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Abstract
Background: To study cell biological phenomena which depend on diffusion, active transport processes, or the
locations of species, modeling and simulation studies need to take space into account. To describe the system as a
collection of discrete objects moving and interacting in continuous space, various particle-based reaction diffusion
simulators for cell-biological system have been developed. So far the focus has been on particles as solid spheres or
points. However, spatial dynamics might happen at different organizational levels, such as proteins, vesicles or cells
with interrelated dynamics which requires spatial approaches that take this multi-levelness of cell biological systems
into account.
Results: Based on the perception of particles forming hollow spheres, ML-Force contributes to the family of
particle-based simulation approaches: in addition to excluded volumes and forces, it also supports compartmental
dynamics and relating dynamics between different organizational levels explicitly. Thereby, compartmental dynamics,
e.g., particles entering and leaving other particles, and bimolecular reactions are modeled using pair-wise potentials
(forces) and the Langevin equation. In addition, forces that act independently of other particles can be applied to
direct the movement of particles. Attributes and the possibility to define arbitrary functions on particles, their
attributes and content, to determine the results and kinetics of reactions add to the expressiveness of ML-Force. Its
implementation comprises a rudimentary rule-based embedded domain-specific modeling language for specifying
models and a simulator for executing models continuously. Applications inspired by cell biological models from
literature, such as vesicle transport or yeast growth, show the value of the realized features. They facilitate capturing
more complex spatial dynamics, such as the fission of compartments or the directed movement of particles, and
enable the integration of non-spatial intra-compartmental dynamics as stochastic events.
Conclusions: By handling all dynamics based on potentials (forces) and the Langevin equation, compartmental
dynamics, such as dynamic nesting, fusion and fission of compartmental structures are handled continuously and are
seamlessly integrated with traditional particle-based reaction-diffusion dynamics within the cell. Thereby, attributes
and arbitrary functions allow to flexibly describe diverse spatial phenomena, and relate dynamics across
organizational levels. Also they prove crucial in modeling intra-cellular or intra-compartmental dynamics in a
non-spatial manner, and, thus, to abstract from spatial dynamics, on demand which increases the range of
multi-compartmental processes that can be captured.
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Background
Space plays an important role in cell biological dynam-
ics, such as cell signalling [1]. To study cell biological
phenomena which depend on diffusion, active transport
processes, or the locations of species, modeling and sim-
ulation studies need to take space into account. Over
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the last decade, a variety of spatial modeling and simu-
lation methods and tools has been developed to support
these simulation studies. They offer different approaches
how to describe a spatial model, e.g., reaction-based, rule-
based, or graphically, and they differ referring to what kind
of spatial dynamics can be described, e.g., whether con-
centrations, populations, or individual particles are con-
sidered, whether a deterministic or stochastic approach
is pursued, and whether movement takes place in dis-
cretized or continuous space [2, 3]. The kind of spatial
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dynamics that are supported by tools largely determines
the results and questions that can be answered by a
simulation study [4–6] and has been subject to differ-
ent categorizations to structure the portfolio of spatial
simulation methods from which the user can select.
TAKAHASHI et al. [7] distinguished spatial simulation

approaches according to the representation of space. We
adopt this structuring and slightly adapt it for the pur-
pose of this paper as presented in Fig. 1. We distinguish
between:

1. Stochastic non-spatial dynamics: To take the
stochasticity of the modelled system into account,
the propensity of reactions are sampled from
exponential distributions and determine which
reaction will occur at which time [9].

2. Compartmental dynamics: Many tools allow to
constrain the dynamics of species to specific
compartments. However also, compartments
themselves can be subject to dynamics. For example,
compartments can fuse and divide [10].

3. Individual particles moving in continuous space:
Particles can be identified by their unique position in
space, bimolecular reactions are triggered by
collisions of particles, and typically particles diffuse
by Brownian motion [11, 12].

4. Partial differential equations: Spatial gradients of
concentrations are calculated deterministically [13].

5. Spatial stochastic dynamics: Multiple particles can
occupy a position within a lattice space, and diffuse
between neighboring positions [14].

Particle-based approaches (in the above categorization
c)) are the subject of a further categorization suggested by
SCHÖNEBERG et al. [8] (Fig. 1, right lower corner). Spatial
particle-based simulation tools are categorized into those
that support

• level 1 – free diffusion: basic 3D diffusion of point
particles and reactions between them are considered,

• level 2 – confined diffusion: diffusion can be
constrained to compartments,

• level 3 – excluded volume: point particles are
replaced by volumetric entities, and

• level 4 – potentials for particle-particle interaction:
instead of a simple rejection of movements assuming
rigid cells, potentials are used to determine the
interaction of particles in terms of exclusion of
movement or reactions.

According to this categorization [8], Smoldyn is charac-
terised as level 2 particle-based approach: point particles
which do not hamper each others movement are equipped
with binding and unbinding radii, they can be constrained
to compartments. A more recent version includes colli-
sion strategies to reach level 3 [15]. SpringSaLaD [16],
ReaDDy [17], and SRSim [18] are based on forces tomodel

