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Abstract

Background: Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-Seq) is a widely-used
molecular method to investigate the function of chromatin-related proteins by identifying their associated DNA
sequences on a genomic scale. ChIP-Seq generates large quantities of data that is difficult to process and analyze,
particularly for organisms with a contig-based sequenced genomes that typically have minimal annotation on their
associated set of genes other than their associated coordinates primarily predicted by gene finding programs. Poorly
annotated genome sequence makes comprehensive analysis of ChIP-Seq data difficult and as such standardized
analysis pipelines are lacking.

Results: We present a one-stop computational pipeline, “Rapid Analysis of ChIP-Seq data” (RACS), that utilizes
traditional High-Performance Computing (HPC) techniques in association with open source tools for processing and
analyzing raw ChIP-Seq data. RACS is an open source computational pipeline available from any of the following
repositories https://bitbucket.org/mjponce/RACS or https://gitrepos.scinet.utoronto.ca/public/?a=summary&p=RACS.
RACS is particularly useful for ChIP-Seq in organisms with contig-based genomes that have poor gene annotation to
aid protein function discovery.
To test the performance and efficiency of RACS, we analyzed ChIP-Seq data previously published in a model organism
Tetrahymena thermophila which has a contig-based genome. We assessed the generality of RACS by analyzing a
previously published data set generated using the model organism Oxytricha trifallax, whose genome sequence is
also contig-based with poor annotation.

Conclusions: The RACS computational pipeline presented in this report is an efficient and reliable tool to analyze
genome-wide raw ChIP-Seq data generated in model organisms with poorly annotated contig-based genome
sequence. Because RACS segregates the found read accumulations between genic and intergenic regions, it is
particularly efficient for rapid downstream analyses of proteins involved in gene expression.

Keywords: Chromatin immunoprecipitation, Next generation sequencing, Bioinformatics pipeline,
High-performance computing, Tetrahymena thermophila

Background
In the last few years, traditional HPC centers, such as
SciNet at the University of Toronto [1], have been witness-
ing the emergence of increasing amounts of work-flows
from non-typical disciplines in the field of computational
science [2]. Among those, disciplines related to bioin-
formatics appear to be the most prominent in terms
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of demanding resources and tackling complex biological
questions an example of which related to the understand-
ing of the mechanisms underlying transcription. Some of
these biological questions are being answered by Next
Generation Sequencing (NGS). For example, NGS-based
methodologies are helping to address biological ques-
tions including the human genome project [3], the human
microbiome project [4], RNA-Seq to analyze gene expres-
sion [5, 6] and Chromatin immunoprecipitation cou-
pled to NGS (ChIP-Seq) to assess global DNA-binding
sites [5, 6].
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The advantage of these NGS methodologies for
researchers is that high-throughput sequencing allows
millions of DNA molecules to be read at the same time
[7–9]. The output of NGS is therefore substantial and can
be overwhelming for analyses [10, 11]. These analyses are
facilitated in model organisms that feature well-annotated
genomes such as humans and yeast where genomic
sequence is presented in full chromosomal form, the DNA
sequence of which can be found as individual files. These
genomes have available annotation files that depict the
chromosome-specific DNA base pair coordinates of cis-
acting DNA sequences including, open reading frames
(ORFs), untranslated regions, transcription start sites, and
promoter sequences as well as information about the
genes themselves taken from the scientific literature mak-
ing the interpretation of ChIP-Seq data of transcription
proteins more accessible. The difficulties during NGS
analyses can be compounded if the genome under study is
presented as contig-based (contiguous) sequence assem-
blies, as is the case in the model ciliates T.thermophila
andO.trifallax. A contig-based genome sequence is struc-
tured and presented as a basic assembly of consensus
regions based on overlapping DNA sequences obtained
from DNA sequencing. Contig-based genome sequences
are usually available as a conglomerate of individual con-
tigs in a large file. These genome sequences frequently
provide files with minimal annotations of predicted genes
usually reflecting the lack of available information in the
literature.
ChIP-Seq is used in gene expression studies to make

predictions about the function(s) a protein in transcrip-
tion based on its position within a gene [9, 12]. For exam-
ple, if the Protein of Interest (POI) accumulates within
genes rather than intergenic regions, we could infer that
it might have a direct role in transcription regulation. An
enrichment of the ChIP peaks near the 5’UTRs would
suggest that the POI likely functions in transcription ini-
tiation. On the other hand, accumulation of ChIP peaks
at the 3’ ends would suggest a role in transcription termi-
nation while proteins involved in elongation are typically
found throughout the coding region. Note this is only
a first approximation since gene expression can also be
coordinated by elements that are not in close proximity to
the specific gene [13].
To determine POI position(s) within a genome from

raw ChIP-Seq data, the files containing gene coordinates
are needed. It is important to note that less developed
genomes such as that of T.thermophila and O.trifallax
provide files containing the predicted coordinates for
gene positions asminimum annotation. Current ChIP-Seq
applications such as MACS2 [14] do not directly address
whether the accumulation of the POI is in a specific area
such as genic or intergenic region. To obtain a genome
file that can be used by a software like MACS2 many

other computational steps are required. After the initial
alignment, the data is typically analyzed by a peak call-
ing software, such as MACS2, which provide with peaks
coordinates. The user then needs to further process the
peaks obtained with third-party softwares such as BED-
Tools [15] to assess the local enrichment within genic
and/or intergenic regions.
Our computational pipeline Rapidly Analyze ChIP-Seq

data (RACS) can be used for any genome that has files
containing coordinate sequences of interest. Our pipeline
provides a unified tool to perform comprehensive ChIP-
Seq data analysis. For instance, with RACS users obtain
the co-ordinates of ChIP peaks as well as information
regarding their relative enrichment across the genome,
i.e. number of significant peaks found with genic versus
non-genic regions. We suggest that RACS is a versatile
computation pipeline suitable to analyze ChIP-Seq data
generated using any model organism.

