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Abstract

Background: Due the computational complexity of sequence alignment algorithms, various accelerated solutions
have been proposed to speedup this analysis. NVBIO is the only available GPU library that accelerates sequence
alignment of high-throughput NGS data, but has limited performance. In this article we present GASAL2, a GPU library
for aligning DNA and RNA sequences that outperforms existing CPU and GPU libraries.

Results: The GASAL2 library provides specialized, accelerated kernels for local, global and all types of semi-global
alignment. Pairwise sequence alignment can be performed with and without traceback. GASAL2 outperforms the
fastest CPU-optimized SIMD implementations such as SeqAn and Parasail, as well as NVIDIA’s own GPU-based library
known as NVBIO. GASAL2 is unique in performing sequence packing on GPU, which is up to 750x faster than NVBIO.
Overall on Geforce GTX 1080 Ti GPU, GASAL2 is up to 21x faster than Parasail on a dual socket hyper-threaded Intel
Xeon system with 28 cores and up to 13x faster than NVBIO with a query length of up to 300 bases and 100 bases,
respectively. GASAL2 alignment functions are asynchronous/non-blocking and allow full overlap of CPU and GPU
execution. The paper shows how to use GASAL2 to accelerate BWA-MEM, speeding up the local alignment by 20x,
which gives an overall application speedup of 1.3x vs. CPU with up to 12 threads.

Conclusions: The library provides high performance APIs for local, global and semi-global alignment that can be
easily integrated into various bioinformatics tools.
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Background
Many applications for processing NGS sequencing data
depend heavily on sequence alignment algorithms to iden-
tify similarity between the DNA fragments in the datasets.
Well known programs for DNA mapping such as BWA-
MEM [1] and Bowtie2 [2], DNA assemblers such PCAP
[3] and PHRAP [4], make repeated use of these alignment
algorithms. Furthermore, in various practical multiple
sequence alignment algorithms, many pairwise sequence
alignments are performed to align sequences with each
other. Also, alignment based read error correction algo-
rithms, like Coral [5] and ECHO [6], perform a large
number of pairwise sequence alignments. In addition,
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variant callers for NGS data e.g. GATK HaplotypeCaller
[7], also make use of sequence alignment.
Sequence alignment is the process of editing two or

more sequences using gaps and substitutions such that
they closely match each other. It is performed using
dynamic programming. There are two types of sequence
alignment algorithms for biological sequences: global
alignment and local alignment. The former is performed
using the Needleman-Wunsch algorithm [8] (NW), while
Smith-Waterman algorithm [9] (SW) is used for the lat-
ter. Both algorithms have been improved by Gotoh [10] to
use affine-gap penalties. These alignment algorithms can
be divided into the following classes:

• Global alignment: In global alignment, also known as
end-to-end alignment, the goal is to align the
sequences in their entirety while maximizing the
alignment score.
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• Semi-global alignment: Unlike global alignment,
semi-global alignment finds the overlap between the
two sequences, allowing to skip the ends of a
sequence without penalty. In semi-global alignment
the gaps at the leading or trailing edges of the
sequences can be ignored, without inducing any
score penalty. Different kinds of semi-global
alignments are possible depending on which
sequence can have its beginning or end be skipped.
GASAL2 supports all kinds of semi-global alignments
where any combination of beginning or end of a pair
of sequences can be ignored.

• Local alignment: In local alignment, the goal is to
align two sequences so that the alignment score is
maximized. As opposed to global alignment, the final
alignment may not contain the whole of the
sequences. No penalty is induced by misalignments
in the beginning and end of the sequences, and the
score is kept positive.

Figure 1 shows the alignment of the two sequences shown
in Fig. 2. The bases enclosed in the box constitute the
alignment. Match score is 3; mis-match penalty is 4; gap
open and gap extension penalties are 6 and 1, respectively.
For global alignment the alignment score is -5. In case of
semi-global alignment the gaps at the end of S1 are not
penalized. The alignment score is 7, while the start and
end positions of the alignment on S2 are 2 and 10, respec-
tively. For local alignment, the final alignment score is
10. The end-positions of the alignment on S1 and S2 are
12 and 10, respectively. The start-position is 3 on both
sequences.

Graphical processing units
Graphical Processing Units (GPUs) were developed for
rendering graphics, but are now being used to accelerate

many other applications due to their massively
parallel architecture. The GPU architecture varies from
one vendor to the other and even across different GPU
generations from the same vendor. Here we give a general
overview of state-of-the-art NVIDIA GPUs. The cores of
a GPU, known as streaming processors (SPs), groups of
which are organized into a number of streaming multi-
processors (SMs). Each SM has a set of SPs, a register file,
one or more thread schedulers, a read only memory, L1
cache, shared memory, and some other hardware units.
All SMs access the DRAM (known as global memory)
through a shared L2 cache. The programming language
for NVIDIA GPUs is known as CUDA which is an
extension of C/C++. The function that executes on the
GPU is known as kernel. The data to be processed by
the kernel is first copied from the CPU memory into the
global memory of the GPU. The CPU (known as the host)
then launches the kernel. Once the kernel is finished the
results are copied from the global memory back into CPU
memory. This copying of data back and forth between
host and GPU is quite time expensive. Therefore, data
is transferred between the host and GPU in the form of
large batches to keep number of transfers at minimum.
Moreover, the batch should be large enough to fully
utilize the GPU resources.
At every clock cycle each SM executes instructions from

a group of threads known as a warp. A warp is a set
of 32 GPU threads that execute in lock-step (i.e., they
share the instruction pointer). Therefore, if one or more
threads execute a different instruction, different execu-
tion paths are serialized causing performance loss. This
phenomenon is known as divergent execution and should
be avoided as much as possible. Moreover, to achieve
good memory throughput the memory accesses should
be coalesced (i.e., all the threads in a warp should access
consecutive memory locations).

Fig. 1 Alignment of S1 and S2 sequences shown in Fig. 2. a Global alignment example. b Semi-global alignment example. c Local alignment example
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Fig. 2 Identical H, E and F matrix

To allow the overlapping of GPU and CPU execution,
all the GPU kernel launches are asynchronous i.e. con-
trol is immediately returned to the CPU after the kernel
launch. In this way, the launching thread can perform
other tasks instead of waiting for the kernel to com-
plete. Using CUDA streams, it is possible to launch one
or more kernels on GPU before the results of a previ-
ously launched kernel has been copied back to the CPU.
CUDA streams also allow to asynchronously perform the
copying operations. Hence, one can just launch all the
operations and perform other tasks on the CPU. Subse-
quently, the cudaStreamQuery() API function can be
used to test whether all the operations in a given stream
have completed or not.

