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Abstract

Background: Cancer subtype classification attains the great importance for accurate diagnosis and personalized
treatment of cancer. Latest developments in high-throughput sequencing technologies have rapidly produced
multi-omics data of the same cancer sample. Many computational methods have been proposed to classify cancer
subtypes, however most of them generate the model by only employing gene expression data. It has been shown
that integration of multi-omics data contributes to cancer subtype classification.

Results: A new hierarchical integration deep flexible neural forest framework is proposed to integrate multi-omics
data for cancer subtype classification named as HI-DFNForest. Stacked autoencoder (SAE) is used to learn high-level
representations in each omics data, then the complex representations are learned by integrating all learned
representations into a layer of autoencoder. Final learned data representations (from the stacked autoencoder) are
used to classify patients into different cancer subtypes using deep flexible neural forest (DFNForest) model.Cancer
subtype classification is verified on BRCA, GBM and OV data sets from TCGA by integrating gene expression, miRNA
expression and DNA methylation data. These results demonstrated that integrating multiple omics data improves the
accuracy of cancer subtype classification than only using gene expression data and the proposed framework has
achieved better performance compared with other conventional methods.

Conclusion: The new hierarchical integration deep flexible neural forest framework(HI-DFNForest) is an effective
method to integrate multi-omics data to classify cancer subtypes.
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Background
Cancers are considered as heterogeneous disease includ-
ing the multiple pathogenesis and clinical features [1, 2].
Cancers have been divided into several subtypes based
on different outcomes and treatments. Cancer subtype
classification can provide a detailed understanding into
cancer pathogenesis which helps to diagnose the cancer
accurately and personalized cancer treatment [3]. Can-
cer subtypes classification has been widely studied over
the last decade [4–8]. It has been shown that different
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subtypes are usually caused by different genetic mutations
[9–11].
Recent advancements of high-throughput sequencing

technology have enabled us to collect multi-omics data
from the same cancer samples, such as gene expression,
miRNA expression and DNA methylation data. The Can-
cer Genome Atlas (TCGA) [12, 13] project produced
different kinds of genome, transcriptome and epigenome
information for more than 1100 patient samples from
more than 34 cancer types [14]. These sequencing data
provide an unprecedented opportunity to study cancer
subtype at the molecular level by using multi-omics data
[15, 16]. Many computational methods have been pro-
posed to classify cancer subtypes [17–21], however most
of them generate the model by only employing gene
expression data. It has been shown that integration of
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multi-omics data provides better cancer subtype classi-
fication in recent years [22–24]. The miRNA plays an
important role in cancer progression by complementing
mRNA and in mRNA silencing or degradation [25–28].
DNA methylation is a chemical modification of DNA that
can change genetic performance without changing the
DNA sequence. Thus, there is a need for a computa-
tional approach that enables the comprehensive analysis
of these multi-omics data as well as reliable integration of
information generated from different platforms.
The simplest way to combine biological data is to con-

nect standardized measurements from a variety of biolog-
ical fields, such as miRNA expression and DNA methyla-
tion, however the results are not ideal. A common strategy
is to analyze each data type independently [29–32] and
combine the data. That often leads to unreliable con-
clusions that makes it difficult to integrate. Moreover,
analysis of this cross-platform genomic data also poses
new challenges for traditional data analysis methods [33,
34], such as K-means clustering method [35] or princi-
pal component analysis (PCA) [36]. Usually, multi-omics
data come from multiple platforms, which typically have
different representations and statistical properties. Also,
multi-omics data for the same cancer is unlikely to be
independent . In order to solve this problem, we propose a
hierarchical integration stacked autoencoder, taking both
the intrinsic statistical properties of each individual types
of data and the correlation of different omics data into
account.
Biological data typically have high dimensionality and

small sample sizes, which poses great challenge to tradi-
tional classification methods.With the rapid development
in machine learning techniques [37, 38], particularly in
deep learning which allowed direct processing of such
high dimensional biological data without knowing the
prior knowledge. The performance of deep neural net-
works (DNN) mainly depends on its structure, however
no effective structural optimization algorithms have been
proposed. Deep forest [39] was proposed as an alter-
native to solve the structural design problems of DNN.
Inspired by deep forest, deep flexible neural forest (DFN-
Forest) was proposed, which is an ensemble of flexible
neural tree (FNT) [40, 41]. DFNForest overcomes the
problem of increasing the depth of FNT and dealing with
multi-classification.
In this paper, a hierarchical integration deep flexible

neural forest (HI-DFNForest) framework has been pro-
posed to integrate multi-omics data for cancer subtype
classification. We integrated gene expression, miRNA
expression and DNA methylation data with stacked
autoencoder [42, 43] for cancer subtype classification.
Specifically, we propose to use stacked autoencoders to
learn the representations of each omics data. Secondly,
an autoencoder is used to learn complex representations

according to the learned features. Finally, previously
learned complex representation is used as input to the
DFNForest model for cancer subtype classification. The
entire process is called HI-DFNForest framework.
The main contributions are summarized below.
(1) Integration of gene expression, miRNA expression