RACS pipeline implementation
In this work, we describe and demonstrate the utility of
the RACS pipeline using twoChIP-Seq data sets generated
in two different model organisms including T.thermophila
and O.trifallax. The T. thermophila ChIP-Seq data set
originates from our recent study [16] on the Ibd1 protein
that we found to be a component of multiple chromatin
remodeling complexes and localized mainly to highly
transcribed genes. Here, we used RACS to refine the Ibd1
ChIP-Seq analysis by subtracting data from an untagged
control sample. The O.trifallax data set is derived from
a study that suggests that RNA Polymerase II (RNAPII)
is involved on genome-wide nanochromosome transcrip-
tion during development [17]. RACS analysis gives results
comparable to the reported ChIP-Seq data for O.trifallax
RNAPII supporting the use of RACS as a generic pipeline.
The RACS pipeline is an open source set of shell and R

scripts, which are organized in three main categories:

• the core pipeline tools, which allow the user to
compute reads differentiating between genic and
intergenic regions automatically

• auxiliary post-processing scripts1 for normalization
using the “Cluster Passing Filtering” (PF) values

• and utilities to validate results by visualizing the reads
accumulation and run comparisons with other
software tools, such as IGV and MACS2 respectively.

The RACS repository includes the core or main scripts
placed in the “core” directory. The comparison and aux-
iliary tools are placed in a “tools” directory. We have
also included examples of submission scripts in the “hpc”

1Alternatively, we have also included an auxiliary spreadsheets that could be
used instead of the script to perform the post-processing and normalization
manually, as well as, to check against negative controls.
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directory, with PBS [18, 19] and SLURM [20, 21] exam-
ples of submission scripts, so that users with access to
HPC resources can take advantage of them. Addition-
ally, we have included a “datasets” directory containing
scripts that allow the user to download the data used
in these analyses. Details about the pipeline implemen-
tation and how to use it are included in the ‘README’
file available within the RACS repositories. A generic top-
down overview of the pipeline implementation for the
data analysis, is shown in Fig. 1.
The RACS pipeline will run in any standard worksta-

tion with a Linux-type operating system. In addition, the
following open source tools are needed by the RACS core
scripts:

• Burrows-Wheeler Alignment (BWA) version 0.7.13
[22]

• Sequence Alignment/Map (SAMtools) version 1.3.1
[23]

• the R statistical language [24]

Our pipeline is open source, and the scripts are
available to download and accessible from public
repositories2.
The pipeline requires as input the .fastq files (obtained

from NGS) from the ChIP-Seq experiments and the spe-
cific genome assembly files and a file containing the gene
annotations (e.g. .gff3 files containing genic regions) cor-
responding to the organism.
For T.themophila these files are: T_thermophila

_June2014.assembly.fasta and T_thermophila
_June2014.gff3. Both files can be found at http://
ciliate.org/index.php/home/downloads [25].
For O.trifallax these files are: Oxytricha_trifallax_

022112_assembly.fasta and Oxytricha_
trifallax_022112.gff3. Both files can be found at
http://oxy.ciliate.org/index.php/home/downloads [25].

Core pipeline tools
Our core scripts do not require any additional packages
other than the ones mentioned above; however, the com-
parison tools, depending on what format the data to com-
pare with is given, might use some additonal R packages,
such as a spreadsheet reader package. For instance, we
have included one named .xlsx which allows to read pro-
prietary formats. The results of the genic and intergenic
regions are generated in two .csv files. These are stan-
dard text ASCII files, which can be read with any typical
spreadsheet software or R.

2Both repositories are synchronized, so that the latest version of RACS is
available and can be obtained from both:
https://gitrepos.scinet.utoronto.ca/public/?a=summary&p=RACS or https://
bitbucket.org/mjponce/RACS

Determination of the genic regions
To count the amount of reads in each genic region
the core pipeline script was implemented using Linux
shell commands combined with the usage of BWA and
SAMtools. The input files are the genome of reference
(T_thermophila_June2014.assembly.fasta),
the gene annotation file (T_thermophila_June
2014.gff3) and the INPUT and IP files obtained
from NGS. The INPUT files contain the information
obtained from NGS prior to the immunoprecipitation;
thus, this file contains the initial reference amount
of DNA reads. The IP file contains the data after the
immunoprecipitation; thus, this file contains the DNA
that were enriched by the POI. After the INPUT and
IP sequences are aligned with the genome and sorted,
the script uses a loop to count the reads in each genic
region and deposits the obtained data in a file named
“FINAL.table.INPUTfile-IPfile”; where INPUTfile
and IPfile are the INPUT and IP files respectively. Figure 1
depicts a flowchart representing the required steps to
obtain the final table containing the number of reads
found in each of the genic regions. Details of the process-
ing stages are shown in Fig. 2, in relation to T.thermophila
scaffold database and the breakdown of each these
steps.
The RACS pipeline was implemented to specifically tar-

get data from the T.thermophila organism in particular
utilizing an specific gff3 file. However due to the modu-
lar fashion in which RACS was implemented, it is possible
for users targeting different organisms and even differ-
ent markers, to “instruct” RACS to do so. At the level
of the IGR, if the reference file follows the usual gff3
structure, nothing has to be modified in the pipeline.
As a matter of fact, we implemented several checks in
order to verify and guarantee the consistency of the data
provided by this file. At the level of the ORF, the user
will need to specify a few parameters that will be used
when the targets depart from the ones used by default
in the pipeline. The terms and filters allow the user
to target either genes or mRNA or any other specifier
within the reference file, making essentially agnostic of
the organism type. In order to achieve this, the user
should provide a ’definition’ file, indicating the targets for
the pipeline for which to filter for the reference
file. We have included a subdirectory in the reposi-
tory "core/defns", where we include some files exem-
plifying the implementation of different cases and
organisms.
In particular, the variables filter1, filter2,

as well as, delim1, delim2, delim3; should be
adjusted correspondingly to the organism of interest and
the way the data is organized within the reference file.
The following code shows an example of how this is done
for T.thermophila and O.trifallax.