Previous research works
GPU acceleration of sequence alignment has been the
topic of many research papers like [11–13]. Apart from
sequence alignment , GPUs are also used for acceler-
ating many other bioinformatics algorithms, such as,
described in [14, 15]. Moreover, various biomedical image

analysis applications are accelerated with GPUs.
Kalaiselvi et al. [16] surveys the GPU acceleration of
medical image analysis algorithms. In [17, 18], GPUs are
used to accelerate the processing of MRI images for brain
tumour detection and segmentation. Most of the previous
work on accelerating sequence alignment, was focused
on developing search engines for databases of protein
sequences. The alignment of DNA and RNA sequences
during the processing of high-throughput NGS data
poses a different set of challenges than database searching
as described below.

1 The sequences to be aligned in NGS processing are
generated specifically for each experiment. In
contrast, in database searching, the database of
sequences is known in advance and may be
preprocessed for higher performance.

2 In database search programs, one or few query
sequences are aligned against all the sequences in the
database (may be regarded as target sequences),
whereas the processing of NGS data requires
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pairwise one-to-one, one-to-many or all-to-all
pairwise sequence alignment. Due to this, a common
performance improvement technique in database
search programs, like using query profile, is not
feasible in NGS data alignment.

3 In programs containing GPU accelerated sequence
alignment, the alignment step is tightly coupled with
the rest of the program. The GPU alignment kernel is
specifically tailored to meet the requirements of the
program. Therefore, reusing the kernel to accelerate
the sequence alignment in other programs is not easy.

Due to these differences, GPU accelerated database
search cannot be used to accelerate the alignment step
in NGS data processing programs. gpu-pairAlign [19]
and GSWABE [20] present only all-to-all pairwise local
alignment of sequences. All-to-all alignment is easier to
accelerate on GPU. Since, only one query sequence is
being aligned to all other sequences, the query sequence
may reside in the GPU cache, substantially reducing global
memory accesses. On the other hand, in one-to-one align-
ment each query sequence is different limiting the effec-
tiveness of caching these sequences. In many NGS data
processing applications, one-to-one pairwise alignment is
required (e.g., DNA read mapping). In DNA read map-
ping, local alignment takes a substantial percentage of
the total run time. For example, in the BWA-MEM DNA
read aligner the local alignment takes about 30% of the
total execution time with query lengths of 250bp (or base
pairs), while calculating only the score, start-position and
end-position.
None of the previously published research efforts

have developed any GPU accelerated sequence alignment
library that can be easily integrated in other programs
that require to perform pairwise alignments. NVBIO [21]
is the only public library that contains GPU accelerated
functions for the analysis of DNA sequences. Although
this library contains a GPU accelerated function for
sequence alignments, its performance is limited. There-
fore, in this paper we present a GPU accelerated library for
pairwise alignment of DNA and RNA sequences, GASAL2
(GPU Accelerated Sequence Alignment Library v2), as
an extension of our previously developed GASAL library
described in [22]. The library contains functions that
enable fast alignment of sequences and can be easily inte-
grated in other programs developed for NGS data analysis.
Functions for all three types of alignment algorithms (i.e.,
local, global and semi-global) are available in GASAL2.
One-to-one as well as all-to-all and one-to-many pairwise
alignments can be performed using affine-gap penalties.
The contributions of the paper are as follows:

• A GPU accelerated DNA/RNA sequence alignment
library that can perform global, semi-global (all types)
as well as local alignment between pair of sequences.

The library can compute the alignment score and the
actual alignment between two sequences by
performing traceback. The actual alignment is
generated in CIGAR format and contains the exact
position of matches, mismatches, insertion and
deletion in the alignment. Optionally it can compute
the alignment score with only the end, and if
required, the start position of the alignment.

• The library uses CUDA streams so that the alignment
functions can be called asynchronously and the host
CPU can perform other tasks instead of waiting for
the alignment to complete on the GPU.

• GASAL2 is the fastest sequence alignment library for
high-throughput Illumina DNA sequence reads in
comparison to highly optimized CPU-based libraries,
and it is also much faster than NVBIO, NVIDIA’s
own GPU library for sequence analysis.

• GASAL2 can be easily integrated in bioinformatics
applications, such as accelerating the seed-extension
stage of BWA-MEM read mapper.

Implementation
In this paper, we describe GASAL2, a GPU accelerated
library for pairwise sequence alignment. The sequences
are first transferred to the GPU memory, where they
are packed into unsigned 32-bit integers. If needed, any
number of sequences can then be reverse-complemented.
Finally, the alignment is performed and the results are
fetched back from the GPU memory to the CPU mem-
ory. This section gives an overview of the implementation
choices of GASAL2 and describes various stages in the
data processing pipeline performed on the GPU.

Stage-1: data packing
The user passes the two batches of sequences to be pair-
wise aligned. A batch is a concatenation of the sequences.
Each base is represented in a byte (8-bits). DNA and
RNA sequences are made up of only 5 nucleotide bases,
A, C, G, T/U (T in case of DNA and U in RNA)
and N (unknown base), 3 bits are enough to repre-
sent each symbol of a sequence. However, we represent
each base in 4 bits for faster packing. Due to the com-
pute bound nature of the GASAL2 alignment kernel,
using 3-bits does not result in any significant speedup
over the 4-bit representation, but instead complicates
the data packing process. Registers in the GPU are 32-
bits wide. Therefore, a batch of sequences is packed
in an array of 32-bit unsigned integers in which each
base is represented by 4 bits. NVBIO also packs the
sequences on CPU using 4 bits per base. As the total
number of bases in a batch is quite large, packing the
data on the CPU is very slow. Figure 3 shows the per-
centage of data packing in the total execution time
for one-to-one pairwise alignment of the input dataset.
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Fig. 3 NVBIO data packing time as percentage of total execution time

