotide frequency similarity and
Gaussian interaction profile kernel similarity through similarity network fusion. The host prediction accuracy of our method
is better than other methods. In addition, case studies show that the host of crAssphage predicted by ILMF-VH is
consistent with presumed host in previous studies, and another potential host Escherichia coli is also predicted.

Conclusions: The proposed model is an effective computational tool for predicting interactions between viruses and
hosts effectively, and it has great potential for discovering novel hosts of viruses.

Keywords: Virus-host association, Logistic matrix factorization, Similarity network fusion, Oligonucleotide frequency,

Background

The two main components of human microbes are bacterial
and viral communities, which play a vital role in human
health and diseases. Bacterial communities have been
proved to be associated with human diseases, including
some skin conditions [1] and gastrointestinal diseases, such
as inflammatory bowel disease [2], clostridium infection [3],
and colorectal cancer [4]. Viral communities are also associ-
ated with diseases, such as periodontal disease [5] and anti-
biotic resistance [6]. Viruses are widespread in the
environment and biological tissues, and they are the most
abundant organisms on the planet [7]. Viruses cannot
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survive alone, they need to be parasitic in living cells to sur-
vive and produce offspring. Hosts infected by viruses include
bacteria, archaea, eukaryotes, etc. Viruses produce DNA and
proteins of offspring through hosts’ replication mechanism.
In particular, prokaryotic viruses have a significant impact
on human health and ecosystem dynamics. Describing inter-
actions between viruses and hosts is important for under-
standing hosts’ effects on microbial communities.

The traditional approach for identifying viruses has been
implemented by isolating from cultured host strains, be-
cause viruses are acquired from cultured host cells, we can
directly know the host of the given virus. However, cultur-
ing a virus at a high enough concentration may be challen-
ging in experiments because it may require appropriate
growth conditions, such as temperature, growth media as
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well as robust growth of target host strains [8], which is
usually difficult to achieve in experiments. The isolation
method based on culturing bacteria is inefficient to identify
viruses, and it only identifies relatively fewer viruses. Now-
adays, discoveries of unknown viruses have been greatly ac-
celerated by metagenomic shotgun sequencing, but unlike
viral isolation, viral sequences assembled from metage-
nomics usually fails to directly obtain hosts infected by
them. For example, crAssphage is a highly abundant human
enterovirus, which may play an important role in the hu-
man intestinal tract, but the cultivation of crAssphage in
the laboratory is still not achievable, so its hosts and bio-
logical function has not yet been identified [9]. As more
and more metagenomic sequencing datasets are available, it
is urgent to propose effective culture-free methods to iden-
tify new viruses and their hosts.

Recognizing hosts infected by viruses is important for
understanding dynamics of viruses and their effects on
microbial communities. Recently, some computational
methods have been used to infer associations between
viruses and hosts. Edwards [10] et al. introduced three
types of virus-host association prediction methods, in-
cluding sequence homology [6, 11, 12], abundance pro-
file co-occurrence [13] and sequence composition [14—
16]. As for virus-host association prediction methods
based on sequence homology, homologies between new
viruses and potential hosts are limited, because they de-
pend on whether hosts of the query virus exist in the
host genome database. Abundance profile method is
based on co-variation, but significant co-variation does
not necessarily represent real interaction. Because there
is usually a time delay in dynamic interactions between
viruses and hosts, many interactions depending on time-
scale sampling may not be detected. Sequence compos-
ition is based on codon usage or short pairs of nucleo-
tides (k-mers) shared by viruses and hosts to predict
which hosts the virus infects. Ahlgren et al. proposed 11
measurements of oligonucleotide frequency (ONF) such
as d; to calculate k-mers distances between viruses and
hosts [17]. This method achieves good results in host
prediction accuracy at the genus level, but less than 40%
at the species level. In addition, previous human micro-
bial community studies relied on independent bacterial
and viral communities, i.e. they were divided into two
separate network communities [2, 5], which could not
capture complex dynamics of virus-host interactions.