Fig. 1 Representations of space which is based on and slightly adapts Figure 1 of [7]. We distinguish between (a) stochastic non spatial dynamics,
(b) compartmental dynamics, (c) individual particles moving in continuous space, (d) partial differential equations, and (e) spatial stochastic
dynamics. Type (c) individual particles moving in continuous space is further described by four levels, according to SCHÖNEBERG et al. [8]. Each level
builds upon the capabilities of the underlying ones, thus the representation as a pyramid. For example a method that provides excluded volumes
should conceptually also be able to provide free diffusion and confined diffusion. ML-Force is characterized by a-b-c(4)
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the particle-particle interactions (level 4). Still, the levels
introduced do not imply that a tool that supports level 3
provides all interesting features that a tool working at
level 2 offers to study the system of interest. E.g., DONO-
VAN [19], whose spatial simulation works at level 2, sup-
ports arbitrarily complex 3Dmesh geometries, whereas in
ML-Space [20] (level 3) only rigid spheres are considered.
Merging both characterizations, approaches that com-

bine different spatial representations can be character-
ized. The Two-Regime method [21] and KLANN et al. [22]
allow to combine particle and RDME dynamics within
one model: c(3)-e. Similarly in [23], particles and par-
tial differential equations are combined to focus on the
spatial region of interest: c(3)-d. [24] couples a partial dif-
ferential equations solver and Smoldyn c(2)-d. ML-Space
combines particles at level 3 (as excluded volumes are con-
sidered), compartmental dynamics, and spatial, stochastic
simulation (RDME): b-c(3)-e [20].
In addition, simulation environments offer the possi-

bility to select different spatial semantics for one model
specification. For example, in VCELL [13], rule-based
models can be interpreted by a particle-based simulator
(i.e., Smoldyn) or a partial differential equation solver,
both confined to realistically geometrical compartmental
structures (c(2), d). This list is far from being complete,
and the characterization of the simulation tools may only
depict a specific state in their development.
Against this background, we propose a new spatial

particle-based modeling and simulation approach for cell
biological systems, i.e.,ML-Force (Fig 1). It combines:

• Potential-based particle dynamics: The excluded
volumes that are represented by the large amount of
macro-molecules within the cell affect the

physico-chemical kinetics of various intracellular
processes [25]. To capture the effects of molecular
crowding, space exclusions need to be considered. In
addition, interactions based on potentials are an
effective means to study the formation of clusters [18].
Additionally, potentials allow us to capture directed
movements, such as the transport of vesicles [26] (see
“Results” section). Similar to ReaDDy [17],
SRSim [18], or SpringSaLaD [16], ML-Force will use
potentials for particle-particle interaction: c(4).

• Compartmental dynamics: Intra-cellular space is
further structured by compartments and vesicles,
most of which are subject to frequent changes in
terms of numbers, content, and inter-connectivity. A
prominent example is the endosomal system.
Vesicles form at the membrane. Here they acquire
their cargo and engulf protein receptor complexes.
Those are transported towards the inner cell, where
part is degraded and part is recycled. The vesicles
themselves move through stages of early sorting,
recycling to late endosomes, closely interacting with
each other – processes which include frequent fission
and fusion [26] (Fig. 2). ML-Force uses the same
force-based approach that it uses for the interaction
of particles and global force functions, to model the
compartmental dynamics. Similar to ML-Space,
ML-Force supports both: compartmental and particle
dynamics. However, unlike ML-Space it uses
potentials b-c(4).

• Rule-based approach with arbitrary attributes and
functions: As other spatial simulators, ML-Force
supports rule-based modeling [29]. However in
ML-Force, attributes are not constrained to a finite
set of values. Similarly, as in ML-Rules [30], attributes

Fig. 2 Illustration (combined from [27, 28]) of a receptor-ligand binding kinetics, which includes receptor protein coupling, internalization, and
recycling, whose components can be interpreted as nested arrangements of objects within objects that interact at intersection points, can be
approximated to spherical particles of various sizes, move in continuous space and undergo processes of creation, degradation, internalization,
externalization, fusion, and fission. a Biological view, b Hollow spheres view
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are of arbitrary type and arbitrary functions are
supported to determine the result and kinetics of
reactions. The possibility to define attributed species
and arbitrary functions increases significantly the
expressiveness of a modeling formalism [31]. It allows
to express spatial stochastic models (RDME) on a
lattice (e) within a modeling approach that relies on a
standard stochastic simulation algorithm for
execution (a). By attributing species with indices that
locate them in a specific point in the lattice (which
represent a subvolume), e.g., A(x, y),B(x, y), reactions
can be constrained to species within one subvolume,
e.g., A(xa, ya) + B(xb, yb) → 2B(xb, yb)@ if xa =
xb ∧ ya = yb then k else 0. Furthermore diffusion
between neighboring subvolumes can be defined, e.g.,
B(xb, yb) →
B
(
oneOf

(
(x+1, y), (h−1, y), (x, y+1), (x, y−1)

))
@kd .

Thus, attributed species and arbitrary functions can
be used to add space to otherwise non-spatial
approaches. This is an observation also made in
colored PETRI-Nets [32] and in expressive rule-based
modeling languages such as ML-Rules [30].
In ML-Force, equipping particles with attributes and
arbitrary functions allows e.g. to describe some part
of the cellular dynamics in a non-spatial manner. For
example, the reaction B + C → D@ k which takes
place in particle A can be transformed into a
non-spatial stochastic first order reaction (a).
Therefore, the particle A is equipped with the
corresponding attributes and a reaction is defined
A(b, c) → A(d)@ b · c · k. The function b · c · k
calculates the propensity of the reaction to take place.
The possibility to constrain reactions based on
arbitrary functions defined on the attributes, allows
us to include non-spatial stochastic dynamics (a)
which brings ML-Force up to a-b-c(4) (see Fig. 1).

Methods
ML-Force adopts a rule-based approach to specify the
spatial biochemical dynamics. Firstly the mathematical
concepts and abstractions are presented. This is followed
by a short description of its implementation and embed-
ded domain-specific modeling language.

Mathematical concepts and abstractions
As the name suggests, forces are central in ML-
Force: they govern the interactions between and most
of the activity of particles in a continuous manner.
This is in contrast to the discrete event view chosen
by simulators such as ML-Space or other agent-based
approaches which interpret compartmental dynamics
such as the proliferation of cells as discrete events
[20, 33].