The input dataset and GPU platform are described in
“Input dataset and execution platforms” section on page 6.
Figure 3 shows that NVBIO data packing takes around
80% of the total time. Hence, in NVBIO preparing the
sequences for the alignment on GPU takes much more
time then actually aligning the sequences. Based on this
observation, we accelerate the data packing process on
GPU and unpacked batches of sequences are copied to the
GPU global memory for this purpose. Figure 4 shows how
the GPU data packing kernel works on GPU. Each GPU
thread loads eight bases at a time from global memory.
Each base is converted from 8-bit to 4-bit representation
by masking the upper 4 bits, and then packed into an
unsigned 32-bit integer which is written back to global
memory. Figure 5 shows the achieved speedup of our
novel approach of packing the sequences on GPU as com-
pared to sequence packing performed by NVBIO on CPU.
GASAL2 is at least 580x faster than NVBIO. Since, only
few milliseconds are required to pack the sequences in
GASAL2, the data packing time is completely eliminated.
After the data packing is complete, packed sequences
reside on the GPU memory and all subsequent opera-
tions are completely done on the GPU, only the final
results of the alignment need to be copied from GPU
to CPU.

Stage-2 (optional): reverse-complementing kernel
GASAL2 is able to reverse and/or complement any num-
ber of sequences from any batch. Any sequence can
be flagged to be reversed, complemented, or reverse-
complemented. The reverse-complementing process is
performed on the GPU on already packed sequences to
take advantage of the high parallelism of the task.

Stage-3: alignment
The sequence alignment kernel is launched to per-
form pairwise alignment of the sequences using affine-
gap scoring scheme. GASAL2 employs inter-sequence
parallelization and each GPU thread is assigned a pair of
sequences to be aligned. All pairs of sequences are inde-
pendent of the others, so there is no data dependency
and all the alignments run in parallel. An alignment algo-
rithm using affine-gap penalties compute cells in three
dynamic programming (DP) matrices. These matrices are
usually named as H, E and F. The matrices are shown
in Fig. 2. Each cell needs the results of 3 other cells: the
one on top, the one on the left, and the one on the top-
left diagonal. Since the sequences are packed into 32-bits
words of 8 bases each, the alignment fetches a word of
both sequences frommemory and computes an 8x8 tile of
the matrix. Hence, 64 cells of the DP matrices are com-
puted with a single memory fetch reducing the number of
memory requests. All the tiles are computed from left to
right, then top to bottom. To jump from one tile to the
next one on the right, we need to store 8 intermediate
values (which are the values of the cell of the left for the
next tile). To jump from one row of tiles to the next row,
we need to store a full row of intermediate values (which
are the values of the cell of the top for the next row of
tiles). Hence, instead of storing the whole matrix, we only
store an 8-element column and a full row, which reduces
the memory requirement from O(n2) to O(n). Since, the
stored column has only 8 elements it can easily reside in
the GPU register file. For ease of representation, Fig. 2
shows a 4 x 4 tile, and the intermediate values that are
stored are shown shaded. Our library can also compute
the start-position of the alignment without computing the
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Fig. 4 Packing the sequences on GPU. b1, b2, . . . , are the bases

Fig. 5 Data packing time, GASAL2 vs NVBIO
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traceback. To do so, we restart the computation, but now
from the end-position in the backward direction, and exit
where the score becomes equal to the previously found
score. The coordinates of the cells at the exit point give the
start-position of the alignment.
For computing the traceback a directionmatrix is stored

in the global memory of the GPU while computing the
alignment. The direction matrix is similar to the one
shown in Fig. 2 with |S1| × |S2| cells. Each cell is rep-
resented by 4-bits in the memory. The lower 2 bits are
used to encode whether the current cell is match, mis-
match, insertion or deletion. The upper two bits are for
the next cell on the alignment path. If the next cell is
a gap then the upper bits of the current cell represent
whether it is a gap-open or gap-extension, one bit each
for insertion and deletion. The direction matrix is stored
in the memory using uint4 CUDA vector data type.
uint4 has 4 aligned 32-bit unsigned integers. A single
store/load instruction is required to access uint4 data
from the memory. A single uint4 data element can store
32 direction matrix cells, and hence half the cells in a tile.
Moreover, the direction matrices of all the pairs aligned
on the GPU are stored in an interleaved fashion for coa-
lesced memory access. The actual alignment is generated
using the direction matrix by starting from the end cell
and tracing back to the start of the alignment to compute
the exact location of matches, mismatches, deletions and
insertions.
The output of this stage depends on the users choice.

There are three possible outputs: 1) only score and end-
position of the alignment. 2) score, end-position and start-
position of the alignment without performing traceback.
3) score, end-position, start-position and actual alignment
in CIGAR format.

Kernel specialization through templates
GASAL2 supports various kinds of parameters for ker-
nel launches, to tailor the results to the user’s need. For
example, the traceback will only be calculated if the user
requests it. In addition, GASAL2 can adapt to any kind
of semi-global alignment where the initialization or the
search for a maximum can vary, depending on the user
requesting the beginning and/or the end of any sequence.
Dealing with this kind of issue is not trivial in the case of

GPU programming, as creating a simple branch through
an if statement slows down the whole kernel dramati-
cally (for a single if in the innermost loop of an align-
ment kernel, this can cause an approximate slowdown of
40%). Duplicating the kernels is not a viable solution for
code maintenance: for example, for the semi-global ker-
nel, there are 24 = 16 types; and adding the possibility of
asking for the start-position doubles this number.
The solution that we adopted allows to generate all

the possible kernels at compilation time, so that they are

all ready to run at full speed without branches. CUDA
implementation of C++ templates (according to C++11
specifications) allows to generate all template-kernels at
compile time. The programming model that we adopted
allows to create a new kernel specialization by writing if
statements that are resolved at compilation time, to prune
the useless branches.

GPU launch parameters choice
GPU threads are organized in blocks, and blocks are
grouped into kernel grid. A block is run on a SM that
has several hardware resources such as cores, register
file, cache, etc. Two parameters characterize the kernel
launch:

• the block size, which is the number of threads in a
block.

• the grid size, which is the total number of blocks.

