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the average Normalized Root Mean Square Error
(NRMSE), which calculates the difference in the estima-
tion between the imputed value and the original value
for every molecular feature that contains missing values,
after 100 permutations. Each heatmap reflects one miss-
ing mechanism and the different shades of blue are asso-
ciated with the different values of NRMSE that indicate

the performance of each imputation method in four dif-
ferent percentages of missing data.

Comparison of imputation methods based on heatmaps
In the MCAR case, RF and KNN performed the best by
having the smallest NRMSEs, while PPCA, BPCA and
MEAN, even though having similar performances with

Fig. 1 Description of the datasets. Datasets from two different studies were used; KIHD (Kuopio Ischaemic Heart Disease Risk Factor Study) and BS
(Berry Study).The data were analyzed with LC-MS technology and each analytical chromatographic mode is consider a separate dataset. In total
12 datasets were used a four datasets from the KIHD study and b eight datasets from the BS intervention study (four chromatographic modes
per time point)

Fig. 2 Imputation work flow. In every dataset from the dataset grid (12 datasets), which is randomly selected, the missing values are filtered out and
200 molecular features are randomly chosen. Then seven different missing mechanisms are simulated; Missing Completely At Random (MCAR), Missing
At Random (MAR), Missing Not At Random (MNAR), MCAR-MAR, MCAR-MNAR, MNAR-MAR, MNAR-MCAR-MAR, in four different percentages (5, 10, 20,
and 30%) of missing data. In every dataset that is chosen randomly, nine imputation are used in order to investigate the performance of the
imputation methods in estimating missing values. The evaluation of the methods is done using NRMSE. The whole processes are repeated 100 times
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each other, could not outperform RF and KNN. SVD
was the method with the highest NRMSEs compared to
the other methods. ZERO imputation, ½ MIN and MIN
method had smaller NRMSEs compared to the SVD but
still higher than RF and KNN.
The MAR missing mechanism had relatively similar

results as the MCAR missing mechanism, with RF being
the method with significantly lower NRMSEs than the
others. The NRMSEs of the KNN were higher than the
ones coming from RF when 5% of the data were missing.
When 10% of the data were missing, KNN performs the
same as RF, however, for higher percentages of missing
values the error increased again. In the case of the other
imputation methods, the trend of the performances were
similar to the results obtained for the MCAR case.
In the MNAR missing mechanism, MIN was the best

performing method compared to the other ones. It is
interesting to note that when the number of missing

values increases and starts reaching 30%, the NRMSE of
the MIN also increases. RF and KNN had similar results
with each other and achieved their best smallest
NRMSEs between 10 to 30% proportion of the missing
values. ZERO and SVD were consistent in having high
errors for all the percentages of missing values compared
to the other methods. Furthermore, MIN was more
robust than ½ MIN with smaller NRMSEs for all the
percentages of missing values. PPCA, BPCA and MEAN
started with relative high NRMSEs when 5% of the data
were missing compared to the MIN imputation, but the
NRMSEs decreased, although not significantly, when the
range of missingness was between 10 to 20%. When the
missingness reached 30%, the NRMSE of BPCA and
MEAN continued to drop but for PPCA method it
increased again.
For the mixed missingness MCAR-MAR, RF and KNN

had the smallest NRMSE. RF’s NRMSE was constant for

Fig. 3 Heatmaps. Heat maps representing the average performance of nine imputation methods after 100 permutations; zero (ZERO), ½
-minimum (½ MIN), minimum (MIN), Random forest (RF), mean (MEAN), K-nearest neighbor (KNN), Bayesian Principal Component Analysis (BPCA),
Probabilistic Principal Component Analysis (PPCA), Singular Value Decomposition (SVD) in seven missing mechanisms (each box); MCAR, MAR,
MNAR, MCAR-MAR, MCAR-MNAR, MAR-MNAR, MCAR-MAR-MNAR. The darker blue color indicates that the error is small whereas, when the color
transforms to lighter shades, this is an indication that the error becomes higher by the corresponding imputation method
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iterations (Additional file 1: Figure S7), it is well known
that it can handle both parametric and non-parametric
data sets of complex linear and non-linear problems and
there is no need to perform preprocessing at the data
beforehand. On the other hand SVD where is a popular
approach for data analysis and data processing (e.g.,
dimension reduction), PPCA which is basically PCA with
an expectation– maximization (EM) approach and
BPCA which is based on three processes, including prin-
cipal component (PC) regression, Bayesian estimation,
and an EM-like repetitive algorithm, they perform better
if the data are being transformed first before imputation
[2]. In our experimental setting we didn’t consider any
preprocessing methods, even when this is common in
other imputation studies, because in most metabolomics
studies, almost half of the molecular features do not fol-
low the normal distribution as their values are highly
positively or negatively skewed. When a molecular fea-
ture is Log-transformed in order to meet the normality
assumptions before imputing, we are not only changing
the distribution of that particular molecular feature but
also we disturb the relationships between that molecular
feature with the rest of the data, and therefore, this
approach can lead in imputing outliers or/and creating
more bias than just imputing the skewed molecular
feature.
One aspect of our results that was not aligned with the