Representation of particles
ML-Force is a particle-based approach. Particles represent
hollow spheres. As particles can contain other particles,
they can be used to model cellular compartments. Parti-
cles are spherically symmetric and deformable, their size,
properties and nested content may vary. Particles pm are
categorized into classes called species: pm ∈ Si. Species are
characterized by a set of arbitrary attributes, S(a1, . . . an),
e.g., radius, phosphorylation sites, or phases. In our imple-
mentation of ML-Force we require particles to have at
least the attributes radius r (non-zero) and density ρ. The
information about its radius together with information
about the system’s temperature and the viscosity of its
environment allows to derive the diffusion coefficient of
a particle. In combination with the density, this informa-
tion is used to determine the actual velocity (see “Spatial
propagation” section). Particles may contain other parti-
cles, pm(v1, . . . vn)[ pj + . . . + pk]. All particles belonging
to one class share the same attributes and attribute-types.
Attribute values and content of particles may vary among
particles of the same species. The interactions between
and the activity of particles is governed by rules of behav-
ior that operate on the particles, their attributes and their
content. They rely on arbitrary functions for accessing
and updating attributes and content of particles. Particles
belonging to the same species share the same behavioral
patterns.

Spatial propagation
For particles to interact they need to be in close proximity.
In ML-Force, we base our model of propagation on the
LANGEVIN equation [34]

miẍi(t) = −γ ẋi(t) + f (t) + Fext(xi, t) , (1)

with the dot denoting time derivative and boldness indi-
cating vectors. A Langevin equation is an ordinary differ-
ential equation with a random term added. This equation
can be intuitively understood as an extension to NEW-
TON’s F(x, t) = mẍ(t) by adding both friction (friction
coefficient γ ) which is linear to the velocity and a ran-
dom force f which describes the accumulated effect of the
system interaction with the individual particle. This inter-
action between the particles and the system results in the
diffusion of the particles. In particular f is commonly sam-
pled from a Gaussian distribution to model the aggregate
system behavior.
Values for the constants involved can generally be found

using known equations like STOKES-EINSTEIN relation
(Di = kBT

γi
= kBT

6πηri ), as well as system properties like
viscosity η.
The Fext(x, t) expression is the sum of all external forces

on a particle. Two types of external forces are distin-
guished:
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• global forces are those, that act on one particle,
independent of other particles. Global forces
functions may be specified as arbitrary functions of
the individual particle state (most importantly its
position) and the global state of the simulator. This
may be used to model, for example, some global
current in a blood stream or some other directed
cellular motion (as is done in “A model of vesicular
transport” section below).

• pair-wise forces are those, that originate in the
interaction of two particles like the non-reaction
force (Eq. 2), reaction force (Eq. 7) or a division force
(Eq. 6).

Non-reactive force
In order to model excluded volumes, we introduce a
soft sphere potential between two non-reacting particles.
This is a common and natural way to model excluded
volumes in force-based approaches. In addition, a hard-
sphere potential would imply more efforts numerically,
as it would lead to a discontinuous force. An established
choice for the modeling of elastic (soft-sphere) collision is
the HERTZ collision theory [35]:

Fnon−react(d) = 4
3
E∗√r · d3 (2)

where d is the overlap of the particles, E∗ =(
1−ν21
E1 + 1−ν22

E2

)−1
results from the YOUNG’S modulus E

and POISSON’S ratio ν and r =
(

1
r1 + 1

r2

)−1
from their

radii. However, for many sparse applications, any kind
of polynomial would suffice, as the exact dynamics of
the elastic collision do not matter, when the mean time
between collisions is sufficiently large.

Reactions in mL-Force
Reactions between particles in ML-Force include zero,
first and second order reactions. ML-Force supports a
rule-based description of models. Whereas lower order
reactions are sampled from an exponential distribution,
second order reactions are calculated, similarly as the
movement of particles, based on forces.

Lower order reactions
Simulation of zeroth and first order reaction, e.g.,⊥ → pj,
or pi → p′

i, or pi → pj + pk is a well understood prob-
lem (e.g., in SpringSaLaT [16]). The most basic approach
is to sample the rate every (sufficiently small) time-step
and check it against a random number.
InML-Force, rates can be defined by arbitrary functions

that access the attributes and contents of the particles
involved in a reaction, e.g., for a first order reaction:

pi(v1, . . . vn)[ p1 + . . . + pm]→ . . .@λ(k, v1, . . . vn, [ p1, . . . , pm] ) .

(3)

here λ denotes a function defined by the user, k a param-
eter, whichmight refer to the system globally, e.g., in terms
of temperature and viscosity, or to a kinetic constant.
The result of the function λ serves as the parameter for
the exponential random distribution, that describes the
probability density of the time until the reaction occurs.
Thus in ML-Force, zero and first order reactions are
treated semantically the same as in stochastic simulation
algorithms [9]. In stochastic, non-spatial and spatial, sim-
ulation approaches (see Fig. 1a and e) exponentially dis-
tributed stochastic events form the basis of all, including
second order, reactions.
In ML-Force the rate is sampled every time step.

Instead of propagating the simulation until the exact
time point a reaction occurs, we check (stochastically),
if the reaction occurs in the current time step. Sam-
pling the rate every time step is useful if the informa-
tion (v1, . . . , vn, [ p1, . . . , pm]), on which the rates depend,
frequently changes. If this information remains largely
constant over time, a scheduling approach may be more
efficient computationally, as events do not have to be
rescheduled frequently [36]. In executing ML-Force mod-
els so far, zeroth and first order reactions have only
been responsible for a small fraction of the required
computing-time.
In addition to computational considerations, the error

introduced by this procedure needs to be considered. Due
to the discretization of time (explicit time steps) no-more
than one reaction per particle may take place per time
step. This is important to keep in mind for future models.
In the application domain the mean time between reac-
tions tend to be large compared to the very small time
steps that result from the fast diffusion of particles. As
long as this is the case, the error is negligible. With reson-
able technical effort, this problem could also be avoided
by allowing multiple reactions per time step.
One kind of lower order reaction is the changing of par-

ticle size, in terms of a particle’s radius r. In ML-Force
arbitrary functions can be applied. The new value of the
radius r, i.e., v′

1, of a particle pi ∈ Sj(r, . . .) is calculated
in dependence of some global parameters k, and the cur-
rent state of the particle in terms of its attribute values
v1, . . . vn, and its content p1 . . . pm, such that

pi(v1, . . . vn)[ p1 + . . . + pm]

→ pi(λ(k, v1, . . . vn, [ p1, . . . , pm] ), v2 . . . , vn)[ p1 + . . . + pm] . . .@λ(. . .) .