Block size affects the SM occupancy. The SM occupancy
is the ratio of number of active warps and the maximum
number of warps allowed on a SM. Increasing the occu-
pancy helps in memory-bound applications. Large occu-
pancy makes sure that they are always enough number
of warps that are ready to be scheduled to the streaming
processors so that all cores (SP’s) in the SM are fully uti-
lized. GASAL2 alignment kernel is not memory-bound.
It can compute a 8x8 tile of cells in only 2-3 memory
requests. Thus, increasing the occupancy does not help
much. However, GASAL2 alignment kernels use a block
size of 128 for reasonable occupancy value. GASAL2 uses
the inter-sequence parallelization and each GPU thread
performs only one alignment. Hence, the grid size is
always the ratio of number of alignments to be performed
and the block size (128).

GASAL2 asynchronous execution
GASAL2 allows the user to overlap GPU and CPU execu-
tion. This is known as asynchronous or non-blocking align-
ment function call as opposed to synchronous or blocking
call used in GASAL [22]. In a blocking alignment func-
tion call, the calling thread is blocked until the alignment
on the GPU is complete. GASAL2 uses CUDA streams
to enable asynchronous execution. In asynchronous calls,
the calling thread is not blocked and immediately returns
after launching various tasks on the GPU. In GASAL2
these tasks are CPU-GPU memory transfers, and the
GPU kernels for data packing, reverse-complementing
(optional), and pairwise-alignment. The application can
perform other tasks on the CPU rather than waiting for
the GPU tasks to complete. This helps to eliminate idle
CPU cycles in case of a blocking call. Hence, the time
spent in the alignment function is merely a small over-
head to call the CUDA API asynchronous memory copy
functions and launch the kernels.
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GASAL2 versus GASAL and NVBIO
The advantages of GASAL2 over GASAL and NVBIO are
listed below:

1. GASAL2 can generate the actual alignment between
a pair of sequences by computing traceback. The
traceback contains the exact position of matches,
mismatches, insertion and deletion in the alignment.
This facility is not provided in GASAL.

2. GASAL2 is much faster than NVBIO.
3. Asynchronous execution. This is a unique facility

that is not available in NVBIO or GASAL.
4. In NVBIO and GASAL, an ambiguous base (N) is

treated as a ordinary base having the same match and
mismatch scores as A, C, G or T. But, in most
sequence analysis programs, the match/mismatch
score of "N" is different. For example, in BWA-MEM
the score of aligning "N" against any other base (A, C,
G, T or N) is always -1. Extending NVBIO to adopt
this new scoring scheme to handle "N" increases the
execution time of GPU kernels by 30% for global and
semi-global alignment, and by 38% for local
alignment. In GASAL2 the score of aligning "N"
against any other base is configurable. Due to this,
the execution time of global, semi-global and local
kernels is higher than that of GASAL by 17%, 15%
and 6%, respectively.

5. In GASAL, the GPU memory allocations are
performed just before the batch of sequences are
copied from CPU to GPU. The allocated memory is
freed after the alignment is complete and the results
are copied from GPU to CPU. If the input batch is
not very large, the time spent in memory allocation
and de-allocations may become significant and, thus
reduces the performance. In GASAL2, we have a
separate API function for memory allocation and
de-allocation which is called only once at the
beginning and end of the program, respectively. At
the beginning of the program, user calls the memory
allocation function by passing an estimated input
batch size. Separate data structures are maintained to
keep track of the allocated memory. If the actual
input batch is larger, GASAL2 automatically handles
the situation by seamlessly allocating more memory.
The allocated memory is freed up at the end of the
application.

6. GASAL2 supports all types of semi-global
alignments. NVBIO and GASAL supports only one
type of semi-global alignment in which the gaps at the
beginning and end of the query sequence are ignored.

7. GASAL2 can also compute the second-best local
alignment score. GASAL only computes the best
score.

8. GASAL2 has a reverse-complementing GPU kernel.
In NVBIO and GASAL, the user has to manually
reverse-complement the sequence before writing it
to the input batch.

Results
Input dataset and execution platforms
To evaluate the performance of GASAL2 we per-

formed one-to-one pairwise alignments between two set of
sequences.We considered the case of DNA readmapping.
Readmappers have to perform billions of one-to-one pair-
wise alignments between short segments of DNA and
substrings of the reference genome. In this paper, we also
perform one-to-one pairwise alignments between two set
of sequences for evaluation purposes. Affine-gap scor-
ing scheme is used in which the match score, mis-match
penalty, gap open penalty and gap extension penalty is 6,
4, 11 and 1, respectively. In the rest of the paper,we will
refer to the substrings of the reference genome as tar-
get sequences. The length of the read sequence is fixed,
while the length of the target sequence may vary. Table 1
shows the different datasets used in this paper. The read
set consists of reads simulated with Wgsim [23] using
UCSC hg19 as the reference genome. To generate the
target set, these reads and the hg19 reference genome
are used as the input for BWA-MEM. During the seed-
extension phase of BWA-MEM, the mapper aligns the
reads with the substrings of the reference genome. These
substrings are stored and used as the target set. Three typ-
ical read lengths generated by Illumina high-throughput
DNA sequencing machines are used: DS100, DS150 and
DS300 representing 100, 150 and 300bp, respectively.
Table 1 shows the number of sequences in the read and
target set and the corresponding maximum and aver-
age length of the sequences in each set. Minimum target
sequence length in each case is approximately equal to the
length of the read.
The CPU-based libraries are executed on a high end

machine consisting of two 2.4 GHz Intel Xeon E5-2680 v4
(Broadwell) processors and 192 gigabytes of RAM. Each
processor has 14 two-way hyper-threaded cores. Hence,
there are 28 physical and 56 logical cores in total. We
measured the execution time of the CPU-based libraries
with 28 and 56 threads and reported the smallest execu-
tion time of the two. GASAL2 and NVBIO are executed

Table 1 Characteristics of the input dataset

Dataset Read Set Target Set

avg. len. max. len. No. of seq. avg. len. max. len. No. of seq.

DS100 100 100 10e6 162 177 10e6

DS150 150 150 10e6 260 277 10e6

DS300 300 300 10e6 538 571 10e6
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on a NVIDIA Geforce GTX 1080 Ti GPU. Only one CPU
thread is used in case of GASAL2 and NVBIO. GASAL2
is compiled with CUDA version 10.0.