findings from another study [20], was the very poor per-
formance of the SVD imputation method. SVD begins
the imputation procedure by replacing all missing values
with zero values and then iterates through singular value
decompositions until convergence. This procedure may
create effects on the data structure that can alter the fac-
torization of the data matrices. In theory that shouldn’t
happen because the errors in the prediction that are
being introduced in the initialization step should be can-
celled out by the matrix-factorization approach. On the
other hand, BPCA and PPCA also rely on dimension
reduction, performed better than SVD. This was because
they include a probabilistic model that minimize the
principal axes that are not relevant, and make these two
methods more robust to changes in the data structure
and in the cases of MCAR, MAR and MCAR -MAR.
We also observed that in the cases of MNAR, MCAR-

MAR-MNAR, MAR-MNAR, MCAR-MNAR the perfor-
mance of BPCA improved when the proportion of miss-
ing values increased and this phenomenon, which may
seem at first contradictory, could be due to the fact that
multivariate models perform better in a more uniformly
distributed missingness across datasets.
The treatment of missing data by single value replace-

ment, such as MIN, performs better when missing data
arise from censoring below the detection limit, while
other methods, such as RF, which is a method based on

local structures, performs better when randomness is
involved. KNN method performs slightly better than
MEAN imputation which was expected since it is con-
sidered as an advancement over the MEAN imputation
[17]. However, KNN showed instability in the prediction
of missing values especially in the MAR case and this
spurious performance is highlighting the fact that this
method probably is not the most suitable for imputing
such complex datasets.
In addition, it has been shown that certain methods

favor more specific mechanisms than others, but there is
no imputation method so far that works well for all
three types of mechanisms [20]. By closely investigating
the results presented in Figs. 3 and 4, it seems that RF is
estimating missing values with the lowest prediction
error. Its performance is consistent in the four percen-
tages of missing values and for the majority of the miss-
ing mechanisms. The exception is the left-truncated
MNAR, where the MIN performs better. These results
coincide with other studies as well, that tested the per-
formance of RF with other methods [2, 20].
However, in the case of the MNAR-MCAR-MAR,

BPCA and MIN had similar performances with RF and
KNN, especially for higher percentages of missing values
of 20 and 30%. This result could indicate that as the
number of missing values increases, the left truncation
of missingness starts to affect the data while other kinds
of missing mechanisms are also present. If the data are
left truncated then the preferable option will be the MIN
or any other imputation method, such as KNN-TN and
GSimp, that perform well for this type of missingness as
has been proposed also earlier [11, 20, 21].
In this work, the missing values were controlled and

removed using one of the three earlier characterized
missing mechanisms or the combination of those. How-
ever, most of the times in real life the reason for a value
to be absent is unknown. In many studies different
imputation strategies have been compared, or it has
been investigated that how different imputation methods
can alter the biological information within simulated or
real metabolomics datasets [2, 16, 18]. The detection of
the missing mechanism is not typically performed in
metabolomics field [22] but some efforts have been done
in other research areas focusing on simulated data only
[13]. If the missing mechanism can be detected with
high certainty, it could reduce the bias occurring from
the improper choice of an imputation method.
One limitation that our study has, is in the way the

current simulation process of missing values is carried
out. We cannot fully control the missing patterns simu-
lation as we indented. That means that even if intended
to remove the data with the MAR mechanism we may
create missing patterns by random chance that resemble
the MNAR mechanism especially when the percentage
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of the missing values starts to increase. In order to
reduce this effect, we use moderate sizes of missingness,
no higher than 30%. Higher percentages regardless the
missing mechanism tends to create MNAR missing
patterns.
In this study, also we did not include any information

about the different groupings inside the imputation
study. When selecting the subset of 200 molecular fea-
tures from the metabolomics data, we were focusing on
data that was present for all the measured samples, in
order to be able to simulate the missingness. We do
acknowledge that when addressing complete metabolo-
mics dataset, the grouping needs to be taken into
account to avoid bias, and even introducing error, and
therefore the imputation needs to be potentially per-
formed in a group-wise manner. However, this would
require further development to the utilized methods.