By default, whenever a particle is created, it is first put
into the system as a very small particle and then quickly
grows continuously to its desired size. This continuous
change of particle radii is also used, whenever the radius
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of a particle is changed in the model by any kind of reac-
tion. Carrying the changes out suddenly (so not slowly
over multiple integration steps) would potentially lead to
integration errors, especially in systems with nesting. A
sudden change in size could for example lead to a high
particle overlap, which in turn would create a high unre-
alistic potential energy leading to a strong force and thus
a disturbance in the system, e.g., numerical heating. Slow
changes in size, allow for each artificial change in energy
to slowly dissipate e.g., in friction due to the numerically
very stable Langevin model. Naturally, it is also possible
to create a particle within or at the surface of another
particle. Those new positions are chosen randomly. At
the surface this means that the new particle’s shell barely
touches the old particle’s shell.

Compartment division
An interesting kind of first order reaction is that of a
cellular compartment (or specifically a cell) dividing.

pi(v1, . . . vn)[ p1 + . . . + pm]→ pi1
(
λ11(y), . . . , λn1(y)

)[
λc1(y)

]

+pi2
(
λ12(y), . . . , λn2(y)

)[
λc2(y)

]
@λ(. . .), {a} ,

(4)

with y = k, v1, . . . vn, [ p1, . . . , pm] or in shorthand, omit-
ting attributes and contained particles

pi → pi1 + pi2@λ(. . .), {a} . (5)

In ML-Force this is realized in a continuous and nest-
ing compatible manner. As a first order reaction, the
event that the division starts is sampled from an expo-
nential distribution. The simulator temporarily introduces
an “ignoring” relation between particles. This can be best
explained using an example: Imagine a particle pi contain-
ing many particles p̂1 . . . p̂m. If now the reaction for pi to
split into pi1 and pi2 triggers, a few things happen. First of
all, each particle p̂1 . . . p̂m gets assigned to remain in either
pi1 or pi2. By default, this assignment happens randomly. If
required by the model, a specific splitting function may be
specified by the user. Therefore, two arbitrary functions,
i.e., λc1, λc2 are applied. The results of these applications
form the new content of the newly generated particles, i.e.,
pi1 and pi2 respectively. The functions λi1 to λn1, respec-
tively λi2 to λn2 determine the new attribute values of the
particles. If attribute values remain the same, simply the
old values vi can be used.
Each p̂i that will remain in pi1 is set to ignore the particle

pi2 and vice versa. Also pi1 and pi2 are set to ignore one
another. Now an external force is applied to push pi1 and
pi2 apart

Fdivison = mi · adivision . (6)

The force is calculated based on the acceleration a that
is part of this particular reaction type (Eq.: 4, 5) in ML-
Force and the mass of the involved particles (which again

depend on the respective radii and their density ρ). This
is chosen, instead of a uniform force, to create a uni-
form motion of all particles. In principle however, any
force expression suitable to the model could be used
here, like a half sine wave for example. Once pi1 and pi2
are fully outside one another, all the newly introduced
ignore relations are removed and regular propagation
proceeds.
The principle of continuous change in particle size also

applies here. At the beginning both particles have the
same size. If pi1 and pi2 are to change their size throughout
the division (see example in “The yeast model” section),
this change is carried out throughout the division process.
Initially, both pi1 and pi2 share position and radius. The
further they move out, the closer their radii become to the
desired ones. The fusion of compartments could be added
in an identical (if reversed) fashion. However so far, it has
not been implemented yet.

Bimolecular reactions
Handling bimolecular reactions in particle-based
approaches is rather challenging. Whilst solutions
exist when not considering excluded volumes (e.g.
Smoldyn [12]), there has not yet been agreement among
the community on the best way to approach this problem.
This is evident from the many different approaches of
recent tools [5, 12, 16, 17, 37]. Two processes contribute
to the macroscopic rate,

• the diffusion process describes how likely it is that
two particle actually move into the vicinity of each
other. This upper bound to the reaction rate is well
described by the SMOLUCHOWSKI-Theory [38]
(elaborated in the Additional file 1)

• the microscopic activation process describes how
likely it is for two particle to react once they are close
to each other [39, 40].

The rate is considered to be diffusion limited if every
interaction results in a reaction, all other cases are con-
sidered to be activation limited. We propose to use forces
for both processes. This means also the microscopic acti-
vation process is based on forces. In case a reaction
can occur between two particles, the non-reactive force
(Eq.: 2) has to be replaced by a reactive force. We used
a rather simple approach which is calculated based on a
degree of overlapping required d∗ and the work to cross
the energy barrier between the two particles. Both, the
degree of overlapping and the energy barrier, are specific
for the reaction to occur and have to be defined by the
modeler.