Libraries compared with GASAL2
We compared GASAL2 against the fastest CPU and GPU
based libraries available, which are:

• SeqAn contains the vectorized implementation of all
types of alignments using SSE4, AVX2 and AVX512
SIMD instructions [24]. For SeqAn we used the
test-suite provided by the developers of the library
[25]. AVX2 implementation of SeqAn is used in the
experiments with 16 bits per score. Since the test data
set is based on Illumina reads, we have used
align_bench_par and
align_bench_par_trace which follows the
chunked execution policy giving the fastest execution
for short DNA reads. The chunked policy is also used
to generate the results in [24] for Illumina reads.
align_bench_par calculates the alignment score
and does not report the start and end positions of the
alignment. We have not used the banded version of
align_bench_par as it does not guarantee
correct results. align_bench_par_trace is used
for computing alignment with traceback. In this
paper, we are performing one-to-one alignment for
the experiments. The timings reported in the SeqAn
paper [24] are not for the one-to-one alignment. The
paper used a so-called "olc" alignment mode which is
similar to the different one-to-many alignments. The
library is compiled with GCC 7.3.1.

• ksw module in klib [26] contains a fast SSE based
implementation local alignment algorithm. It can also
compute the start-position, but does not compute the
traceback for local alignment. It has a function for
computing the traceback for global alignment, but it
is not vectorized, and hence very slow. ksw is faster
than SSW [27]. We developed our own test program
for ksw (commit:cc7e69f) which uses OpenMP to
distribute the alignment tasks among the CPU
threads. The test program is compiled with GCC
4.8.5 using O3 optimization flag.

• Parasail [28] contains the SIMD implementation of
the local, global and semi-global alignment with and
without traceback. Ten types of semi-global
alignments are supported. We developed our own
test program for Parasail (version-2.4) which uses
OpenMP to distribute the alignment tasks among the
CPU threads. The test program is compiled with
GCC 4.8.5 using O3 optimization flag. Parasail allows
the user to choose between SSE and AVX2 SIMD
implementations. It also consists of different
vectorization approaches namely scan, striped,

diagonal and blocked. We have used the scan
approach implemented with AVX2 instructions as it
is the fastest for our dataset. Parasail does not
compute the start-position directly without
computing traceback. Therefore, the original
sequences are aligned to obtain score and
end-position, then both sequences are reversed to
calculate the start-position without traceback.

• NVBIO contains the GPU implementations of local
global and semi-global alignment with and without
traceback. Only one type of semi-global alignment is
supported shown in Fig. 1. We used sw-benchmark
program in the NVBIO repository. The original
program performs one-to-all alignments. We
modified sw-benchmark to perform one-to-one
alignments. Moreover, in the original program
reading the sequences from the files and packing the
sequences is done in a single API function call. To
exclude the I/O time from the measurements, we first
loaded the sequences in an array of strings and then
pack the sequences using NVBIO API functions.
NVBIO does not contain any function that directly
computes the start-position of the alignment without
computing the traceback. To compute the
start-position without traceback, we make two copies
of each sequence, one in original form and other
reversed. The alignment of original sequences is used
to compute the score and end-position, while the
reverse sequence are aligned to compute the
start-position. Moreover, as described before, NVBIO
considers "N" as an ordinary base and extending the
library to correctly handle the ambiguous base makes
it more than 30% slower. In our comparison we have
used the original NVBIO implementation. NVBIO is
compiled with CUDA version 8 as it cannot be
compiled with latest CUDA version.

There are also very fast CPU-based libraries that compute
the edit distance or sequence alignment with linear-gap
penalty e.g. EDlib [29], BitPAl [30] and [31]. EDlib com-
putes the Levenshtein distance between two sequences.
Edit distance is the minimum number of substitu-
tion, insertions and deletion required to transform one
sequence to the other. BitPAl and BGSA [31] can perform
global and semi-global alignments with linear-gap penalty.
Many bioinformatics applications require sequence align-
ment with affine-gap penalty which allows to have differ-
ent penalties for gap opening and gap extension.Moreover
EDlib, BitPAl and BGSA cannot compute local alignment.

GASAL2 alignment kernel performance
Table 2 shows a comparison of the alignment kernel exe-
cution times of NVBIO and GASAL2. The times listed
in the table represent the total time spent in the GPU
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Table 2 Alignment kernel times (in seconds) for NVBIO and GASAL2

DS100 DS150 DS300

GPU kernel NVBIO GASAL2 NVBIO GASAL2 NVBIO GASAL2

Local (only score) 1 1 2.2 2.2 8.4 9.6

Local with start 2 1.9 4.4 3.3 16.8 13.6

Local with traceback 6 1.58 14 3.6 57.8 15.5

Semi-global (only score) 0.9 1 2 2.2 8 9.3

Semi-global with start 1.8 1.8 4 3.9 16 16

Semi-global with traceback 6 1.43 14 3.4 62 15

Global (only score) 0.9 1 2 2.3 8 9.5

Global with traceback 6 1.4 14 3.5 63 15

alignment kernel while performing all the one-to-one
pairwise alignment between the sequences in the read and
target set. These times do not include data packing and
data copying time. Three different types of kernels are
timed. The “only score” kernels only compute the score
and end position. The “with start” kernels compute the
score as well as start and end position without computing
the traceback. There is no need to compute the start posi-
tion for global alignment. The “with traceback” computes
the actual alignment along with the score, start-position
and end-position. The table shows that the alignment ker-
nel execution times of NVBIO and GASAL2 are almost
the same with and without computing the start-position.
For finding the start-position GASAL2 kernel first finds
the score and end-position. It then again aligns the two
sequences in the backward direction beginning form the
cell corresponding to the end-position. This backward
alignment is halted as soon as its score reaches the previ-
ously calculated maximum score. This approach helps to
reduce the number of DP cells need to be computed for
finding the start-position. With traceback computation
GASAL2 GPU kernels are around 4x faster than NVBIO.
On the other hand, NVBIO is more space efficient and
uses an approach similar to Myers-Miller algorithm [32]
to compute the traceback.