In this paper, we propose a logistic matrix factorization
algorithm based on integrating multi-information on the
heterogeneous network to predict potential virus-host
associations (ILMF-VH). The main differences from previous
studies are that our proposed method combines information
of three networks to form a virus-host heterogeneous net-
work and applies similar network fusion (SNF) to integrate

multiple host information for constructing the host-host
similarity network. We used the benchmark data of viral

Page 2 of 10

and bacterial genomes in NCBI, and verified that ILMF-
VH obtained best performance compared with recent five
network-based methods under five-fold cross validation.
Moreover, the host prediction accuracy is 63.66% which is
24.66 and 13.29% higher than two recently proposed
virus-host association prediction methods respectively,
and it is 0.49% higher than our previous approach [18]. In
addition, the host of crAssphage inferred by our algorithm
includes putative host Bacteroides obtained from previous
studies [9, 19], and another potential host Escherichia coli
is also suggested. Because previous studies have shown
that Escherichia coli is associated with human intestinal
diseases, such as diarrhea [20], our research indicates that
crAssphage may be closely related to these diseases, and
this proves that our approach is effective in predicting
novel virus-host associations.

Materials and methods

Data sets

We used the data adopted by Ahlgren et al. which col-
lected accession numbers and taxonomies of 1427 vi-
ruses and 31,986 hosts. For the initial analysis, we
selected a subset including 352 viruses whose hosts were
at strain level [17]. In addition, we downloaded the
benchmark datasets provided by Edwards et al. including
accession numbers and taxonomies of 820 viruses and
2699 hosts [21]. Based on accession numbers of viruses
and hosts, we have written scripts to obtain their whole
genome sequences from NCBI. In terms of each virus,
their known virus-host associations are obtained through
the ‘isolate host = ‘or ‘host = ‘fields in the viral annotation
file. The genome of crAssphage in the human intestinal
metagenomic is downloaded from NCBI and the acces-
sion number is JQ995537.1 [19].

Methods

As for our model, the virus set and host set are repre-
sented by V = {vi,va,...,vn,} and H = {hy, ha, ..., hn, }
where N, and N, represent the number of viruses and
hosts, respectively. The associations between viruses and
hosts are defined as an adjacency matrix YeRN"*Nn if a
virus v; is known to be associated with a host /;, then y;; is
set to 1; otherwise, y;; is set to 0. In terms of elements in
the adjacency matrix Y, the negative and positive interac-
tions between viruses and hosts are represented by 0 and
1, respectively. In this work, firstly, we define a set of vi-
ruses which are positively related to hosts as V' = {v;]

PO y; > 0,V1<i<N,}, then a set of viruses which are
negatively related to hosts is defined as V" = WV". Next, a
set of hosts which are positively related to viruses is de-
fined as H* = {i;| >} y; > 0,V1<j<N;}, and a set of
hosts which are negatively related to viruses is defined as
H™ = H\H". Finally, similarities between viruses are calcu-
lated by oligonucleotide frequency (ONF) measures and
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expressed by S"eRN"*Nv; similarities between hosts are cal-

culated by integrating ONF measures and Gaussian inter-
action profile (GIP) kernel similarity based on SNF model,
and expressed by S"eRN»>*Ni,

Oligonucleotide frequency measures for viruses and hosts
Recently, dissimilarity measurements based on k-mer
frequencies have been applied to infer relationships be-
tween genomic sequences [17]. Here, based on the hy-
pothesis that similar viruses or hosts share similar k-mer
patterns, we calculated k-mer similarities between viral
genomic sequences to measure correlations between vi-
ruses. Similarly, k-mer similarities between hosts’ gen-
omic sequences are calculated to measure correlations
between hosts. According to previous research [17], d

[22] has a good performance in calculating k-mer simi-

larity and k is set to 6, so we calculate the distance be-
tween k-mer frequency vectors of each pair of viruses or
hosts. Finally, the virus-virus similarity matrix S” and the
host-host similarity matrix S(onf)” can be obtained.