Freact = W
d∗ (7)
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where d∗ denotes the required overlap of the particles
and W the work required to cross the energy barrier. It
should be noted due to the modular design (see “Simu
lator and implementation” section) within the simulator
these functions can easily be changed. Suppose we were
to look at the reaction pi + pj → pk{d∗,W }. When-
ever pi and pj overlap, they start to repel each other
with the force Freact . Once they overlap more than d∗, we
consider the reaction to be triggered. Thus, the energy
barrier and the required overlap of the microscopic inter-
action potential determines the likelihood of the reaction
to take place. The higher the energy barrier, the less likely
the particles will overlap sufficiently. If the energy bar-
rier W is negligible, the diffusion is the only limit to the
macroscopic reaction rate in the reaction process, it is
diffusion limited.
This type of bimolecular reaction handling with forces,

allows also for self-consistent handling of dynamic nest-
ing (and “unnesting”) reactions, i.e., one particle shuttles
into (or out of ) another particle. In principle the same
concepts apply as for the regular bimolecular reaction.
Looking at the reaction pi + pj → pi[ pj] {d∗,W } (and
the same for pi[ pj]→ pi + pj{d∗,W }), first the parti-
cles need to diffuse into proximity of one another. Once
particles overlap, they repel each other. If pi’s diameter
has fully passed over pj’s outline, the nesting reaction is
triggered. However at this point pj is already fully con-
tained in pi so there is no jerkiness in the simulation.
For example, if there is no unnesting reaction defined for
these particles, the only thing, that changes, is that, if pj
were to move towards again touching pi, it would per-
ceive the force Fnon−react (pulling inwards). This ensures
a soft-sphere-style excluded volume. Similar as for the
regular pi + pj → pk type bimolecular reaction, a high
energy barrier makes for a less, and a low for a more likely
reaction.
The advantage of this force-based approach, is the

smooth integration of the nesting process. On the other
hand, it does require a very small timestep, compared
to other methods. Furthermore, in the current situation,
the parameterization of bimolecular reactions is not opti-
mal. Ideally, the modeler would specify the macroscopic
rate, instead of the microscopic barrier. In the future we
plan on investigating this further and, using principles
from thermodynamics, provide an automatic conversion
method. This would mean, by modeling the system as a
thermodynamic ensemble we could determine the statis-
tical likelihood of a particle surpassing a certain energy
threshold during interaction and put this into explicit
mathematical relation to the reaction rate.

Simulator and implementation
The simulator has been implemented using C++14 and
has been tested on both Windows and Linux (using

CMake-build system) and is available at https://git.
informatik.uni-rostock.de/mosi/ml-force-publication.
The user-interface is built around a rudimentary

embedded domain specific language (DSL). An example
and explanation can be found in the provided code snippet
below. In the long run, it would be advantageous to create
an external DSL using techniques like transpiling, to still
have the performance benefits of a compiling language.
A more in-depth comparison and discussion of DSLs can
be found in the literature [41]. The developed embed-
ded DSL bears some similarities with the �-language [42]
which also supports an imperative rather than a declara-
tive approach towards modeling.
As can be seen in Fig. 3, the software pursues a

component-based design with a clear separation of con-
cern [43]. Its components are arranged around the main
simulation engine. The simulation engine itself is very
basic and designed to make as little assumptions about the
underlying semantics as possible. This simulation engine
interacts with the components via a well defined, small
interface. Each of the key ingredients of the simulation
is separated into exchangeable components, namely the
integrator, collision detection engine, and the visualizer,
as well as the overarching modeling layer which provides
the interface between the simulation engine and DSL.
They are invoked by the simulator and implement the
functionality introduced in the previous section. The sim-
ulator is responsible for executing the lower and higher
order reactions by calling the specified functions of the
model. First it is checked whether lower order reactions
trigger in this step. If so, those are executed. Based on
the forces a numerical integrator calculates the new posi-
tions of the particles. To identify the particles that interact,
a collision detection engines is invoked. Afterward the
simulator calculates the bimolecular forces and executes
the biomolecular reactions accordingly. The calculated
state can be subject to visualizations or other reporting
mechanisms.

Integrator Currently integration is carried out using a
two-step kick-drift-kick integrator [44] of the stochastic
LANGEVIN equation. This integration includes velocity,
and is thus fairly costly numerically. However as an alter-
native, one could select an integrator with immediate
dissipation of momentum, that would allow for a consid-
erably larger timestep. The choice for the more complex
integrator was made as ML-Force makes heavy use of
various forces and carrying out the more complex inte-
gration, helps in terms of correctness. In the current
implementation the time step is chosen adaptively based
on the smallest particle and the fastest velocity currently
in the system, as 	t = rmin

vmax g with g as the parameter of
granularity, that describes the precision of the integration.

https://git.informatik.uni-rostock.de/mosi/ml-force-publication
https://git.informatik.uni-rostock.de/mosi/ml-force-publication
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Fig. 3 The different components of the software and their respective tasks, as called upon by the main simulator in an UML sequence diagram. The
different components of the software are interchangeable and only interact via their interface to the main Simulator-component. This simulator also
provides the layer between the model (as specified using the DSL).The software implementation is described on in “Simulator and implementation”
section. The second integration of the particles is optional. For example the current integrator advances the velocity in the second integration step

Collision detection engine Finding possible interac-
tions of particles using the collision detection engine
is one of the key drivers of runtime in the current
implementation. Several collision detection engines have
been implemented, using different algorithms and par-
allelization. For example, for highly nested particles, the
collision-detection problem lends itself to be solved by
a specifically tailored algorithm and a massively parallel
execution on the GPU [28].

Visualizer Currently 3 basic visualizers have been cre-
ated. One to just create an output text file, and two based
on CImg [45], one for live viewing and one for generating
movie files. The visualizers are encapsulated in a separate
thread to minimize overhead. One more advanced visu-
alization has been implemented that maps the simulation
to 3D space using OpenGL [46]. It offers some useful fea-
tures for the case studies (see “Results” section), such as
tracking individual particles in space.

