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Abstract

Background: Literature derived knowledge assemblies have been used as an effective way of representing biological
phenomenon and understanding disease etiology in systems biology. These include canonical pathway databases
such as KEGG, Reactome and WikiPathways and disease specific network inventories such as causal biological networks
database, PD map and NeuroMMSig. The represented knowledge in these resources delineates qualitative information
focusing mainly on the causal relationships between biological entities. Genes, the major constituents of knowledge
representations, tend to express differentially in different conditions such as cell types, brain regions and disease stages.
A classical approach of interpreting a knowledge assembly is to explore gene expression patterns of the individual
genes. However, an approach that enables quantification of the overall impact of differentially expressed genes in the
corresponding network is still lacking.

Results: Using the concept of heat diffusion, we have devised an algorithm that is able to calculate the magnitude of
regulation of a biological network using expression datasets. We have demonstrated that molecular mechanisms specific
to Alzheimer (AD) and Parkinson Disease (PD) regulate with different intensities across spatial and temporal resolutions.
Our approach depicts that the mitochondrial dysfunction in PD is severe in cortex and advanced stages of PD patients.
Similarly, we have shown that the intensity of aggregation of neurofibrillary tangles (NFTs) in AD increases as the disease
progresses. This finding is in concordance with previous studies that explain the burden of NFTs in stages of AD.

Conclusions: This study is one of the first attempts that enable quantification of mechanisms represented as biological
networks. We have been able to quantify the magnitude of regulation of a biological network and illustrate that the
magnitudes are different across spatial and temporal resolution.

Keywords: Alzheimer’s disease, Parkinson’s disease, Mitochondrial dysfunction, Aggregation of neurofibrillary tangles,
OpenBEL

Background
In recent years, systems biology approaches have played
a pivotal role in the integration of multi-scale and multi-
modal aspects of diseases. Knowledge assembly, one of
the key outcomes of systems biology, connects entities
such as genes, proteins, chemicals, miRNAs, genetic and

epigenetic variants, biological processes, and phenotypes
of a disease. These are represented as a set of biological
networks with edges defining the types of relationships
between the entities. Pathway databases such as KEGG
[1], Reactome [2], and WikiPathways [3] have under-
taken massive efforts of extracting and encoding bio-
logical information from the published literature to
graphically depict complex biological networks as path-
ways. They serve as a repository of protein-protein inter-
actions (PPIs), metabolic pathways, signal transduction
pathways, cell-cell signaling pathways, and other cellular
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processes. They have been regarded as comprehensive
knowledge assemblies for functional interpretation of
genomics and provide information about characteristics,
progression and aetiology of a disease. A total of 521,
2176, and 2677 pathways are represented in KEGG,
Reactome, and WikiPathways respectively. These data-
bases provide pathways in standard formats (e.g., Sys-
tems Biology Markup Language (SBML) [4] and
Biological Pathway Exchange (BioPAX) [5]), enabling
easy exchange of data and implementation into algo-
rithms for visualization, simulation and analysis [6].
However, pathway databases do have some limitations.

Firstly, they lack context specific representation of know-
ledge when it comes to disease specificity. Pathways are
generalized representations of established cascade of
events within a specific pathway boundary. For example,
the insulin signaling pathway in KEGG draws from experi-
mental evidence from different diseases including diabetes
[7], cancer [8], and hamartoma syndrome [9]. Moreover,
pathways are abstractions that have been delineated arbi-
trarily and do not necessarily represent pathophysiology
processes (e.g., the crosstalk between insulin signaling
pathway and neurotrophin signaling pathway) [10]. Sec-
ondly, the spectrum of biological information captured by
pathways is limited. They are mostly populated with
proteins, making them uni-modal content wise. They
completely lack representation of biomarkers, genetic vari-
ations, epigenetics (genetic modifications), neuroimaging,
and clinical features. For example, the Parkinson’s disease
(PD) network in KEGG does not include many significant
entities which play a crucial role in PD, such as the methy-
lation of KCNH1 [11], the rs393152 variant in CRHR1
[12], and S87 SNCA phosphorylation [13]. Moreover, the
fact that the map has been developed by retrieving infor-
mation from 20 scientific articles (with the latest citation
from 2013) infers that it is not up-to-date and incomplete
[14]. Lastly, pathways are neither species, tissue, nor cell
type specific. The representations in pathway databases
are derived from various organisms (e.g., human, mouse,
rat, and drosophila) where each species is indicated by
differently colored nodes. However, interactions at the
molecular level in a pathway can differ in these conditions.
A study by Seok et al. (2013) reported on poor recapitula-
tion of genomic responses of human inflammatory
diseases in mouse models [15]. Warren et al. (2015) re-
confirmed essential differences between these two species
at the molecular level by showing that mouse models
mimicked only 12% of the genes dysregulated in human
conditions [16]. These studies clearly suggest that entities
involved in pathways can be specific to species, tissue, cell
types, and especially diseases.
Lately, there have been a few independent studies sug-

gesting that a disease-specific mechanism differ from the
canonically represented pathways in KEGG or Reactome.