Gaussian interaction profile kernel similarity for hosts
Zou et al. [23] calculated the GIP kernel similarity be-
tween microbes based on the known disease-microbe as-
sociation matrix and achieved good results. Apart from
sequence similarities of hosts, based on the assumption
that similar hosts exhibit similar patterns with viruses,
we apply GIP kernel similarity to measure associations
between hosts. There are two steps to calculate GIP ker-
nel similarity. First, the interaction profile IP(/1;) of host
his the i-th column of the adjacency matrix Y, which is
a binary relationship vector representing associations be-
tween a host /;and each virus. The GIP kernel similarity
between host /,and /; is calculated from their interaction
profiles and defined as [24]:

" (hi.hy) = exp (-, 1201 (1) ) ®

This is a kernel that represents the similarities between
hosts. These kernels are called Gaussian kernels. The
parameter y; is used to control the kernel bandwidth
and defined as:

1

)’h:’”h/<]\7h

Here, Nj, is the number of hosts. According to the pre-

NN )

vious study [25], we simply set r/h to 1.

Integrated similarity for hosts

The associations between hosts are measured by calcu-
lating ONF measures and GIP kernel similarity between
hosts, respectively. Here, we introduce similar network
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fusion (SNF) [26] to integrate two host similarity net-
works. The SNF includes following three main steps.
First, the edge weights of each host similarity network
are represented by a Nj, x Nj, matrix $”, respectively.
Then, as for each similarity network, a normalized
weight matrix p can be obtained by the following for-
mula [26]:

i
S (l’S]() k),j:ti
Py = ¢ 22kegSlh (3)
57}. =i

Here S(i, j) is the matrix element of S". Then, k nearest
neighbor (KNN) is used to measure the local relation-
ship as follows:

S(i, j) .
. ) =—=",JeN;
I<NN(’7]) ZkeN,-S(i7 k) :
0, otherwise

(4)

N; represents the number of neighbors in the host.
This method filters out low-similar edges.

Let P and KNN™ represent similar matrices of the
above two hosts, respectively. The process of SNF is an
iterative update of similarity matrices, which corre-
sponds to each data type as follows [26]:

®)
PO _ kNN (M) (KNN@))T, y
m-1
=1,2....m (5)

This step updates the matrix P’ when m parallel ex-
change diffusion processes are generated on m host net-
works. In this paper, we have two types of host similar
matrices, so m is set to 2. The final similarity matrix that
integrates all data types is defined as follows:

P= % (P'+ 1) (6)

Construction of heterogeneous networks

The construction of heterogeneous networks is mainly
divided into three steps. First, based on known virus-
host associations, we can construct a virus-host relation-
ship network, where nodes in the network include vi-
ruses and hosts and if a virus and a host are known to
be related, their edge weights are set to 1, otherwise,
they are set to 0. Then, we calculate similarities between
viruses based on ONF measures to construct the virus
network, and calculate similarities between hosts by in-
tegrating ONF measure and GIP kernel similarity based
on SNF model to construct the host network. Finally,
the virus network and the host network are connected
through known virus-host associations to construct a
heterogeneous network between viruses and hosts.



Liu et al. BVIC Bioinformatics 2019, 20(Suppl 16):594

Kernelized logistic matrix factorization

We developed a kernelized logistic matrix factorization
algorithm based on network similarity fusion for predict-
ing virus-host associations, and the flowchart of ILMF-
VH model is shown in the Fig. 1. First, the binary matrix
Y is decomposed into WeRN"*K and eRN#K, so viruses
and hosts are mapped to the shared potential low-
dimensional space. Seq(v; i) represents the ONF simi-
larity between each pair of virus and host, and we inte-
grate this sequence similarity information into the
associated probability p;, which represents association
probability of virus-host pair (v, #;) and is defined as the
logistic function:

exp (w,'hl»T + Seq(vi, hj)) )
py =
7 + exp (with + Seq(v,', h,-))

It is hypothesized that known relationships between
viruses and hosts provide useful information for virus-
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host association prediction. Current importance weight-
ing methods have been proven to be effective for per-
sonalized recommendations and drug-target interaction
predictions [27, 28]. We apply the weight constant ¢ to
control the level of importance between each known and
unknown associations. According to previous studies, ¢
is set to 5. The conditional probability of Y is defined as:

p(Y|W,H) = HZZH?[:I PRz (1-19,-,») (1-5,) .