Conclusion
Type and rate of missingness affects the performance
and suitability of imputation methods. In conclusion,
RF-based imputation method performs best in most of
the tested scenarios, including combinations of different
types and rates of missingness. Therefore, we recom-
mend using RF-based imputation for imputing missing
metabolomics data, since typically the origin of missing-
ness is not known in advance. In addition, our approach
to evaluate the performance of imputation methods on
metabolomics datasets is applicable also to other high-
dimensional data that contain missing values.

Methods
Metabolomics data
The metabolomics datasets used in the current study
were obtained from two human based-nutritional studies
carried out at the University of Eastern Finland. The
Kuopio Ischaemic Heart Disease Risk Factor Study
(KIHD) is an epidemiological study focusing on the
effect of diet and lifestyle on cardiovascular disease risk
in middle-aged men from eastern Finland [23]. A subset
of 258 participants was randomly selected for a study
focusing on the metabolic impact of egg consumption
[24].
(https://www.uef.fi/web/nutritionepidemiologists/kuo-

pio-ischaemic-heart-disease-risk-factor-stud-kihd-1984-).
The other dataset used in the current work was

obtained from a human dietary intervention, namely the
Berry Study (BS) [25, 26]. BS was a controlled 16-week
interventional trial, where plasma was collected from 47
individuals in two time periods; at the baseline (start of
intervention) and at the 8-week follow up (end of inter-
vention). Twelve individuals served as a control group,
and the rest were divided into two experimental groups
consuming two different types of berries.

The samples from these two studies were analyzed by
UHPLC-qTOF-MS system (Agilent Technologies, Wald-
bronn, Karlsruhe, Germany) that consisted of a 1290 LC
system, a Jetstream electrospray ionization (ESI) source,
and a 6540 UHD accurate-mass qTOF spectrometer.
The samples were analyzed using two different chroma-
tographic modes, i.e. reversed phase (RP) and hydrophi-
lic interaction (hilic) chromatography and the data were
acquired in both positive (+) and negative (−) polarity.
Here we consider each of these four analytical modes as
separate datasets. The data pre-processing was carried
out as described earlier [25, 27].
From the KIHD study we created four datasets (four

analytical modes) and from the BS study, eight datasets
representing the two time points and four analytical
modes (Fig. 1). In order to create the datasets for the
evaluation of the imputation methods, we considered
molecular features that were present in all samples.
Table 1 provides information about how many molecu-
lar features we had in each datasets and the total num-
ber of missing values. During the simulation processes,
every time we repeated the simulation, we randomly
picked one dataset out of the 12, and randomly selected
200 molecular features from this particular dataset that
does not include any missing values, and this new sub-
dataset was used to simulate missing values and test the
imputation methods thereafter. Additional boxplots and
correlation plots show the new complete sub-datasets in
more detailed (Additional file 1: Figures S1-S6).

Missing mechanisms simulation
MCAR missingness was simulated by randomly remov-
ing values from the data set using the uniform distribu-
tion. Different rates of missingness were simulated by
removing different proportions of the values (5, 10, 20,
and 30%).
In the MAR missing mechanism, the missing values

depend on the observed part of the data. In our simula-
tion, we model a situation where a high abundance of a
molecular feature X1 will lead to missingness of a mole-
cular feature X2 in the same sample. The simulation pro-
cess begins by randomly choosing two different
molecular features; X1 and X2. We sort the values of X1

from minimum to maximum, and choose a cut-off per-
centage point randomly from chi-squared distribution,
divide it by 30 and limit to range 0..1. This approach will
limit the cut-off percentage between 0 to 100%, with
mean of 3.3% and standard deviation of 4.7% (empiri-
cally simulated with 1 million values). This selected cut-
off percentage will be used to set this proportion of
highest X2 values to missing, simulating MAR missing-
ness. After this, new X1 and X2 are randomly selected,
and the procedure is repeated until total desired
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