Total execution time
In this section, we compare the performance of GASAL2
and other libraries in terms of the total execution time.
The total execution time is the total time required to per-
form all the one-to-one pairwise alignment between the
sequences in the read and target set. Figure 6 shows the
flow chart of the test program used to measure the total
execution time of the GASAL2. While filling the param-
eters we specify the type of alignment algorithm and one
of the three following types of computations: 1) only score
and end-position. 2) score, start and end-position with-
out traceback. 3)score, end-position start-position and
actual alignment in CIGAR format. Two batches of 500K
sequences each are filled in each iteration. Hence, there

are 20 iterations in total for the dataset of 10 million pair
of sequences. GASAL2 initializes 5 CUDA streams and
each stream performs one-to-one alignment of 100K pair
of sequences. The total execution time of GASAL2 is the
time starting from selecting an available stream till the
time all the streams are completed i.e. allowing all the
operations, from copying batches to copying results, to
finish. Since the data transfer time is much smaller than
the GPU alignment kernel time (at most 30% of kernel
time) and GASAL2 uses CUDA streams, the data trans-
fer is almost entirely overlapped with GPU execution. For
the experiments, we are not reverse-complementing the
sequences.

Local alignment
Figure 7 shows the total execution times computing only
the score and end-position of the alignment. In this case
GASAL2, NVBIO, ksw and Parasail are reporting the
score as well as the end-position of the alignment. SeqAn
only reports the alignment score. The execution times for
SeqAn, ksw and Parasail shown in Fig. 7 are obtained
with 56 CPU threads. For DS100, the figure shows that
GASAL2 is 5.35x, 4.3x, 10x and 2x faster than ksw,
Parasail, NVBIO and SeqAn, respectively. With DS150
the speedup of GASAL2 over ksw, Parasail, NVBIO and
SeqAn is 4.75x, 3.6x, 7x and 2.4x, respectively. GASAL2 is
3.4x, 2.3x, 3.4x and 2.4x faster than ksw, Parasail, NVBIO
and SeqAn, respectively for DS300. These results indi-
cate that the speedup achieved by GASAL2 over ksw and
Parasail decreases with longer reads. This is due to the
fact that the ksw and Parasail use the striped heuristic
that limits the computational complexity for longer reads,
as compared to the GPU implementation. The results
also show that the speedup achieved by GASAL2 com-
pared to NVBIO decreases with longer reads. The reason
for this decreasing speedup over NVBIO with increasing
read lengths is the reduction of the data packing percent-
age (Fig. 3) as the alignment time continues to increase.
GASAL2 speeds up the data packing while its alignment
kernel performance remains similar to that of NVBIO.
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Fig. 6 The flow chart of the test program used to measure the total
execution time of GASAL2

The speedup of GASAL2 over SeqAn remains constant
around 2x with increasing read lengths. This is because
both of them employ inter-sequence parallelization and
use the standard DP algorithm having the complexity of
|S1| × |S2| (Fig. 2). Hence, the execution time increases
quadratically with read length for both GASAL2 and
SeqAn.
Figure 8 shows the total execution time computing the

start-position of the alignment without traceback. Since

SeqAn neither reports the end-position nor the start-
position, it is omitted in this comparison. The execution
time values shown for ksw and Parasail are obtained with
56 CPU threads. The figure shows that GASAL2 is 6x,
5.3x and 4x faster than ksw; 4.8x, 3.7x and 2.4x faster than
Prasail; 13x, 8.7x and 4.4x faster than NVBIO for DS100,
DS150 and DS300 respectively. The reason for decreas-
ing speedup of GASAL2 over CPU-based libraries is the
same as described for local alignment without computing
the start-position. The speedup over NVBIO is more in
this case as compared to alignment without start-position
computation. With start-position computation the pack-
ing time of NVBIO nearly doubles but the packing time of
GASAL2 remains the same. Another interesting point to
note is that the GASAL2 total execution time with start-
position computation is smaller than the total alignment
kernel time shown in Table 2. This happens because the
alignment kernels of 5 batches are launched in parallel and
their execution may overlap on GPU.
Figure 9 shows the total execution of the local align-

ment with traceback. The traceback computation gives
the actual alignment between the pair of sequences along
with the score, end-position and start-position. SeqAn
and Parasail timings are obtained with 56 CPU threads.
GASAL2 is 8.5x, 7.25x and 5x faster than NVBIO for
DS100, DS150 and DS300, respectively. With increas-
ing read lengths the data packing percentage in NVBIO
decreases but the kernel speedup of GASAL2 over NVBIO
remains constant ( 4x). The speedup of GASAL2 over
SeqAn and Parasail is around 8x and 20X for all datasets.

Semi-global and global alignment
There are many types of semi-global alignments. All types
of semi-global alignments are possible with GASAL2.
SeqAn supports all types of semi-global alignments. Pra-
sail support 10 types. NVBIO supports only one type.
In the paper we are showing the results for semi-global
alignment supported by all the libraries i.e. gaps at end
and beginning of the read sequence are not penalized.
The relative performance of GASAL2, Parasail and SeqAn
for the remaining types is similar. Figure 10 shows the
total execution time of semi-global alignment comput-
ing only the score and end-position. Like local align-
ment, SeqAn only reports the alignment score. Whereas,
GASAL2, Prasail and NVBIO compute the alignment
score as well as the end-position of the alignment. The
execution times for SeqAn and Parasail are obtained with
56 CPU threads. GASAL2 is 4x, 10x and 1.7x faster than
Parasail, NVBIO and SeqAn, respectively for DS100. For
DS150 the speedup of GASAL2 over Parasail, NVBIO
and SeqAn is 3.4x, 6.8x and 1.9x, respectively. In case
of DS300 GASAL2 is 2.2x, 3.75x and 2x faster than
Parasail, NVBIO and SeqAn, respectively. The reasons
for decreasing speedup over Parasail and NVBIO with
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Fig. 7 Total execution times for local alignment computing only the score and end-position. The execution time of CPU-based libraries is obtained
with 56 threads

increasing read lengths are the same as described for local
alignment.
Figure 11 shows the total execution time of the semi-

global alignment computing start-position without trace-
back. SeqAn does not compute the start-position, which
is hence omitted in the comparison. The results for Para-
sail are obtained with 56 CPU threads. The figure shows
that GASAL2 is 4.7x, 3.7x and 2.6x faster than Parasail and
13x, 8.4x and 4.4x faster than NVBIO for DS100, DS150
and DS300, respectively.
Figure 12 shows the total execution of the semi-global

alignment with traceback. The speedups of GASAL2 over

NVBIO and Parasail (56 CPU threads) are similar to
local alignment. For SeqAn the fastest execution time for
DS100 is obtained with 56 threads, whereas for DS150 and
DS300 28 threads are faster than 56 threads. GASAL2 is
3x, 3.5x and 13.5x faster than SeqAn for DS100, DS150
and DS300 respectively.
Figure 13 and 14 shows the total execution time

required for global alignment without and with trace-
back, respectively. The thread settings and the speedups
achieved by GASAL2 are similar to that of semi-
global alignment. With traceback computation GASAL2
becomes even more faster than other CPU libraries. For

Fig. 8 Total execution times for local alignment computing start-position without traceback. The execution time of CPU-based libraries is obtained
with 56 threads
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Fig. 9 Total execution times for local alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56 threads

semi-global and global alignments with traceback the
speedup of GASAL2 over SeqAn increases with increasing
read lengths.