In this work, we also use the neighborhood
regularization method to regularize the logistic matrix
factorization algorithm [28]. The nearest neighbors of
virus v; and host /; are defined as N(v;) € V\v; and N(/,) €
H\h;, N(v;) and N(h;) represent the K; neighbors of the
virus v; or the host &, respectively. K; is set to 5 accord-
ing to the experiment. The neighborhood information of
viruses and hosts is represented by the adjacency matri-
ces A and B, respectively. In terms of matrix A, if virus
v €NV, a;, =s,, , otherwise a;,=0; in terms of

N
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Fig. 1 The flow chart of ILMF-VH model
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matrix B, if host /, € N(i), bj, = s}l-“n, otherwise b, =0 .
The main purpose of virus-host association prediction is
to minimize distances between v;/h; and nearest neigh-
bors N(v;)/N(h;). We should try to minimize the follow-
ing objective formula:

a N, N, a
gzizlzmzﬂim”‘”i—wmﬂi = Etr(WTL"W) (9)

N, N,
B S bl =B (wriiwy  10)

Where tr(-) is the trace of the matrix, L' = (D" + D’ )-
(A+AT), and the diagonal element of D" is DY, = EN ’

m=1
aim; L" = (D" + D")~(B + B"), the diagonal elements of
D" are Df’j = >N by, Our goal is to find the minimum
of the following objective functions:

in S S (1 y0) n (14 enp(wik?) |- i}
+ %tr (WA + aLl’) W]
4 Ser[HT (A0 + L) H]
(11)

Where \, =%\

=M= ﬁ, o, and oy, are expressed as the
v h

variance of Gaussian distribution of viruses and hosts,

respectively. |-l represents the Frobenius norm of the

matrix, and W and H are randomly initialized using a

Gaussian distribution with a mean of 0 and standard de-

viation of % We use the AdaGrad algorithm [29] to

solve the optimization problem of Eq. (11).

When learning vectors W and H, vectors of the negative
virus group or host group are learned only based on nega-
tive associations in the training process. However, some
unknown virus-host associations may exist potential correla-
tions. Based on previous studies, we replaced the vector of a
negative virus/host with a linear combination of its neigh-
bors in the positive set [28]. Here, we build K, nearest
neighbor sets for each virus and host separately and K is set
to 5, according to the experimental study. We use N*(v;)/
N'(h) to express K, nearest neighbors of Ve V'/hjeH in
V*/H" . Therefore, w; and k; in Eq. (7) are corrected to:

w; if vievV"
Wi = 1 v ey
P v .
D s Zmem(v[)slmw’”lf"’
ueN™ (v;)%im

(12)
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h/ if]’leI‘[Jr

\.}l
I

1 h
S efy \Sln if hjeH™
E :v *(h/-)s]hn ZneN (h,) J J

(13)

Evaluation metrics

Based on the heterogeneous network constructed by the
above method, we compare the AUC [30] and AUPR [31]
of ILMF-VH and recent five network-based algorithms by
five times five-fold cross-validation to evaluate their per-
formances. Then, based on previous studies [10, 17], we
evaluated our virus-host association prediction methods
by host prediction accuracy on a benchmark dataset in-
cluding 820 viruses genomes. The host prediction accur-
acy refers to the percentage of the virus which is predicted
to have the same host taxonomy level as known hosts of
the query virus.