http://ciliate.org/index.php/home/downloads
http://ciliate.org/index.php/home/downloads
http://oxy.ciliate.org/index.php/home/downloads
https://gitrepos.scinet.utoronto.ca/public/?a=summary&p=RACS
https://bitbucket.org/mjponce/RACS
https://bitbucket.org/mjponce/RACS
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Fig. 1 Core RACS pipeline overview. This flowchart represents the logic steps implemented in the core pipeline. Boxes represent files and file types
as indicated in the text. Files with thick boxes represent the Input Files for Intergenic calculations. Files in green are to be uploaded to IGV. File in
blue is needed for IGV but it does not have to be uploaded to IGV. This file has to be kept in the same folder directory than the sorted bam

filter1=gene
filter2="Name=TTHERM_"
. . .
delim1="TTHERM"
delim2=";Note"
delim3="Note="

filter1=gene
filter2="Name=Contig_"
. . .
delim1="Name=Contig"
delim2=";Note"
delim3="Note="

"defn" file for T.thermophila; see
RACS/core/defns/TT_gene.id

"defn" file for O.trifallax; see
RACS/core/defns/OXY_gene.id

Determination of the intergenic regions
The intergenic regions were not available neither deter-
mined by the standard packages. For this reason, we
developed an R script to determine these regions. In
this pipeline these sequences are calculated during each
run to account for further genome actualizations. The
inputs for this script are the files generated by the genic
regions pipeline discussed in the previous section (i.e.

“FINAL.table.INPUTfile-IPfile”, the INPUT and IP
.bam files –which are generated as intermediate files of
the Genic Region pipeline–) plus the gene annotation
file (e.g. T_thermophila_June2014.gff3). First, the
script determines the intergenic regions by calculating
the beginning and end of each annotated gene within
each available scaffold and subtracts these values. The
algorithm only reports intergenic regions that are equal
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Fig. 2 Schematic diagram of the tasks implemented for the RACS core pipeline. Included are details of the processing stages in relation to the
scaffold based genome and the breakdown of each these steps. Bold names, indicate bioinformatic specific modules while normal fonts represent
generic ones. The bifurcation represents tasks that can be executed in parallel, as there is no data dependency among them

or greater to zero. In the earlier version of the pipeline
this constraint was not included, and in some cases, it
could result in the pipeline reporting regions with negative
sizes. We noticed that 92 of these cases were presented
in our previous study [16]; however, we should emphasize
that there were not reads present in these regions thus
did not affect these results. Second, the script uses the
newly generated intergenic regions to count the number of

reads in each of them. Finally, the data is deposited in the
intergenic table for each of the intergenic regions Fig. 1.

Post-processing
Normalization of reads accumulation and enrichment
calculation
To account for differences in the amount of clusters PF
(reads) presented among samples, each of the obtained
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INPUT and IP values were normalized by dividing
them by the corresponding clusters PF value of the
Flowcell summary (obtained from the NGS run) or
from the Total Sequences (obtained from the fastQC
file). These calculations can be done by the script
“normalizedORF.sh” located in the core directory of
RACS. Alternatively, it can also be calculated employ-
ing the following two spreadsheets: for the genic regions
(TET_Ibd1_MAC_Genome_Genic.xlsx), and for the inter-
genic regions (TET_Ibd1_MAC_Genome_Intergenic.xlsx);
that can be found in the “datasets” subdirectory within
the RACS repository. Notice that there are several spread-
sheets provided in this subdirectory, each of them will
be used for different organisms/cases and can be used as
templates for other datasets.
These spreadsheets contain the reads found in

the untagged (or mock purification/negative con-
trol) samples in the Untagged tab. The user can
also add the Flowcell summary details in the
Add_FCS_for_(SAMPLE_ID) tab. The user can manually
introduce the read values for the samples being analyzed
in the Add_(SAMPLE_ID)_ChiP_Seq tab. In this tab the
user can divide the number found by RACS by the corre-
sponding cluster PF number found in the previous tab.
This data can be deposited in the “Normalized_INPUT
or _IP (FCS)” columns. After the required reads nor-
malization, the accumulation can be obtained as the
number of IP reads divided by the number of INPUT
reads (IP/INPUT). This can be deposited in the “Enrich-
ment_(N_IP(FCS)/N_INPUT(FCS)” column of the same
tabs. The obtained values are filtered (Filter 1) by the
user by subtracting the corresponding number found in
the Untagged tab and deposit the values in the Enrich-
ment_Minus_AVERAGE_untagged column. If there are
more than two samples the values can be averaged and
values that are less than 1.5 can be filtered (Filter 2) and
deposited in the “Enrichment_Average_Sample” tab.
For the genic region table, in this tab there is a column
containing the Expression profile obtained from the
RNA_Seq tab. We recommend to copy the filtered cells
to the Results tab. The distribution of the protein of
interest can be calculated in this tab. For the Intergenic
table there is a ORF_vs_IGR (Intergenic) tab where the
number of regions and reads can be calculated. The
number of regions is represented by the number of genic
and intergenic regions that passed the 2 filters. If there
is data available for untagged samples, please refer to
the “Utilities: validation and quality checks” section.
The number of reads found in the genic and intergenic

regions can be calculated by adding all the available val-
ues from the “Normalized IP (FCS)” columns and deposit
them in the ORF_vs_IGR tab of the Intergenic table.
During the post-processing steps, it is important to note

that some regions presented in the processed table may

have very few reads after subtracting the values obtained
from untagged samples and they may seem as real inter-
actors when they are not. For instance, a sample that has
2 reads in the INPUT and 10 reads in the IP will return
an enrichment of 5 and it may pass the filter of 1.5×
enrichment but they may not be significantly enriched.