Kodamullil et al. (2015) have illustrated two different
mechanisms on how the neurotrophin signaling pathway
is regulated under normal conditions and AD [17]. Fur-
thermore, Karki et al. (2017) have mechanistically repre-
sented the crosstalk between the insulin signaling
pathway and neurotrophin signaling pathway, explaining
the underlying comorbid association between AD and
Type 2 Diabetes Mellitus (T2DM) [10]. Disease specific
knowledge representations have improved significantly
over the years due to the advancement in resources,
frameworks and aforementioned limitations in the path-
way databases. Several frameworks such as SMBL, Gene-
Mania, Malacards, and OpenBEL, developed with either
pathway-centric or integrated molecular network or
knowledge graph approaches, are capable of representing
knowledge at extent of their own features and advan-
tages [18]. Nevertheless, these frameworks share the
drawback of lacking a strategy to rank and prioritize
pathways and mechanisms (i.e., knowledge sub-graphs)
with the existing pathway databases. The selection of im-
portant individual graphs is often influenced by litera-
ture bias or expert’s opinion. A scoring schema that
takes in to account measurable biological entities will
enable researchers to overcome any biases and identify
important mechanisms involved in a disease.
Several algorithms have been proposed to use pathway

databases to assist in the interpretation of high-
throughput -omics data. Drier et al. (2013) introduced
the Pathifier algorithm to score dysregulated pathways
in tumor samples [19]. While it is able to transform gene
level information to pathway level information, it does
not take into account the polarity of relationships (i.e.
increase or decrease) between the genes involved. Catlett
et al. (2013) devised Reverse Causal Reasoning (RCR), a
reverse engineering method to detect mechanistic hypoth-
eses from molecular profiling data that generates and
scores hypothesis networks (HYPs) i.e., literature-derived
causal networks consisting of an upstream node and its
first downstream neighbors [20]. Similarly, Martin et al.
(2014) proposed the Network Perturbation Amplitude
(NPA) algorithm to assess HYPs using high-throughput
measurement data and demonstrated its ability to quantify
TNF-induced perturbation of inflammatory signaling [21].
Although the RCR and NPA algorithms consider both the
expression levels of genes and the relationship types be-
tween genes in a network, they have the following
limitations: 1) the applications are restricted to interpret
treatment-induced and dose-dependent changes in activ-
ity, 2) the size of the network is too small as it only ac-
counts for the first neighbors and 3) the interlink between
HYPs (i.e. one HYP being regulator of another HYP) is
not considered.
Molecular mechanisms associated with a disease are

often complex; they contain cascade of events regulated
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by biomolecules which collectively influence biological
processes and signaling pathways. Therefore, considering
disease mechanisms we should be able to quantify them
beyond HYPs or a network with few levels of neighbors
(i.e. first and second neighbors). In fact, several cross-
linked HYPs can form a basis for larger networks repre-
senting models of pathological events or disease mecha-
nisms. Therefore, it is of the utmost importance to
extend interplays between entities from HYPs to bio-
logical process, biological process to pathways, and path-
ways to mechanisms. Additionally, as genes tend to
express differentially in different bodily regions or stages
of a disease, the mechanisms in which they participate
can be upregulated or downregulated by combined effect
of the differentially expressed entities. To address these
limitations, we have developed an extension to the NPA
algorithm which is able to quantify mechanisms by scor-
ing all of their constituent entities. As a case study, we
ran the algorithm over two mechanisms (i.e. mitochon-
drial dysfunction in PD and aggregation of neurofibril-
lary tangles (NFTs) in AD) after mapping with gene
expression datasets. The main objective of the study is
to find out if mechanisms are regulated with different in-
tensities as a consequence of differentially expressed
genes at several resolutions.

Results
In this study, we have deployed the CMPA algorithm on
two mechanisms, one each from PD and AD. This has
allowed us to quantify perturbed mechanisms and show
that the amplitude of the perturbations are affected by
the differentially expressed genes. Moreover, the algo-
rithm is able to handle mechanistic information at
spatial and temporal resolution.