Discussion
GASAL2 is a GPU accelerated sequence alignment library.
It can perform global alignment, local alignment and all
types of semi-global alignment with and without trace-
back. It returns the alignment score, end-position and
optionally the start-position of the alignment. It can also
compute the second best local alignment score. Results
show that GASAL2 is faster thanNVBIO and state-of-the-
art CPU-based SIMD libraries, making it a good choice for

sequence alignment in high-throughput NGS data pro-
cessing libraries. In the following, we show how to use the
library to accelerate the BWA-MEM application.

Case Study:
BWA-MEM is a well known seed-and-extend DNA read
mapper. In the seeding step, it finds substrtings of the read
that match exactly somewhere in the reference genome.
In the extension step, BWA-MEM tries to align the whole
read around that match. The algorithm used in the exten-
sion step is similar to local alignment, where the start-
position is also calculated. We accelerated BWA-MEM
using GASAL2. Two paired-end read datasets of length

Fig. 10 Total execution times for semi-global alignment computing only the score and end-position. The execution time of CPU-based libraries is
obtained with 56 threads
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Fig. 11 Total execution times for semi-global alignment computing start-position without traceback. The execution time of CPU-based libraries is
obtained with 56 threads

150 bp (SRR949537) and 250 bp (SRR835433) are used.
The experiments are run on an NVIDIA Tesla K40c
GPU. The GPU host machine has two 2.4GHz Intel Xeon
E5-2620 v3 processors and 32 gigabytes of RAM. Each
processor has six cores with 2-way hyper-threading. The
BWA-MEM version used in this case study is 0.7.13. We
also accelerated BWA-MEM using GASAL and compared
it with the results obtained with GASAL2. The original
GASAL published in [22] has two shortcomings described
in “GASAL2 versus GASAL and NVBIO” section: a)
GASAL treats base ’N’ as an ordinary base. This causes
BWA-MEM to abort due to an error. We updated GASAL
so that it treats base ’N’ in the same manner as GASAL2,

b) GASAL allocates and de-allocates the GPU memory
just before and after the memory transfers between CPU
and GPU, respectively. This causes the whole BWA-MEM
application to slow down substantially due to repetitive
GPU memory allocations and de-allocations. We updated
GASAL so that the memory allocation and de-allocation
are performed same as in GASAL2 i.e. only once, at the
beginning and end of the application. The accelerated
BWA-MEM is executed in the same manner as the orig-
inal BWA-MEM (same command line arguments). The
only difference between the accelerated BWA-MEM and
the original version is that the seed-extension is per-
formed on the GPU instead of CPU.

Fig. 12 Total execution times for semi-global alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56
threads except of SeqAn. For SeqAn the DS100 results are with 56 threads, whereas the DS150 and DS300 results are with 28 threads
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Fig. 13 Total execution times for global alignment without traceback. The execution time of CPU-based libraries is obtained with 56 threads

Execution timeline
Figure 15 shows the execution timeline of BWA-MEM
before and after acceleration. Figure 15a shows the exe-
cution in the original BWA-MEM. Figure 15b shows the
BWA-MEM execution with the extension step acceler-
ated using GASAL. Note that the seeding and exten-
sion steps are performed for a batch of reads to mit-
igate the CPU-GPU memory transfer overhead and to
fully utilize GPU resources. Furthermore, the thread
running on the CPU remains idle while the extension
is performed on the GPU. Figure 15c shows how the
GASAL2 alignment function can be used for overlap-
ping CPU and GPU execution. A batch of reads is

further broken down into sub-batches, numbered 1, 2
and 3. CPU execution is overlapped with the seed exten-
sion on GPU. This is achieved via the GASAL2 asyn-
chrnous alignment function call facility. Empty time slots
on the CPU timeline are also present in (c), but these
are much smaller than (b). These empty slots in (c)
will not be present if extension on GPU is faster than
post-extension processing or vice-versa. We test both
approaches i.e. (b) and (c), to accelerate the extension
step of BWA-MEM. In practice, due to load balancing
(explained below) we used a batch size that varies between
5000 to 800 reads. The number of sub-batches are either
5 or 4.

Fig. 14 Total execution times for global alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56
threads except for SeqAn. For SeqAn the DS100 results are with 56 threads, whereas the DS150 and DS300 results are with 28 threads
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Fig. 15 Execution timeline of original and accelerated BWA-MEM

Load balancing
In the original BWA-MEM, each thread is assigned a
number of reads to process and one read is processed by a
thread at a time. If a thread has finished processing all of
its allocated reads, it will process the remaining reads of
unfinished threads. Due to this, all of the threads remain
busy until the whole data is processed resulting in maxi-
mum CPU utilization. On the other hand, in case of GPU
acceleration reads are processed in the form of batches.
Therefore, some threads may finish earlier than others
and remain idle while waiting for all of the threads to fin-
ish. The idle time of these threads causes underutilization
of the CPU. Decreasing the batch size helps to increase
the CPU utilization, but at the same time may reduce the
alignment function speedup due to increased data trans-
fer overhead and poor GPU utilization. To circumvent this
problem, we used dynamic batch sizes in our implemen-
tation. At the start, the batch size for each CPU thread
is 5000 reads, but can be reduced to as low as 800 reads,
depending upon the number of free threads which have
finished processing there allocated reads. Doing so help
to reduce the time wasted by a CPU thread in waiting
for other threads to finish. We measured the wasted time
as the difference between the finishing times of slowest
and the fastest thread. By applying our dynamic batch size

approach the wasted time is reduced by 3x for 150bp reads
and 2x for 250 bp reads with 12 CPU threads.