Modeling layer The modeling layer makes heavy use of
λ-functions in order to encapsulate model specific behav-
ior into single function calls for the simulator. λ-functions

here are a C++11 feature that allows to define anony-
mous functions, that can be used as parameters in a
functional-like programming style. This is facilitated by
various templates that have been defined in the DSL. For
example, after each reaction, the simulator invokes the
post reaction function (see e.g. afterFuncA in listing 2). In
the modeling layer this function is specified by the user
and denotes the results of applying a rule, such as particles
changing state, being degraded or created.
This simplifies the implementation of the simulator

and gives a unified and lean interface for implement-
ing further features. The simulator also provides a set
of units (via the units:: namespace) to the modeler,
allowing for consistent parameterization. For simplicity
the reactants in the DSL are always denoted as A and
B. The particular type of A and B is then specified
via the as_A etc. functions. In general the DSL is very
expressive, as all rates and reactions are described as λ-
functions. These can be of arbitrary complexity. However,
it should be noted that the current DSL presents only
a proof of concept rather than a language that allows a
succinct description of ML-Force models. Therefore, fur-
ther efforts will be dedicated to improving the design of
the language.
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Listing 1 This is an extract from the lipid raft model that
describes how a receptor moves into a lipid raft. The embedded
domain specific language is built around objects. Species, reaction
or property objects can be put in relation to one another. Some
macro-functions are made available, to minimize boilerplate
code (e.g. the ADD_SPECIES-macro does not only create a
species object, but also sets a string property with that object’s
name). The *_FUNC are wrappers for different λ-functions that
can be used to specify arbitrary complex behavior and rates.

/* declaring species and properties */
ADD_SPECIES(lipid_raft);
radius(lipid_raft) = 200 * units::nano_meter;

local_density(lipid_raft) = nature::protein_density
;

local_viscosity(lipid_raft) = 10E-3 * units::pascal
* units::second;

colorType(lipid_raft) = 8;

ADD_SPECIES(protein);
local_density(protein) = nature::protein_density;
radius(protein) = 3.7 * units::nano_meter;
colorType(protein) = 1;

/* declaring A + B -> B[A] reaction */
reaction Protein_in(as_{A}(protein), as_{B}(

lipid_raft));
Protein_in.barrier = 0. * units::kilogram *

pow(units::nano_meter/units::second
,2);

Protein_in.AinB();

/* inital state */
putHere(lipid_raft, box_size / 2, box_size / 2, 0);
putSomewhere(protein, 200);

Results
In order to test the ML-Force simulator and its imple-
mentation, we conduct a few case studies. These include
simple test cases to investigate correctness andmore com-
plex models. The latter are inspired by realistic cell bio-
logical models, make use of the features inML-Force, and,
thus, demonstrate their usefulness. Both, the basic test
models and the more realistic ones, can be found in the
Additional file 1.

Testing correctness
As other particle-based simulation approaches
[16, 17, 37, 47] we test the correctness of our simulator,
based on a set of simple reactions which we simulate to
compare the achieved results to theory. To those tests
belong the creation of a particle with a constant rate as a
0 order reaction (∅ k−→ A), the decay with a rate A k−→ ∅ as
first order reaction, and irreversible and reversible sec-
ond order reactions A + B ↔ C in the diffusion limited
(intrinsic rate kint = ∞) case. A comparison of simulation
results and theory shows overall a good agreement with
the theory (see Additional file 1). However, those tests
also reveal the decisive role of selected parameters to
determine forces (“Bimolecular reactions” section) and
time steps. For their selection, suitable computational
support should be provided. As a form of pre-processing

step, energy barriers respectively accelerations for indi-
vidual reactions could be generated by automatically
fitting simulation results to theory. A similar strategy can
help selecting suitable time steps, so that the diffusion of
particles is correctly simulated (see Additional file 1).

Amodel of vesicular transport
HEINRICH and RAPOPORT proposed a model of vesicu-
lar transport [48]. Although the model describes a spa-
tial process, it was formalized by means of differential
equations.
The vesicular transport model refers to two cellular

compartments which exchange membrane-bound solu-
ble N-ethyl-maleimide–sensitive factor attachment pro-
tein receptors (SNAREs) and cargo proteins with the help
of differently coated vesicles. These are budding from the
compartments and move, driven by motor-proteins, to
the other compartment where they are fused. Thereby the
coat of vesicles defines, which type of SNAREs (X or Y),
cargo proteins and motor-proteins are bound to them.
Since different types of motor-proteins move in differ-
ent direction, SNARE X and Y accumulate in different
compartments.
By modeling this process in a spatial regime, the prob-

lem starts, as in each particle-based approach, with the
description of the species. Each species needs a radius
and a diffusion coefficient. TheML-Force simulator deter-
mines the diffusion based on the temperature, solvent
viscosity and particle radius according to the STOKES-
EINSTEIN equation (see Additional file 1). The cell, com-
partments and the vesicles are represented as parti-
cles while the SNAREs are attributes of particles, which
change during the budding and fusion processes. As
KLANN et al. [2] has already shown through the transla-
tion of the original ODE model into a spatial agent-based
model, this transport relies on a directed movement of
vesicles. Therefore Klann et al. added a cytoskeleton struc-
ture to the cell on which the motor-proteins moved along.
In ML-Force the direction is determined by forces which
take the type of particles and their attributes into account.
An external force field is introduced which is shaped like
a dipole field with the compartments as poles. Based on
the coat of the vesicles a force along this field is added
to their movement, which lead them to one of the com-
partments. To test the sorting mechanism of this sim-
ple vesicular transport model we study a system with 2
types of SNAREs (X and Y) with the same amount. As
in [48], we initialize the model: the first compartment is
nine times bigger (V1 ≈ 0.118 μm3 ) than the second
one (V2 ≈ 0.013 μm3) and contains 90% of the SNAREs
(X and Y) (NX/Y

1 = 90000 and NX/Y
2 = 10000). Since the

budding process of the vesicles depends on the volume of
the compartments, they should reach an equal size and the
SNAREs should be sorted.
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As shown in Fig. 4 both compartments reach an equal
volume and SNARE X accumulates in compartment 1
while SNARE Y accumulates in compartment 2 (not
shown).
To show that the directed motion is essential for the

sorting, as a control we run the simulation without the
external force field and with compartments with equal
initial size (V1/2 ≈ 0.065 μm3) and equally initially dis-
tributed SNAREs (NX/Y

1/2 = 50000). In a purely Brownian
model, i.e., a model where all particles perform Brown-
ianmotion, no sorting takes place and both compartments
are just shrinking as shown in Fig. 5. It can also be seen
that the vesicle’s slowly diffusion around the compart-
ments and there behavior is independent of their coating.
In contrast the vesicles in the model with a directed move-
ment either re-fuse with the compartment of origin or
move to the other compartment based on their coating.
As a result vesicles in this model fuse with a specific
compartment after a short time and by this they are sort-
ing the SNAREs. This simplified model illustrates how
external forces can simulate the directed motion in a
biological system.