Mitochondrial dysfunction in PD
The CMPA analysis of mitochondrial dysfunction in dif-
ferent age-groups of PD patients depicts that the mech-
anism is perturbed the most in age-group 40–50 when
compared to other age-groups (Fig. 1a). The magnitude
of perturbation calculated as CMPA score is 4.8. Sup-
porting this result, Lesage et al. (2016) implicate the role
of mitochondrial dysfunction in the early onset of PD.
Similarly, Fig. 1b shows the highest perturbation of
mitochondrial dysfunction in Braak 5–6 stage of PD pa-
tients with CMPA score of 4.9. In contrast, Braak Stages
1–2 and 3–4 show less perturbation or no perturbation
with CMPA scores of 0.93 and 0.08, respectively. A
study by Hattingen et al. (2009) supports the role of
mitochondrial dysfunction in both early and advanced
stages of PD. This shows that our results (Fig. 1a and b)

Fig. 1 Mechanisms perturb with different intensities: a, b and c show the amplitude of mitochondrial dysfunction in PD across age-groups, PD
stages and brain regions respectively. The CMPA scores observed to be high in age-group 40–50, Braak Stage 5–6 and cortex of PD patients.
Similarly, d shows the perturbation of aggregation of NFTs in AD across different stages of AD. The CMPA scores are observed to be directly
proportional with stages of AD
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are in concordance with other independent studies per-
formed at the patient level. Interestingly, it can be seen
in Fig. 1a and b that the amplitude of perturbation is
low in age-group 50–60, 60–70, and Braak Stage 3–4.
The rationale for these observations may be due to im-
munity triggered recovery or/and effect of drug used for
treatment of PD. The inefficacy of both the immune sys-
tem and the drug might be the reason for increased
mitochondrial dysfunction in Braak 5–6 Stage of PD.
Furthermore, Fig. 1c illustrates that the degree of per-
turbation of mitochondrial function varies across brain
regions of PD patients. With CMPA score of 3.3, cortex
is the region of the brain with the highest mitochondrial
dysfunction. The magnitude of dysfunctions in other
brain regions such as the cerebellum, medulla and stri-
atum are minimal in comparison [22]. In this context,
several animal and human based studies have previously
confirmed prevalence of mitochondrial dysfunction in
cortex [23–25].

Aggregation of NFTs in AD
The CMPA scores calculated for different stages of AD
as shown in Fig. 1d suggests that the intensity with
which aggregation of NFTs is regulated depends upon
the stage of AD. The CMPA scores of incipient, moder-
ate and severe AD are 3.6, 8.2 and 16.5 respectively. It
can be clearly observed that the CMPA scores are dir-
ectly correlated with the stages of AD. This comprehen-
sively alienates with the findings of increased NFT
burden with the progression of AD as reported by sev-
eral studies [26–28].

Discussion
As the NeuroMMSig server embeds numerous molecu-
lar signatures implicated in AD and PD, it provides us
the opportunity to extend the CMPA analysis beyond
the two mechanisms we have undertaken in this study.
An extensive implementation of the CMPA algorithm
on NeuroMMsig based mechanisms will enable us to
rank mechanisms based on the CMPA scores. By scoring
mechanisms on several resolutions, we may be able to
prioritize the targetable mechanisms and thereby decide
on the best suited medicine. For example, the CMPA
score of 0.08 for mitochondrial dysfunction in a PD pa-
tient of Braak Stage 3–4 suggests reduced perturbation
of the mechanism. Hence, targeting dysfunctional mito-
chondrial activity for patients with Braak 3–4 stage of
PD might not be as important as it is for Braak 5–6
stage of PD. This sort of approach defies any literature
bias, where one mechanism can be overly represented in
a knowledge network because of the high density of
supporting publications.

CMPA scores are mechanism specific
It has been observed that the CMPA scores are unique
for all the gene expression datasets used in this study.
Therefore, for each sub-groups of these datasets we have
essentially been able to show that mechanisms are regu-
lated with different magnitudes. The one sample t-test
for GSE57475’s age-group 40–50 in PD rejected the null
hypothesis with a p-value < 2.2e-16 and t-statistic of −
166. The mean of 10,000 CMPA scores was 0.19 as com-
pared to the actual CMPA score of 4.8. Similarly, the
null hypothesis for GSE28146’s moderate sub-group of
AD was also rejected as the mean of CMPA scores and
actual CMPA score were 1.77 and 8.2 respectively.
Therefore, the alternative hypothesis i.e., true mean is
not equal to 8.2 was favored with a p-value < 2.2e-16
and t-statistic of − 67.19. These results suggest that the
CMPA score obtained from the real gene expression
values is unique to a mechanism and is highly unlikely
to occur just by chance.