Utilities: validation and quality checks
To account for biological and experimental variability
in the wet lab, we typically perform ChIP-Seq using 2
independent samples for each distinct strain and average
their Enrichment. To validate the findings, it is impor-
tant to determine the genic and intergenic regions of the
untagged (negative control) INPUT and IP samples. After
this determination, we subtracted the obtained average
enrichment from untagged to the obtained tagged aver-
age of the samples. Then we filtered for values that had
an enrichment greater than or equal to 1.5 in the final
enrichment column. These are the enriched regions and
represent genomic regions to which the POI binds.

Visualization of reads accumulation
The browser IGV [26] can be used to visually inspect and
validate the obtained reads based on their ranked enrich-
ment. The files needed are illustrated in Fig. 1 and the
‘README’ file included in the RACS’ repository. MACS2,
a main-stream application to call peaks, can also be used
as specified in [14]. MACS2 uses the same intermediate
files (.bam) obtained from the RACS pipeline, hence it
can be a good reference to be considered for comparison
purposes.

RACS performance
RACS can be run in any normal Linux workstation; how-
ever, it can also take advantages of cluster-type environ-
ments. In particular, several stages of RACS can be run
using multicore architectures with several threads in par-
allel. In addition to that, RAMdisk can be used to speed
up file I/O operations. This is achieved by indicating tho-
rugh a command line argument the specific location for
the “working space” that RACS will use to place the input
and temporary files to be generated. When we originally
developed our pipeline, we tested it in our previous HPC
cluster, GPC [1] consisting of 2.53 GHz Intel Xeon E5540,
with 16 GB RAM per node (2 GB per core). By compar-
ing the performance of RACS with a typical workstation
we noticed a speed-up factor among 8 to 12×. We have
also run our pipeline in our newest cluster, Niagara [27],
of 1500 Lenovo SD350 servers each with 40 Intel “Sky-
lake” cores at 2.4 GHz. Each node of the cluster has 188
GiB / 202 GB RAM per node, for which we have obtained
a speed up of 5 to 10×. In other words, the whole pro-
cessing of genic (ORF) and intergenic (IGR) for a typical
INPUT/IP sample, took between 1 and 2 h. In addition to
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that, in our new system is possible to bundle 40 (80 using
multithreading) processes together.
Moreover, this first release of RACS utilizes the basic

SAMtools and BAM codes, however it has been reported
that improvements in processing SAM files could be
achieved using SAMBAMBA [28]. One of the many
advantages of dealing with an open source, modular
pipeline like this, is that it allows interested users to
explore this possibility as well, just by modifying the tool
to process SAM files and selecting the one desired.
As mentioned above, one additional functionality that

RACS offers is the ability to specify the “working space”.
When using themain script for counting reads in ORF, the
user has the ability of indicating whether to use a faster
“working space” than traditional spinning disks (ie. HDD)
such as memory (ie. RAMdisk) or a solid state device
(SSD). In general, utilizing RAMdisk or SSDs, would result
in a speed-up of roughly 10 to 30%, depending on hard-
ware specifications and the size of the dataset to be
analyzed. The larger the dataset the more I/O operations
(reads/writes) that would be needed, hence larger datasets
would benefit the most of this. This is of course, assuming
that the data and subsequent auxiliary files created during
the analysis will fit in “memory”. If that is not the case then
depending on the system and how it is configured may
result in decremental performance (e.g. some computers
will begin swapping data –i.e. start using traditional HDD
space–) or even crash (for instance, is common in many
HPC clusters to do not allow for swapping techniques).
Differences in performance among SSD vs RAMdisk, are
almost negligible, again depending on hardware specs,
this can be upmost of the order of few percentages. Finally,
it should be noticed that by using RAMdisk (i.e. memory)
as a working space, users will reduce the overall compu-
tational time, however this is will ultimately depend upon
the amount of memory available as this technique will
clearly increase the utilization of RAM. As a general esti-
mate, at the moment of running the pipeline, users might
estimate the amount of memory needed by one order of
magnitude larger (i.e. ×10) than the size of the dataset
to be processed. Further details about memory utilization
and walltimes as function of number of threads or cores,
are presented in Table 2 and in the “doc” directory of the
RACS repository.

Results
In this paper we introduce a one-stop methodology to
analyze ChIP-Seq data to find the set of genome coordi-
nates for a given POI. This methodology utilizes open-
source tools such as BWA [22], SAMtools [23], Linux shell
and R scripts [24] and techniques commonly employed
in the HPC fields. RACS can be run either in a typical
workstation or taking full advantage of HPC resources,
such as, multicore architectures and use of RAMdisk, to

improve the analysis times making it more efficient, (see
details on “RACS performance” section). This pipeline
was developed to answer whether the POI localized to a
given set of cordinates (genes) or to the remaining regions
in the genome that were not given by the user (intergenic).
RACS was designed in a user-friendly manner to accom-
modate researchers with basic knowledge in Linux shell
and R [24]. RACS provides accessible downstream analy-
ses of ChIP-Seq data obtained from Illumina instruments.
RACS follows a unique approach to tackle this problem,
is widely applicable and useful enough to analyze ChIP-
Seq related data from a variety of different organisms
generated by NGS.
The RACS pipeline, Fig. 2, offers a solution that utilizes

an available contig-based genome sequence file and a sec-
ond annotation file that contains the coordinates for the
annotated genes. After processing ChIP-Seq data, RACS
will output two tables, the first containing all found reads
accumulation in the genic region corresponding to the
annotated genes and the second containing the accumu-
lation of reads in the intergenic regions. An intergenic
region will be calculated as a region that starts at the
end of a given gene coordinate and ends at the begin-
ning of the next contiguous given gene coordinate. RACS
will calculate the beginning of a contig as the beginning
of an intergenic region (as long as there is not an anno-
tated gene at the beginning of the contig) which ends
at the coordinate of the first encountered gene, and it
will do the same at the end of each contig. These inter-
genic or adjacent regions are newly generated each time
to account for modifications or improvements in the files
containing gene annotations. The obtained results from
both tables are normalized to the number of clusters that
passed Illumina’s “Chastity filter” also called clusters PF.
These numbers represent the reads obtained per sample.
The normalized values are further filtered by using the
data obtained from the mock samples.