Results and discussion

Performance evaluation of different based-network
methods

In order to assess the performance of our model, we
trained datasets including 352 viruses and 71 hosts to
obtain model parameters and tested our model on
benchmark datasets including 820 viruses and 2699
hosts. In addition, we compare ILMF-VH model with
five recently proposed network-based methods (LMFH-
VH [18], NetLapRLS [29], KBMF2K [32], BLM -NII
[33], CMF [34]) through five-fold cross-validation in the
dataset containing 352 viruses. In each round of five-fold
cross-validation, one-fifth of the virus-host associations
are set to test data, and corresponding elements in the
adjacency matrix Y are set to 0, the other four subsets
are used as training data. It should be noted that in each
round of five-fold cross-validation experiment, when
virus-host relationships are set to 0, the Y matrix has
been changed, so each time we need to recalculate GIP
kernel similarities between hosts, and then kernel similar-
ities can be fused with ONF similarities of hosts by apply-
ing SNF model to obtain updated host-host similarities. In
addition, according to previous studies [28, 32—35], the
range of parameter settings for each method is shown in
the Table 1. Here, we use a random search strategy [36]
for each model to select optimal parameters.

Table 2 shows the AUC values and AUPR values ob-
tained by six methods in the data sets including 352 viruses.
The results showed that ILMF-VH achieved the best per-
formance and AUC value and AUPR value are 0.9202 and
0.6243, respectively. This result demonstrates the effective-
ness of our model in virus-host association prediction.
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Table 1 Experimental setup for the five network-based
modeling process

Method Parameter Range of Parameter
ILMF/LMFH-VH a 27°2°..,2%
B 222,29
M A 27,2721
27°,27..,2%
{20,40,60...100}
KBMF r {50,100}
NetLapRLS gamma_d {1073,10,72...,2%
beta_d, beta_t 0273272..,2%
BLM-NII combination weight a {0,0.1,0.2,...,09,1}
CMF k {50,100}
regularization coefficient lambda_| 272 .21
lambda_d, lambda_t 273272,..2%

Sensitivity analysis of parameter values
As seen in Additional file 1: Figure S1-Figure S4, these fig-
ures show AUPR values obtained by ILMF-VH model cor-
responding to different parameter settings. We also tested
effects of different K value (the number of neighbors of
KNN) of SNF model on AUPR values (Additional file 1:
Figure S5). So, we mainly analyze five parameters of
ILMEF-VH and the number of neighbors K of SNF model.
More specificity, we analyse the change trend of AUPR
values with different factorization factor k used for matrix
factorization. As shown in Additional file 1: Figure S1, the
optimal value of k is 100 and average AUPR value of ILMEF-
VH is 0.6305 under five-fold cross validation. In addition,
we also study impacts of regularization parameters a and 3
used for neighborhood smoothing in the prediction proced-
ure. Additional file 1: Figure S2 shows the change trend of
AUPR values under different o and f. The optimal values
of a and B are 0.0625 and 0.25, respectively. When a >
0.0625 and f3>0.25, corresponding AUPR values begin to
decrease. These results emphasize that neighbor
regularization has a certain impact on the virus-host predic-
tion model. Moreover, we also analyse effects of A on the
prediction procedure. Here, A = A, = % =l = 0—1’3, o, and

oy, represent the variance of Gaussian distribution of viruses

Table 2 The AUC and AUPR obtained by ILMF-VH and other
five network-based methods

AUC

ILMF-VH  LMFH-VH KBMF  BLM-NII'  NetlLapRLS CMF
352 virus  0.9202  0.8568 0.7934 08201 06711 0.8286
AUPR

ILMF-VH  LMFH-VH KBMF  BLM-NII' NetlLapRLS CMF
352 virus  0.6243  0.5560 0.3408 0.10054 0.2749 0.3100
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and hosts, respectively. As shown in Additional file 1:
Figure S3, the AUPR value becomes larger gradually with
the increase of A, and when A equals 2, AUPR reaches opti-
mal value. Additional file 1: Figure S4 shows the variation
trend of AUPR when learning rate parameters y is set to
different values. When y equals 0.25, AUPR takes the opti-
mal value; when y increases, the AUPR value begins to de-
crease, so y is set to 0.25. Furthermore, we also analyzed
influences of different neighbor parameter K of SNF model
on AUPR values. As shown in Additional file 1: Figure S5,
the AUPR value reaches the optimal value when K is set to
5; when K increases again, the AUPR value begins to de-
crease, so the optimal value of Kis 5.