Conclusions
In this study, we have demonstrated that blending com-
putable knowledge and data in a given disease context
provides us with new options for inference. Although
strategies to integrate knowledge driven and data driven
approaches already exist, our work deals with two new
aspects: Firstly, we have been able to quantify candidate
mechanisms underlying diseases. This is novel when
compared to previous studies because we claim that
our work is one of the first attempts to score complex
biological networks that explain disease etiology. The
causal relationship in OpenBEL, which forms the basis
of making the OpenBEL knowledgebase computable, is
the key in devising the CMPA algorithm. Without the
information on the causality of the interacting bio-
logical entities, measuring the amplitude of a regulated
mechanism is not possible. Secondly, we could demon-
strate that differentially expressed genes regulate their
corresponding mechanisms with different intensities.
The differences in regulation intensities of mechanisms
in temporal and spatial resolution have been reported
through our study for the very first time. Based on the
CMPA algorithm applied on 3 selected GE datasets, we
observed that PD patients of Braak Stage 5–6, the age-
group 40–50 and the cortex region of the brain have
high magnitudes of mechanism perturbation. Similarly,
we found out that the magnitudes of perturbation of
aggregation of NFTs in AD increase with the progres-
sion of AD. From our results, we can conclude that the
classical approach of associating mechanisms to pro-
gressive disorders can be improved by quantifying and
prioritizing specifics such as disease stages, patient
groups and brain regions.
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Methods
Construction of mechanistic NDD knowledgebase
The unstructured textual information containing cause-
and-effect or correlative relationships from literature spe-
cific to AD and PD were encoded as triples (i.e. subject-
predicate-object) using OpenBEL. Furthermore, the triples
are enriched with meta-annotations such as cell type, spe-
cies, anatomy and stage of the disease. With additional cur-
ation efforts, each triple was assigned to a particular
mechanistic sub-graph as described by Domingo-Fernandez
et al. (2017) [29]. The resulting sub-graph contains several
inter-connected triples depicting a disease mechanism. A
total of 124 and 65 molecular mechanisms specific to AD
and PD respectively are integrated in NeuroMMSig. For
our analysis, we have taken into consideration the mecha-
nisms depicting aggregation of neurofibrillary tangles
(NFTs) in AD and mitochondrial dysfunction in PD. The
mitochondrial dysfunction in PD is considered as one of
the most important mechanisms associated with the PD
etiology. Moreover, the AETIONOMY project (www.
imi.europa.eu/projects-results/project-factsheets/aetion-
omy) has selected this mechanism for its intensive re-
search. Similarly, the aggregation of NFTs in AD is a
well-known AD phenotype and regarded as an import-
ant hypothesis in AD etiology. After filtering the mech-
anisms for causal relationships manually and using a
threshold of five nearest neighbors as network size, the
mechanism representing aggregation of NFTs in AD
had a total of 31 nodes and 57 edges while the mito-
chondrial dysfunction in PD had 35 nodes and 54 edges
(Additional file 1).

Selection of datasets as a scoring input
This study aims to quantify the intensity of perturbed
mechanisms associated with diseases as the consequence
of differentially expressed genes. Therefore, the candidate
mechanism perturbation amplitude (CMPA) algorithm re-
duces the existing caveat of mere mechanism-disease as-
sociations by showing that mechanisms regulate with
different intensities across spatial and temporal dimen-
sions. Gene expression datasets from GEO (Gene Expres-
sion Omnibus) were selected such that the expression
profiles could be categorized based on spatial dimensions
(i.e., brain regions), temporal dynamics (i.e., age groups)
or stages of the disease. These datasets were analyzed
using GEO2R from GEO. A brief description of each of
the datasets is given below:

I. GSE49036 - Samples from Substantia nigra of
different Braak Stages PD patients

II. GSE57475 - Blood transcripts of PD patients of 4
different age groups

III. GSE28894 - Samples from cerebellum, medulla,
cortex, and striatum of PD patients

IV. GSE28146 - Samples from Hippocampus of
different stages of AD patients

Implementation of candidate mechanism perturbation
amplitude (CMPA) algorithm
The strategy involved in this study is to integrate know-
ledge driven approaches and data driven approaches to
score biological networks. Here, we have used gene ex-
pression profiles mapped to NeuroMMSig based causal
networks to calculate the extent of perturbation of
mechanism associated with AD and PD. A total of 3
datasets (i.e., GSE49036, GSE57475 and GSE28894) were
mapped to the causal network representing mitochon-
drial dysfunction in PD while GSE28146 was mapped to
the network representing aggregation of NFTs in AD.
The causality between biological entities captured in
BEL is one of the special features of BEL which many of
the pathway representations are void of. Without the in-
formation about causal edges in disease networks, devis-
ing a scoring algorithm is not possible.