Case study
In this section, we describe howRACSwas used to analyze
and generate the data presented in [16] in addition to its
refinement by introducing ChIP-Seq data from untagged
strain. The model organism used in [16] is the protist
AlveolateT. thermophilawhich is themost experimentally
amenable member of this taxonomical group. T. ther-
mophila can be used in some cases to understand the
basic biology of the parasitic and disease-causing mem-
bers of the Alveolates. Members of Plasmodium species
that causes malaria [29–31] and other related species that
affect ecosystems [32] and aquiculture [33] can be exam-
ined by analogy through our selected model organism. In
addition, T.thermophila has genes that present homology
to human genes [34, 35] and characteristics that makes it
an excellent candidate to study chromatin mainly because
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of the segregation of transcriptionally active and silent
chromatin into two distinct nuclei, macronucleus (MAC)
and micronucleus (MIC) respectively [36]. In our recent
study we identified a protein, Ibd1, that physically inter-
acts with several chromatin remodeling complexes [16].
The T.thermophila’s genome [25] is contig based and
contains almost 27 thousand annotated genes or genic
regions [37]. To further the understanding of Ibd1, and
to contribute to current understanding of how chromatin
remodeling works, we analyzed its localization within the
genome by ChIP-Seq (Fig. 3) [38–41]. This allowed us

to identify the set of genes bound by Ibd1 to begin to
understand its function.

Pre-processing of the fastq files and quality assessment
The ChIP samples were processed as described in [16]
to make the library preparation using the TruSeq ChIP-
Seq kit (Illumina). For the untagged (this study) and
Ibd1 [16] strains, libraries were sequenced using the v4
chemistry in a HiSeq2500 instrument (Illumina) set for
High Output mode. The obtained read lengths were of
66 base pairs, 6 base pairs corresponded to the adapters

Fig. 3 Diagram summarizing the ChIP-Seq technique used to prepare the samples and generate the data from the “wet-lab”: 1) Native state of
chromatin. 2) Specific antibodies recognize the tagged proteins. 3) Isolation of tagged protein plus its interacting chromatin. 4) After DNA
purification and library preparation NGS is performed. 5) The output data from NGS is aligned to Tetrahymena thermophila’s genome assembly
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for demultiplexing. These files were demultiplexed in
fastq format and the adapters were trimmed using the
bcl2fastq2 Conversion Software v2.20.0. The obtained
fastq files for the INPUTS and IP samples were assessed
by fastQC version 0.11.5 [42]. Each dataset obtained from
the ChIP-Seq experiments has a sequence of whole cell
DNA (INPUT) and DNA sequenced from an immuno-
precipitated (IP) sample. The Ibd1 NGS data generated
in [16] can be found at the following Gene Expres-
sion Omnibus (GEO) link: GSE103318 [16]. In addition,
untagged T.thermophila fastq files were generated and
they can be found at the following GEO link: GSE125576.
We recommend assessing the quality of the data

obtained from the NGS. This step is important to have
general information regarding the run. This fastQC report
also helps to understand the alerts present in each sam-
ple, these alerts do not necessarily mean that the NGS
run failed [42]. In other words, this step is to verify if the
fastq data has any alerts that have to be addressed before
proceeding to the processing. For example, in our case
our data for the Per base sequence quality fell into the
very good quality reads (green) area of the y axis allow-
ing us to avoid quality trimming. On the other hand, we
obtained a flag for Overrepresented sequences, in partic-
ular the one that called our attention was the sequence
containing only the nucleotide N. Since our reads are 35-
58 base pairs long, the allowed maximummismatch to the
genome will be up to 3 base pairs according to the BWA
algorithm [22] hence it will not consider these sequences
for the alignment.

Visualization and list of reads
After, the determination of enriched regions we can fur-
ther analyze them using a visualization tool, such as IGV.
The region of interest can be copied from either the genic
or intergenic table. This localization corresponds to where
the protein of interest is localizing with respect to anno-
tated genes (see Fig. 4 panel A) or an intergenic region
(see Fig. 4 panel B). It is important to note that for Ibd1’s
ChIP-Seq [16] data we also used MACS2 a main-stream
application to call peaks [14]. The visualization option
for MACS2 and RACS are similar in that both provide
a specific file that can be used for this purpose. In the
case of RACS, our pipeline uses .bam and .fai files which
are generated within the GENIC part of the pipeline (see
Fig. 1). Such .bam files can be opened in IGV, although
the .fai (index) file will not, however both files should
be present in the same directory. The required files for
IGV visualization are depicted in Fig. 1. In addition, the
.bam files generated by RACS can be used as input for
MACS2. When compared the MACS2 visualization file to
the RACS .bam files using IGV (Fig. 4, panels A and B), we
observed that the RACS files provide a visual of the por-
tion enriched. Here we observed that the IP samples are

clearly enriched regions showing peaks when compared
to the INPUT samples. This can be determined by not-
ing the numbers shown in each of the IGV tracks, which
represent its corresponding reads accumulation.
The track corresponding to our pipeline in Fig. 4 panel