The yeast model
A more complex model that showcases more of ML-
Force’s abilities is based on an illustrative yeast model [30],
which in turn uses the model of the cell cycle proposed
by TYSON [49]. In the original model each yeast cell can
grow and contains five different proteins whose amounts
oscillate periodically and trigger the fission of a yeast cell.
Each cell has a mating type (P or M) which can change
during the cell fission. Depending on the type the yeast
releases pheromones (M-factor and P-factor, respectively)
to inhibit the cell cycle of cells with opposite mating type.
In addition, the type M cells secrete a protease called Sxa2
which inactivates the P-factor pheromone that stems from
the type P cells.

With the ML-Force model, we want to check whether
cells of identical mating types accumulate in some areas
and inhibit the cell cycle of cells with opposite mating
type in this area. In ML-Force, each species of the system
can be modeled as a particle, as shown in the upper part
of Fig. 6. The problem of this approach are the different
time scales of the dynamics. The cell cycle lasts about 120
min, while the diffusion of the proteins needs a time step
in the sub nanosecond regime. In addition, for our ques-
tion, a spatial simulation of the intra-cellular dynamics
is not required. Therefore, we represent the pheromones
and the cells as particles and the proteins involved in the
cell cycle (as well as the cell cycle) as attributes of the
cells, as shown in the lower part of Fig. 6. Whereas cells
only move during the fission process in the x-y plane,
pheromones and Sxa2 diffuse in the extracellular medium

and disappear when they reach the borders of the test
volume.
As shown in Fig. 7 after 900 min there are twice as many

P-type cells as M-type cells. Furthermore some of the M-
type cells are old (large) and have a highly inhibited cell
cycle, which makes it likely that these cell will enter apop-
tosis before they can divide.
Attributed particles and arbitrary functions allow to
model the intra-cellular dynamics non-spatially as first
order reaction.

Listing 2 The creation of cyclin inside the cell is realized as a first
order reaction that changes the attribute Y.

// 1) cyclin synthesis in cell 0 -> Y
reaction Y_synthesis(as_{A}(cell));
Y_synthesis.rateFunc = R_FUNC(k1);
Y_synthesis.afterFuncA = G_FUNC(Y(A) = Y(A) + 1;);

Nevertheless these non-spatial dynamic can influence
the particle, here by triggering the division of a cell.

Listing 3 After the attribute ’Ma’ of the cell drops below the
threshold t9 the division reaction is executed and new cell
namely B is created.

9) cell division (transition from M->G1)
reaction division(as_{A}(cell));
division.reacPossibleFunc = B_FUNC(Ma(A) < t9 phase

(A) == 3);// #M_A < t9
division.rate = k9;
division.divide(as_{B}(cell), 1.E-8);
division.afterFuncA =
G_FUNC(volume(B) = 0.5 * volume(A); volume(A) = 0.5

* volume(A););

It is also possible for a particle to influence the attributes
(non-spatial) of particle.

Listing 4 The collision of the two particles cell and F_M results in
the ’death’ of F_M and the change of the attribute
’receptor_occupied’ of the particle cell.

/* cell(n) + F_M -> cell(n+1) */
reaction bind_pherome_{M}(as_{A}(cell), as_{B}(F_M)

);
bind_pherome_M.barrier = 0.;
bind_pherome_M.setOverlapp(0.01);
bind_pherome_M.reacPossibleFunc =

B_FUNC(receptor_occupied(A) < receptor_total(A)
&& mating(A) == 1);

bind_pherome_M.afterFuncA =
G_FUNC(receptor_occupied(A) = receptor_occupied

(A) + 1;);
bind_pherome_M.Bdead();

For example this is the case in the yeast model when a
pheromone reacts with a cell (both particles) and inhibits
the cell cycle of the cell. This combination of spatial and
non-spatial behaviors enables the simulation of systems
which include processes on different temporal scales.

Lipid rafts model
The role of lipid rafts in inducing and promoting receptor
accumulation within the cell membrane and the recruit-
ment and binding of proteins from the cytosol has been
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Fig. 4 Volume and amount of SNAREX over time and Snapshot from the vesicle transport model. In the case of a directed movement the volume of
the compartments become equal and SNAREX accumulate in compartment 1 as shown on the left. The right side shows a screenshot from the
simulation where you can see the movement along the external force field. The blue sphere is the cell with a radius of 2.5 μm

subject to several computational studies [50, 51]. A small
model of receptor lipid raft interaction which is inspired
by a sub-model of Wnt signaling [52] shall illustrate the
ability of ML-Force to support dynamic nesting. The
model consists of two proteins (LRP 5/6 and CK1-γ )
which diffuse in the membrane and may enter or leave
lipid rafts. In the model, the mobility of proteins is
reduced in lipid rafts by a 10 times larger viscosity in the
rafts compared to the rest of the membrane. Both pro-
teins have different affinities to enter the lipid raft which is
modeled by different energy barriers in the nesting reac-
tions. LRP 5/6 has to pass a barrier of 12 · 10−21 J which
was estimated from the distribution of the kinetic energy
for demonstration purposes. It shows how the energy
barrier at a bimolecular reaction can be used to slow
down the reaction. CK1-γ can enter the lipid raft freely
(Ebarrier = 0 J). By choosing a larger energy barrier for LRP