Scoring function
The expression profiles (i.e., log fold change values) are
assigned as weights to the genes involved in a mechanism.
The directionality of edges is taken from the mechanistic
causal network as + 1 for increase and − 1 for decrease. A
scoring function implemented in Python uses the weights
and directionality of edges to quantify the amplitude of
dysregulated mechanisms. A positive score implies that a
particular mechanism for a given dataset is upregulated
(i.e., perturbed) due to the interplay of involved down-
stream entities. Likewise, a negative score indicates that
the mechanism is downregulated while a score of zero
suggests no change in the mechanism.

Perturbation amplitude
The amplitude of perturbation is calculated for the cen-
tral node (most upstream node) in the network to which
several downstream nodes are connected. These down-
stream nodes can be either direct or indirect neighbors
of the central node. Moreover, a downstream node can
be a child node for other upstream nodes. Figure 2 illus-
trates a general cause-and-effect mechanism where
downstream nodes converge to the centrally located
node (node X, highlighted in red). The final score of the
central node is calculated by enumerating the effect of
differentially expressed downstream nodes on a particu-
lar mechanism context (in this case, the central node
and the scored downstream nodes).
After this, the nodes outgoing from the central node

were not considered (filtered and removed) as the cen-
tral node mostly connects only either to another hub of
the knowledgebase (in our case: Parkinson Disease) or to
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another central node (which can be another mechanism)
and need not be scored.
The following pseudocode implemented in python was

used to calculate the perturbation (CMPA) scores.

� Identify and create a list of hubs (H) in the network
i.e. a node with several incoming and outgoing edges

� For each hub in H
� If hub has incoming edges from another hub

from the list H
� Skip

� If hub has no incoming edges from another hub
from list H
� Calculate Impact Factor (IF)

IF = hubWeight +
PN

i¼1 Si:βi
where,
Si = Sign of the edge (+ 1 for increase, − 1 for
decrease)
ßi = Log2 fold change value
N = number of incoming nodes

� Remove hub from H
� Calculate CMPA score

� CMPA score =
PM

j¼1 IFi

Where,
M = number of hubs

The CMPA algorithm is devised such that it is able to
quantify the overall effect of differentially expressed

entities involved in a cause-and-effect model of a disease
mechanism. The algorithm functions on a simple logic
that downstream nodes pass their values to the con-
nected upstream nodes. For example, the value of H is
passed to X through H – G – D – X (Fig. 1). In doing
so, it is assured that G gets a value from H before G
passes its value to D. The nodes G and D are hub nodes
in the network because they have incoming and out-
going edges. For each hub node in the network, a score
called Impact Factor (IF) is calculated. The sum of all
the IFs, represented as CMPA score, quantify the ampli-
tude of perturbation of a mechanism.

Statistical assessment of CMPA scores The CMPA
scores generated by the CMPA algorithm are expected
to be unique for each gene expression dataset. This is
because of the distinct property of each gene responding
differently to different conditions. However, a CMPA
score can be considered absurd if it remains unchanged
after random sampling of genes and their expressions. In
the case differences in CMPA scores are observed be-
tween CMPA analyses performed with actual gene ex-
pressions and randomized gene expressions, it can be
concluded that the CMPA score is specific to a mechan-
ism and represents the true magnitude of its perturbation.
This was assessed by first performing a permutation
(number of permutations = 10,000) where each gene was
assigned a random gene expression value from the pool of

Fig. 2 A general biological network: A schematic representation of a mechanism where several upstream nodes (either genes/proteins or
biological processes) converge to a centrally located node X (highlighted in red)
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real gene expression values. Afterwards, the CMPA algo-
rithm was implemented to each of the permuted samples.
Lastly, one sample Student’s t-test was conducted with the
null hypothesis that the mean of 10,000 CMPA scores is
equal to the actual CMPA score. If the resulting p-value is
below the threshold of 0.05, then the null hypothesis is
rejected in favor of the alternative hypothesis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3101-1.

Additional file 1: Figure S1. Mitochondrial dysfunction in PD manifests
as a consequence of increased oxidative stress and endoplasmic
reticulum stress and decreased regulation of mitophagy. Figure S2. The
aggregation of NFTs in AD is triggered by the insulin receptor signaling
pathway and several genes that destabilize MAPT activity.
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