Comparison of ILMF-VH and previous virus-host
prediction studies

In this work, we apply the ILMF-VH method to the
benchmark dataset including 820 viruses and 2699
complete bacterial genomes. First, we calculate scores
between each virus and candidate hosts. The higher the
predicted score, the more likely the virus is infected by
the host. Here, the highest ranked host is identified as
the predicted result of the given virus, and if the pre-
dicted host is the same as known host of the given virus
at the species level, the predicted host is considered as a
correct one. Figure 2 shows the host prediction accuracy
of four types of methods include abundance profile co-
occurrence, sequence homology, sequence composition,
and network-based. The result shown that ILMF-VH
achieved the highest host prediction accuracy (58.90%)
compared with other three types of methods.

In order to further improve the host prediction accur-
acy, we apply a consensus method [17] to our method.
We believe that the most frequent host species in the
top n predicted hosts of a virus can be classified as the
host taxon of the given virus. The prediction accuracy is
highest at n =5, therefore, we selected the most frequent
classification among the top 5 hosts as the host taxon of
the query virus. As shown in Fig. 2, when a consensus
strategy is applied to our model, the host prediction ac-
curacy can be increased to 63.66%, which is 24.66%,
13.29 and 0.49% higher than three proposed virus-host
prediction methods [10, 17, 18], respectively.

As for the general situation, when a new virus lacks
host information, we can use the ILMF-VH method to
predict its potential hosts. First, we constructed a virus-
host network based on known virus-host associations;
then GIP kernel similarities between hosts based on
known virus-host associations can be calculated, and
these GIP kernel similarities and ONF similarities of
hosts are integrated through SNF model, so the host
similarity network can be constructed. At the same time,
we can calculate ONF similarities of whole genome se-
quences between the new virus and other viruses in the
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Fig. 2 The host prediction accuracy of four types of methods for benchmark datasets including 820 viruses and 2699 hosts

virus-host association network, so the virus similarity
network can be established; finally, the ILMF-VH
method is executed on the virus-host heterogeneous net-
work, thereby the predicted scores between the new
virus and all candidate hosts can be obtained.

Case study

In this work, we evaluated the performance of ILMF-VH
model through case studies. In a recent study, Dutil
et al. used viral metagenomic sequencing data in human
fecal samples to find [19] a highly abundant phage
crAssphage and utilized co-occurrence profile of
crAssphage and 404 potential human intestinal bacterial
hosts from 151 human gut genomes in the human

microbiome program to predict hosts of crAssphage,
their results indicates that the host of crAssphage be-
longs to Bacteroidetes. At the same time, Ahlgren et al.
[17] predicted potential hosts of crAssphage based on
sequence similarities between crAssphage and candi-
dates hosts; WANG et al. [9] used the Markov random
field integration network to predict potential hosts of
crAssphage. They all suggested that bacteria belonging
to Bacteroidetes are the host of crAssphage. According
to previous study [19], crAssphage is a virus that is
widely found in the human gut genome, but we know
very little about its biological significance and hosts of
crAssphage, due to the difficulty of culturing crAssph-
age. Different methods have been proposed to predict
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hosts of the given virus, our information integration al-
gorithm validates the host of crAssphage which was
found in previous studies and also predicts another po-
tential host Escherichia coli.