5/6 while they are entering the lipid raft we model their
lower affinity to the lipid raft and can show how the energy
barrier at a bimolecular reaction can be used to slow down
the reaction. To show how these functions influence the
accumulation of the proteins in the lipid raft we run a
2D simulation. In this simple experiment, our model con-
tains a single lipid raft which covers 25% of the surface.
The 10 times larger viscosity of the lipid raft causes a
10 times lower diffusion coefficient in the raft compared
to the rest of the membrane. The simulation starts with
200 LRP 5/6 and 200 CK1-γ particles outside the lipid
raft. To enter the lipid raft, the particles need to over-
come the energy barriers described above. After a particle
entered a lipid raft they can leave it again without any
energy barrier.
As expected, Fig. 8 shows that due to the slower diffu-

sion in the lipid raft CK1-γ accumulates in the lipid raft.

Fig. 5 Volume and amount of SNAREX over time and snapshot from the vesicle transport model. In the case of pure brownian motion the volume of
the compartments decreases and no sorting of SNAREs takes place as shown on the left. The right side shows a screenshot from the simulation
where you can see the randommovement of the vesicles. The blue sphere is the cell with a radius of 2.5 μm
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Fig. 6 Sketch of the spatial/non-spatial cell cycle. Cell cycle of a yeast cell with five/six different proteins. The upper cell shows the cell cycle
modeled with particles. As the proteins interaction within the cell occurs on a vastly different timescale than the behavior of the cell this is not a
feasible approach. Instead the internal dynamics are modeled by a non-spatial approach as shown at the bottom

The amount of LRP 5/6 which accumulates in the lipid raft
is lower due to the energy barrier which hampers recep-
tors to enter the lipid raft.
The model shows how the repulsive force during a
bimolecular reaction can lower the reaction rate. Also the
dynamic nesting of particles can change their behavior
(here the diffusion of the nested particle) during simula-
tion. It is also possible to restrict reactions to only occur if
particles are nested inside a specific type of particle, such
as the phosphorylation of LRP 5/6 which is constrained to
lipid rafts.

Discussion
The benchmark models which range from the multi-
cellular yeast model to the subcellular lipid raft model
have shown the usefulness of the realized features. ML-
Force expands upon the state of the art. The combina-
tion of compartmental dynamics and particle simulation
based on forces is a unique feature of ML-Force. This

feature has been used in the lipid raft model (“Lipid rafts
model” section). ML-Force provides a consistent force-
based semantics for spatially resolved dynamic nesting
with excluded volumes. Arbitrary functions and attributes
have proven a necessity for a concise and computationally
feasible realization of the yeast model in ML-Force (“The
yeast model” section) where they are used for the non-
spatial stochastic simulation of the cell cycle. InML-Force,
intra-particle dynamics can be simulated either spatially
resolved by nested particles or in a non-spatial stochas-
tic manner. Applying lower and higher spatial resolutions
on demand facilitates modeling and simulating complex
spatial models. The vesicle transport model (“A model
of vesicular transport” section) relied on the possibility
to let particles grow and to define global force functions
that apply to all particles independently of other parti-
cles to simulate the directed movement of vesicles. The
global force functions provide an additional means for the
modeler for abstraction (in this case from the cytoskeleton



Köster et al. BMC Bioinformatics          (2019) 20:607 Page 13 of 16

Fig. 7 Spread of yeast cells. Distribution of yeast cells after 900 min. The numbers in the cells indicate how many pheromones are bound to them.
For example the M-type cell on the left site has a highly inhibited cell cycle with 568 bounded pheromones. It is very likely that this cell will enter
apoptosis, before it divides

Fig. 8 Accumulation of proteins in lipid rafts. Amount of LPR 5/6 and CK1-γ inside the lipid raft. Due to the lower affinity of LRP 5/6 to the lipid raft
(realized by an energy barrier) their concentration is lower then the one of CK1-γ
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structure on which the motor-proteins move). Along all
other dynamics this is seamlessly integrated into the force-
based semantics of ML-Force.

Conclusions
The particle-based modeling and simulation approach
ML-Force combines excluded volumes and forces with
support for dynamic nesting (compartmental dynamics)
and the ability of constraining cellular dynamics by arbi-
trary attributes and functions. Whereas other simulation
approaches have treated compartmental dynamics, such
as particles entering or leaving a compartment, or com-
partmental fission or fusion, discretely, in ML-Force those
are simulated in a smooth, continuous manner. Thereby,
structural dynamics are seamlessly integrated into the
particle-based simulation governed by the LANGEVIN
equation. However, this adds to the requirements the
integrator has to face and consequently the induced cal-
culation efforts.
ML-Force utilizes a rule-based modeling approach. In

combination with attributed species of arbitrary types and
arbitrary functions that work on particles, their attributes
and content, this contributes to the expressiveness and
flexibility of ML-Force. In particular, part of a spatial
model can be executed in a non-spatial stochastic manner.
Abstracting from spatial details on demand reduces the
complexity of themodel and the induced calculation effort
and allows applying ML-Force to a wider range of cell bio-
logical systems. The possibility to define force functions
that act on all particles independently of others provides
another valuable means for abstraction in ML-Force.
Currently, ML-Force is being used in a combined in-

vitro and in-silico study to analyze the impact of external
electrical fields on cellular membranes. Future work will
be aimed at enhancing the readability ofML-Forcemodels
by a more declarative expression of rules. In addition, user
support for selecting time steps and suitable parameters
for force calculation needs to be provided. Also advanced
numerical integration schemes that are exploited by other
particle-based simulators and their impact on compart-
mental dynamics shall be analyzed.
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