A shows clear accumulation of reads on the gene that is
on the right side as it is in the track form MACS2. How-
ever, for the gene and the intergenic region on the left
side of the track RACS does not show a clear accumu-
lation whereas MACS2 does. Figure 4 panel B shows a
perfect match. The ability of comparing these two tools at
the same time can help the user by providing more robust
results that can lead or not to further investigation of the
specific sequence.
The output lists provided by RACS are segregated into

two .csv files. The first file contains the genic and the sec-
ond the intergenic regions. Both lists contain the all reads
obtained from the INPUT and IP samples. This obtained
data should be filtered with the data obtained from Mock
samples. We found that the output of MACS2 provides a
list of peaks. MACS2 does not classify the peaks based on
the localization to a gene or an intergenic region as RACS
does. However, this can be addressed using BEDTools [15]
after MACS2 analysis. The datasets generated by MACS2
and RACS can be found at the GEO link GSE103318.

Mock samples facilitate the analysis
In [16] we found that the majority of genes regulated
by Ibd1 were highly expressed housekeeping genes. For
that analysis a filtering step using ChIP-Seq data from
untagged samples were not employed, and instead a cut-
off was implemented based on accumulation of reads.
However, since the cut-off was arbitrary, there was some
degree of uncertainty in regards of its astringency. To
overcome this limitation and further facilitate the anal-
ysis, for this study we performed a mock ChIP-Seq
experiment using untagged control T.thermophila cells in
order to reveal the identity of the set of specific DNA
sequences that have affinity for the antibody-conjugated
chromatography resin either directly or mediated through
unknown protein(s) in the chromatin extract. RACS
analysis of the Ibd1 ChIP-Seq dataset filtered by two
mock IP ChIP-Seq replicas from untagged T.thermophila
enhanced RACS’ ability to discriminate non-specific DNA
binding (see “Post-processing” section Post-processing
for further details). In addition, the use of mock ChIP-
Seq samples eliminated the uncertainty associated with
using the arbitrary cut-off. Between both the analysis
presented in [16], and this new analysis (RACS), there
are not major statistical differences regarding Ibd1 local-
ization to genes that are highly, moderate, or low to
no-expressed (Table 1). The statistical analysis presented
in Table 1 shows that the hypothesis generated in [16]
regarding an Ibd1 function related to transcription of

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103318
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125576
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103318
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Fig. 4 a and b Visualization genic and intergenic region using IGV. The top track shows MACS2 broad and gapped peaks. The middle track shows
RACS visual representation of reads accumulation. Note that RACS shows graphical reads behaviour and accumulation preferences. The bottom
track shows T.thermophila’s genes. On the other hand, MACS2 found two weak peaks that can be interpreted as background by our pipeline. The
range inside the brackets represents the highest number of reads for that specific track. c Ibd1 localizes to more intergenic than genic regions. d The
majority of reads are found in genic regions. These results take into consideration the updated information provided by the mock samples
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Table 1 Comparison of Ibd1 localization presented in [16] (without untagged controls) and analyzed by RACS using untagged
controls (current study)

(a) Ibd1 localization presented in both studies.

Ibd1 localization % Ibd1 localization %

Expression level using untagged controls without untagged controls

High expression 51 54

Moderate expression 6 16

Low to no-expression 16 14

Non-available expression

for the TTHERMs in the

GSM692081 data set 27 16

(b) t-Test: Paired Two Sample for Means

t-Test: Paired Two Sample for Means

Ibd1 localization % using untagged controls Ibd1 localization % without untagged controls

Mean 25 25

Variance 374 374.6667

Observations 4 4

Pearson Correlation 0.89581514

Hypothesized mean difference 0

df 3

t Stat 0

P(T ≤ t) one-tail 0.5

t Critical one-tail 2.35336343

P(T ≤ t) two-tail 1

t Critical two-tail 3.18244631

There is a correlation of 0.896 and non-statistical differences between the two data sets. The data presented in [16] uses an arbitrary cut-off. The data presented in this paper
does not use the arbitrary cut-off and instead uses as cut-off the values obtained by the analyses of the untagged samples

highly expressed genes stands. The calculation of this
result can be found in the Result tab of the genic table
(RACS/datasets/TET_Ibd1_MAC_Genome_Genic.xlsx).

RACS aids in the determination of the protein of interest
function
To gain insights in the POI function, we segregated its
localization between genic and intergenic. After analyz-
ing Ibd1’s raw ChIP-Seq data with RACS, tables with the
total number of reads found in each of the 26,996 genic
and 27,780 intergenic regions were generated [16]. From
the genic and intergenic tables we observed that Ibd1
localizes to more individual intergenic regions than genic
regions (Fig. 4 panel C). However, the majority of reads
accumulation are in the genic regions (Fig. 4 panel D), sug-
gesting that Ibd1 primary localization is within the genic
implicating Ibd1 function in transcription regulation.
The function of Ibd1 was further inferred based on

the GO annotations for biological process [43] cate-
gories of genes to which it binds. From the genic table
(RACS/datasets/TET_Ibd1_MAC_Genome_Genic.xlsx)

we observed that Ibd1 mostly localizes to genes that
are highly expressed and related to housekeeping
function; such as, cellular function, translation, gene
expression, biogenesis, cytoplasmic translation among
others (see Fig. 5). The calculation of this result can
be found in the Gene_Ontology tab of the genic table
(RACS/datasets/TET_Ibd1_MAC_Genome_Genic.xlsx).

RACS for T.thermophila’s rDNAminichromosome
The obtained data from Ibd1 ChIP-Seq was used against
the rDNA minichromosome sequence [44]. Ibd1 is not
enriched in any of the 3 genic or 4 intergenic regions. The
generated tables can be found in the repository, under the
datasets subdirectory: TET_Ibd1_rDNA_Genic.xlsx and
TET_Ibd1_rDNA_Intergenic.xlsx.