As for each virus, the candidate host is ordered accord-
ing to predicted association scores obtained by ILMF-VH
algorithm. In this paper, we assume that if the known can-
didate host of a virus v; is /;, another new host / at the
same taxon level as the host /; may be a potential host of
the virus v;. At the same time, the higher the predicted
score of the candidate host /1, the more likely it is to have
a potential correlation with the query virus. In the case
study, we added the whole genome sequence of crAssph-
age to the similarity network containing 820 viruses, that
is, similarities between the crAssphage and 820 virus se-
quences can be calculated based on ONF measurement,
thus a new virus-virus similarity network can be con-
structed. Apart from that, we also add links between
crAssphage and 2699 hosts to the virus-host network to
build a new virus-host association network. Based on
ONF measurement and known associations between vi-
ruses and hosts, we used our algorithm to obtain pre-
dicted scores between crAssphage and 2699 candidate
hosts.

Our approach supports the previous conclusion that can-
didate hosts belonging to Bacteroides are potential hosts of
crAssphage. As for the top 50 predicted hosts of crAssph-
age, there were three hosts belonging to phylum
Bacteroidetes and were ranked 4th, 44th and 50th:
Cardinium  endosymbiont of Encarsia pergandiella,
Weeksella virosa, and Tannerella forsythia. Our prediction
model also inferred that Escherichia coli belonging to
phylum Proteobacteria is the potential host of crAssphage,
and Escherichia coli ranks highest among 2699 hosts. A
possible explanation for its highest predicted score is that
the alignment-free similarity score between crAssphage
and Escherichia coli is 0.6568, which is higher than the
average score (0.6096) between the virus and all candidate
hosts. Therefore, sequence alignment is an important part
of extracting virus-host association signal, and it provides
an efficient contribution indicator for this prediction result.

Our algorithm predicted host of crAssphage based on
the metagenomics sequencing data, which is identical to
the putative host at phylum level in previous studies. In
addition, another potential host Escherichia coli is also
inferred. Recent studies have shown that [20] most
Escherichia coli strains grow harmlessly in the gut and
rarely cause diseases in healthy individuals. However,
many pathogenic strains can cause diarrhea or extrain-
testinal disease in both healthy and immunocomprom-
ised individuals. Our experimental results suggest that
crAssphage may play an important role in these diseases.
In general, our algorithmic model is effective in predict-
ing potential hosts of new viruses.
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Conclusion and outlook

Viral infection usually results in changes in the ecosystem
function of host cells. Virus-host association studies can
reveal complex virus-host network interactions and are
important for understanding of microorganism diversity.
Despite this, although some methods for virus-host associ-
ation prediction have been proposed, the host prediction
accuracy at the species level cannot be achieved very well
and these methods need to be improved.

We present an effective method ILMF-VH for predicting
virus-host associations. We performed the best perform-
ance compared to recent five network-based methods by
five-fold cross-validation. Secondly, we compared the host
prediction accuracy with several recently proposed virus-
host association prediction methods [10, 17]. Our method
obtained the highest host prediction accuracy (63.66%). Fi-
nally, we analyzed our method’s abilities to predict potential
hosts for the given virus. As for the crAssphage, our pre-
dicted hosts are corresponding to previous studies, and pre-
dicted another host Escherichia coli is associated with
intestinal diseases. In general, it is important to study virus-
host associations. Our research not only has potential to
predict hosts of viruses, but also can be applied to predict
virus-host associations.

Although some results have been achieved so far, there
are still some problems that can be further studied in the
future. First, the biology characteristics of viruses and
hosts are abundant and varied. Apart from whole genome
sequences, protein, amino acid, abundance profile and
other related information might also have contribution to
the prediction model. It needs further research to study
what information provides a reliable basis for virus-host
association prediction, and extracting appropriate charac-
teristics of viruses and hosts are important for predicting
results. Here, we integrate genome sequence information
and known virus-host associations. In the future re-
searches, we will consider adding different information
sources of viruses and hosts to analyze impacts of different
characteristics on prediction results.
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