Performance with 150bp reads
For 150bp reads, Fig. 16 shows the comparison of time
spent in the seed extension for the original BWA-MEM
executed on the host CPU and the GPU accelerated
BWA-MEM in which the seed extension is performed
using GASAL2 alignment functions. The extension per-
formed using GASAL2 (GASAL2-extend) is the sum of
time to asynchronously call the GASAL2 alignment func-
tion and the time required in getting back the results using
gasal_is_aln_async_done() function, in addition
to the time of the empty slots before the post-processing
of the last sub-batch. GASAL2-extend is more than 42x
faster than the CPU time represented by original BWA-
MEM extension function(orig-extend) for one thread, and
over 20x faster for 12 CPU threads. Hence, the GASAL2
asynchronous alignment function allows to completely
eliminate the seed extension time. The GASAL alignment
function (GASAL-extend) is 3-4x slower than GASAL2-
extend and is hence around 7-10x fassimilarter than orig-
extend.
Figure 17 shows the total execution times of the original

BWA-MEM and GASAL2 for 150bp data. The ideal-total
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Fig. 16 Time spent in the extension step of BWA-MEM for 150bp reads

is total execution time for the case in which the time
spent in the extension step is zero, and thus, represents
the maximum achievable speedup. For 1 to 4 CPU thread,
the GPU speedup is almost identical to the ideal one.
For higher CPU threads, the speedup is slightly smaller
than ideal. For 12 threads, the GASAL2 speedup and ideal
speedup are 1.3 and 1.36, respectively. Since the time con-
sumed by the seed extension function in BWA-MEM is
25-27%, the total execution time of GASAL is only slightly
higher than GASAL2. For 12 threads, the GASAL speedup
is 1.26. The main cause of the difference between ideal
and actual speedup for higher number of CPU threads is
imperfect load balancing between the CPU threads.

Performance with 250 bp reads
Same analysis is repeated for 250 bp reads. Figure 18
shows the seed extension time of original BWA-MEM
andGASAL2 alignment functions. GASAL2-extend is 32x
to 14x faster than orig-extend for 1 to 12 CPU threads,
respectively. The reduction in speed-up as compared to
150bp reads is due to reduction in GPU alignment ker-
nel speed for longer reads, which widens the empty
slots in the CPU timeline of Fig. 15c. GASAL-extend is
7x to 3x faster than CPU extension for 1 to 12 CPU
threads, respectively. This means that GASAL-extend is 4-
5x slower than GASAL2-extend. Hence, for longer reads
the speedup of GASAL2 over GASAL increases.

Fig. 17 Total execution time of BWA-MEM for 150 bp reads
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Fig. 18 Time spent in the extension step of BWA-MEM for 250bp reads

Figure 19 shows the total execution time for 250 bp
reads. For up to 2 CPU threads, GASAL2-total, GASAL-
total and ideal-total all are the same. Above 2 CPU
threads, GASAL2-total becomes faster than GASAL-
total. For 12 CPU threads, the ideal speedup is 1.49
whereas the speedup with GASAL2 and GASAL is 1.35
and 1.2, respectively. The gap between the ideal speedup
and speedup achieved with GASAL2 is larger for 250 bp
reads as compared to 150 bp reads. This happened due
to imperfect load balancing between threads as well as
decreased speedup of the seed extension step for 250bp
reads.
In summary GASAL2 gives seed-extension speedup in

excess of 10x even when 12 CPU threads share a single
NVIDIA Tesla K40c GPU.

Conclusions
In this paper, we presented GASAL2, a high performance
and GPU accelerated library, for pairwise sequence align-
ment of DNA and RNA sequences. The GASAL2 library
provides accelerated kernels for local, global as well as
semi-global alignment, allowing the computation of the
alignment with and without traceback. It can also com-
pute the start position without traceback. In addition,
one-to-one as well as all-to-all and one-to-many pairwise
alignments can be performed. GASAL2 uses the novel
approach of also performing the sequence packing on
GPU, which is over 750x faster than the NVBIO approach.
GASAL2 alignment functions are asynchronous/non-
blocking which allow fully overlapping CPU and GPU
execution. GASAL2 can compute all types of semi-global

Fig. 19 Total execution time of BWA-MEM for 250 bp reads
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alignments. These represent unique capabilities not avail-
able in any earlier GPU sequence alignment library.
The paper compared GASAL2’s performance with the
fastest CPU-optimized SIMD implementations such as
SeqAn, ksw, Parasail and NVBIO (NVIDIA’s own GPU
library for sequence analysis of high-throughput sequenc-
ing data). Experimental results performed on the Geforce
GTX 1080 Ti GPU show that GASAL2 is up to 5.35x
faster than 56 Intel Xeon threads and up to 10x faster
than NVBIO with a read length of 100bp, comput-
ing only the score and end-position. For 150bp reads,
the speedup of GASAL2 over CPU implementations (56
Intel Xeon threads) and NVBIO is up to 4.75x and up
to 7x, respectively. With 300bp reads, GASAL2 is up
to 3.4x faster than CPU (56 Intel Xeon threads) and
NVBIO. The speedup of GASAL2 over CPU implemen-
tations (56 Intel Xeon threads) computing start-position
without traceback is up to 6x, 5.3x and 4x for 100, 150
and 300bp reads, respectively. With start-position com-
putation, the speedup of GASAL2 over NVBIO is up to
13x, 8.7x and 4.4x for 100, 150 and 300bp reads, respec-
tively. With traceback computation GASAL2 becomes
even faster. GASAL2 traceback alignment is 13x and
20x faster than SeqAn and Parasail for read lengths of
up to 300 bases. The GPU traceback alignment ker-
nel of GASAL2 is 4x faster than NVBIO’s kernel, giv-
ing an overall speedup of 9x, 7x and 5x for 100, 150
and 300bp reads, respectively. GASAL2 is used to accel-
erate the seed extension function of BWA-MEM DNA
read mapper. It is more than 20x faster than the CPU
seed extension functions with 12 CPU threads. This
allows us to achieve nearly ideal speedup for 150 bp
reads. The library provides easy to use APIs to allow
integration into various bioinformatics tools. GASAL2
is publicly available and can be downloaded from:
https://github.com/nahmedraja/GASAL2.
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