Outliers
During the Post-processing stage, we found a great
number of reads for the following three genic
regions: TTHERM_02141639, TTHERM_02641280,
TTHERM_02653301; in the tagged and untagged

https://bitbucket.org/mjponce/racs/src/master/datasets/TET_Ibd1_MAC_Genome_Genic.xlsx
https://bitbucket.org/mjponce/racs/src/master/datasets/TET_Ibd1_MAC_Genome_Genic.xlsx
https://bitbucket.org/mjponce/racs/src/master/datasets/TET_Ibd1_MAC_Genome_Genic.xlsx
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Fig. 5 Gene Ontology (GO) analysis of genes controlled by Ibd1. GO predicted that the majority of Ibd1 bounded genes are related to housekeeping
functions

ChIP-Seq samples. After applying the 1.5× cut-off for
enrichment of Ibd1 we found that the first two mentioned
genic region were filtered out after the subtraction step
described in the (“Utilities: validation and quality checks”
section). The third gene passed the control, thus, seems
that Ibd1 localizes to this region. In other words, the accu-
mulation of the first two regions are due to nonspecific
binding and the third to specific binding. This is another
example of why the untagged strains can help to deter-
mine if this found accumulated DNA in the untagged and
tagged samples are or not due to specific binding.

Performance
By implementing this pipeline as described here, we
obtained roughly a factor of 4× faster in comparison to
a serial and non-I/O optimized (i.e. not using RAMdisk),
in an equivalent hardware to the node used in the clus-
ter. This is something we have also observed by using
similar techniques (e.g. RAMdisk) in other type of bio-
informatics pipelines where the hierarchy of the compu-
tational scales is dominated by the I/O parts of the code.
Moreover, we processed a second set of data, that was
roughly 3 times larger than the original data –whichwould
not fit in memory (> 64 GB)–, utilizing a more modern
node (i7 core) with a solid-state device (SSD), we were
able to further reduce the processing time approximately
by another factor of ∼ 4. This type of trend is typical
in cases where performance is dominated by computa-
tions and I/O operations (e.g. reading and writing files),

for which the combination of faster processing plus faster
access to the data is essential for improving the overall
performance. Nevertheless, we should emphasize that
even when RAMdisk or an SSD can be a solution that
could in principle be thrown to similar type of problems,
i.e. intensively I/O demanding ones, the best approach
would always be to try to mitigate and reduce as much as
possible the I/O operations, as these usually represent the
slowest part in any computational implementation.
Other points to notice are: i) in most of the cases,

increasing the number of cores, improves performance
in terms of speed-up factors; ii) speed-up factors, also
depend on the size of the data sets, although in general
they follow a very similar trend; iii) larger data sets require
larger processing times, while –in general– smaller data
sets show better scaling performance, which in principle
can be understood as the pipeline has no communication
parallelism implemented; iv) there are limitations to these
scaling trends, for instance when the amount of data/work
to be splitten is not big enough with respect to the over-
had cost of organizing the work distribution (an example
of this can be seen in Table 2 with the MED31-1 dataset
when attempting to run with 64 cores).

RACS for O.trifallax
To test RACS in a different model organism we uti-
lized the data generated for the following study [17].
The used data set can be found at the GEO link:
GSE55703 and the tables generated by RACS are

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55703
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Table 2 RACS scaling and performance trends for the ORF part
of the pipeline: we performed the standard strong scaling
analysis, as well as a function of different dataset sizes

Initial data size Number of
procesors

Workspace usage Walltime time

≈3 GBa 1 ≈27 GB 7037 secs

2 " 5059 secs

4 " 3856 secs

8 " 3238 secs

16 " 2940 secs

32 " 2801 secs

64b " 2463 secs

≈2.4 GBc 1 ≈20 GB 5477 secs

2 " 4005 secs

4 " 3128 secs

8 " 2678 secs

16 " 2456 secs

32 " 2344 secs

64 " 2161 secs

≈6.8 GBd 1 ≈50.3 GB 6987 secs

2 " 5662 secs

4 " 4864 secs

8 " 4451 secs

16 " 4245 secs

32 " 4148 secs

64 " 4155 secs

≈7.1 GBe 1 ≈53.4 GB 7728 secs

2 " 6191 secs

4 " 5255 secs

8 " 4740 secs

16 " 4529 secs

32 " 4413 secs

64 " 4249 secs

≈1.4 GBf 1 ≈8.3 GB 2874 secs

2 " 1796 secs

4 " 1218 secs

8 " 920 secs

16 " 773 secs

32 " 702 secs

64 " 639 secs

aIbd1-1 data set for T.thermophila [16].
bAlthough there are 40 physical cores in the TDS/Niagara nodes, hyperthreading is
enabled so it can be used up to 80 logical cores.
cIbd1-2 data set for T.thermophila [16].
dMED31-1 data set for T.thermophila [48].
eMED31-2 data set for T.thermophila [48].
fData set for O.trifallax.
As it can be seen, the working space (in this casememory utilization) can reach up to
a factor of 9-10× the size of the initial data to be processed. Further details about
memory consumption can be found in the README document and the “doc”
directory, included within the RACS repository. These tests were run in the TDS
system (i.e. one Lenovo SD530 node with 40 cores and 192GB of RAM with CentOS
7.4 operating system) of the Niagara supercomputer [27], utilizing RAMDISK as
working space

available in the repository, under the datasets subdi-
rectory: OXY_Rpb1_MAC_Genic.xlsx and OXY_Rpb1_
MAC_Intergenic.xlsx. After analyzing this published data,
we found that Rpb1 binds to 90% of the 24,885 annotated
genes and to 54% of the 43,326 RACS generated intergenic
regions. This result concludes that Rpb1 has a genome
wide distribution and it is consistent to what it was pub-
lished previously. In Fig. 6 (panels A and B) it is shown
that the DNA distribution throughout the gene is consis-
tent to what it was found in [17]. A new result found by
RACS for this study is presented in Fig. 6 panels C and D.
Figure 6 panel C shows that Rpb1 interacts with the same
amount of genic and intergenic regions. However, Fig. 6
panel D shows that 81% of all reads are distributed in the
genic regions. This shows that Rpb1 has a preference for
gene bodies.

Discussion
In this paper, we have presented RACS, a pipeline imple-
mentation utilizing open source tools for the rapid anal-
ysis of ChIP-Seq data for a POI from an organism with
a contig-based genome sequence. RACS utilizes the pre-
dicted gene coordinates and groups the reads accumula-
tion for genic and intergenic regions in ranked form. The
objective is to be able to infer POI function based on its
chromatin occupancy. This pipeline has been applied to
Tetrahymena thermophila and Oxytricha trifallax’s ChIP-
Seq data, but its application can be extended to ChIP-Seq
datasets generated in any other organisms.
Initially, when we called peaks for Ibd1 ChIP-Seq data

using MACS2, the output did not indicate whether the
protein localizes to a genic or an intergenic region.
MACS2 calls all peaks regardless of their position in a
genic or intergenic region, which makes interpretation
difficult when combined with the minimal annotation
of the Tetrahymena genome. RACS segregates ChIP-Seq
ranked peaks between genic and intergenic which can
help to quickly assign biological function to a POI. We
note that other programs, such as BEDTools, can be used
to perform this task in combination with MACS2. With-
out the need of any additional “external” software, RACS
calls peaks and segregates them in two tables based on
the given set of coordinates (genes) or the remaining
regions in the genome that were not provided by the user
(intergenic) . Thus, our pipeline is appropriate to address
biological questions regarding function based on genome
position.
We hold the opinion that MACS2 and RACS are com-

plementary to each other, but empathize that they are
not dependent on each other for analysis. For example,
MACS2 can be used to establish or to generate a set of
coordinates for a specific transcription protein binding to
the genome. Thus, we can infer that the POI is attaching
to specific areas in the genome to control transcription
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Fig. 6 RACS analysis using Oxytricha trifallax ChIP-Seq Rpb1 data gives results comparable to the reported in [17]. a and b Rpb1 enriches along
Contig22209.0 and Contig451.1. The range inside the brackets represents the highest number of reads for that specific track. c Rpb1 can be found
binding a similar amount of genic and intergenic regions throughout the genome; however, dmost of the reads that were pulled down by Rpb1
are within genic regions

and we could annotate these regions as binding sites for
the specific transcription protein. Then, if we perform
ChIP-Seq on a different protein that has also been shown
to physically interact with the transcription protein pre-
viously mentioned, we could use the coordinates given by
MACS2 to generate a .gff3 file to input it alongside the
genome file to the RACS pipeline. This will allow us to
rapidly determine the degree of overlap and potential co-
localization in some or all binding sites. In that, MACS
and RACS can synergize to provide a powerful tool for the
analysis of less developed genome sequences.

Even when there are many computational tools avail-
able for processing ChIP-Seq data, RACS is particularly
suitable for the analysis of contig-based genome sequence
with associated minimal annotation. Other tools, such
as, MACS2 and metagene using deepTools analysis [45]
complement RACS. Recently several ChIP-Seq studies
[46–48] have emerged for T.thermophila. However, there
is a lack of standardized computational methods for
this model organism, hence it becomes difficult to reli-
ably reach at the same conclusions when replicating the
findings. Our tool is the first effort in T.thermophila to
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provide a community resource for genome-wide ChIP-
Seq studies, therefore it has the potential to contribute to
standardization of ChIP-Seq analyses in ciliates. We
intend to continue refinement of RACS based on com-
munity need. For example, recently, single-molecule
sequencing based on nanopores has emerged as a promis-
ing technology with a potential to revolutionize the
genomics [49]. The nanopore sequencing provides the
advantages of 1) long reads, enabling the de novo tran-
scriptome analysis [50], 2) point-of-care, making real-
time analysis possible [51], and 3) PCR free, allowing
the direct identification of epigenetics [52]. Consider-
ing its promising outcomes, studies using model organ-
isms with divergent genomes, such ciliates and parasitic
organisms including Trypanosoma, will be particularly
benefited from the nanopore sequencing technology
[53]. Currently, a major challenge is to develop sophis-
ticated and high-performance computational tools to
interpret and analyze the nanopore sequencing data
[54–56]. In future, we aim to improve and imple-
ment the RACS pipeline for the analysis of nanopore
sequencing data.

Conclusions
RACS is an excellent tool for genomes that are contig-
based and/or have poor annotations, it permits the seg-
regation of reads accumulation between genic and inter-
genic region after ChIP-Seq processing. RACS is comple-
mentary to other tools, such as MACS2, as it can help
to discriminate complex regions improving the overall
analysis.
RACS offers an alternative tool with a different

approach focused on a simple, modular and open
approach. RACS offers a versatile, agile and modular
pipeline that covermany of the steps needed in the process
of analyzing ChIP-Seq data.
The pipeline uses HPC tools, such as RAMdisk or

batch processing via scheduling in cluster type environ-
ments, so that the data analysis can be done for large
datasets. The scripts are reusable and generic enough that
can be simply modified and utilized in other pipelines
as well.
The modular approach we followed when developing

RACS, also allows for future developments as this pipeline
could be easily ported as a backend of a web interface, or a
gateway portal, serving a larger group of researchers from
different disciplines.
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