and DNA methylation data, which offers more compre-
hensive prospects for cancer subtype classification. Most
of the current cancer subtype classification methods are
based on gene expression data. In fact, miRNA expression
and DNAmethylation are also closely related to abnormal
gene mutations in cancer.
(2) Proposal of a hierarchical integration stacked

autoencoder which takes the intrinsic statistical proper-
ties of individual types of data and the correlation of
different omics data into account. A high-level represen-
tation in each omics data is learned separately using a
stacked autoencoder (SAE) and all learned representa-
tions are integrated into an autoencoder to learn complex
data representations.
(3) Proposal of a hierarchical integration deep flexi-

ble neural forest (HI-DFN Forest) framework to integrate
multi-omics data for cancer subtype classification. Hier-
archical stacked autoencoder is used to learn high-level
features from each omics data, then the final integra-
tive data representations are used to classify patients into
different cancer subtypes using DFNForest model.

Results
Datasets
To show the effectiveness of HI-DFNForest framework,
three different cancer types from the TCGA [12, 13] are
considered. The three cancer types include breast inva-
sive carcinoma (BRCA) with 104 samples, glioblastoma
multiforme (GBM) with 213 samples and ovarian can-
cer (OV) with 102 samples. For each of cancers, Level
3 dataset containing gene expression, miRNA expression
and DNA methylation data are used. Before applying our
HI-DFNForest framework, we performed three steps of
pre-processing: outlier deletion, missing data imputation,
and normalization [44]. If a biological feature has more
than 20% missing values in a patient, this patient data
is filtered out. In addition, for missing data, we use K
nearest neighbor (KNN) for imputation. Finally, before
classifying cancer subtypes, we performed the following
normalization:

˜f = f − E(f )
√

Var(f )
(1)

Where f is any biological feature,˜f is the corresponding
features after normalization, E(f ) andVar(f ) are the mean
and variance of f.
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Table 1 shows the details of datasets. We also down-
loaded the corresponding clinical data for each data set
from TCGA to label each sample.

Model selection
There are three different forests developed for the
experiment in HI-DFNForest model. For the three
forests, the function set F was set to {+2,+3, +4},
{+2,+4, +5} , {+3,+4, +5} respectively. As for the base
classifier FNT, its structure is optimized by grammar
guided genetic programming and parameters is optimized
by particle swarm optimization. 5-fold cross-validation is
used to assess the performance of different parameter set-
tings in FNT, the smallest root mean square error(RMSE)
can be obtained, and the corresponding parameter set-
tings of FNT are shown in Table 2.
In order to choose a better SAE structure, we trained

the SAE according to the different number of hidden lay-
ers and hidden variables, which is compared on the mean
square error (MSE) value. Different structures of SAE have
been considered and best one is chosen as the parameter
of model. For gene expression data and DNAmethylation,
the best structure was a three-layer SAE of 500-200-50.
For miRNA expression, the smallest MSE of structure was
a two-layer SAE, and the number of hidden variables was
100-50. The last level is the AE of 50 hidden variables.
To check whether the HI-DFNForest model is overfit-

ting, the permuted input data set is used as input to the
proposed model, and the experimental results are com-
pared with random guess. The experiments are randomly
performed 10 times, and the average of the results is com-
pared with the accuracy of the random guess. The input
data used are BRCA data set, because it is a classification
problem of 4 cancer subtypes, so the accuracy of random
guess is 0.25. The result of the permuted input data set is
0.484, which is higher than the accuracy of random guess.
The reason why the accuracy of HI-DFNForest is higher
than that of random guessing is that the proposed model
has a training process, but random guessing does not have
this process. Therefore, the classification performance of
HI-DFNForest is not significantly higher than a random
guess, indicating that our model is not overfitting. The
main reasons why the HI-DFNForest model is not overfit-
ting are: (1) the base classifier FNT is a sparse structure

Table 1 Statistics of datasets for three cancer types

Cancer
type

DNA
methylation

miRNA
expression

Gene
expression

Patient

BRCA 23094 354 17814 104

GBM 1305 534 12042 213

OV 24963 539 16860 102

Table 2 Parameter settings of FNT

Parameter Value

Population size 50

Crossover probability 0.4

Mutation probability 0.01

C1 2

C2 2

Vmax 2

that allows cross-layer connections, which avoids over-
fitting and has good generalization performance. (2) the
proposed model adopts a cascade structure, and the level
of the cascade structure is adaptively determined. When
the accuracy does not change on the validation set, the
number of levels does not increase, so it is suitable for
small-scale data.

Comparison of proposedmethod with multiple and single
dimensional data
To test whether integration of multi-omics data con-
tributes to cancer subtype classification, we used data
from DNA methylation, miRNA expression, gene expres-
sion and integration of these three types of data using SAE
as input to our DFNForest classification model, respec-
tively. On the breast invasive carcinoma (BRCA), glioblas-
toma multiforme (GBM) and ovarian cancer (OV) data
sets, using the classification accuracy as the basis for
evaluating the performance.
As shown in Table 3, it is clear that the performance

of integrative data is superior to using only DNA methy-
lation, miRNA expression, and gene expression data. For
example, in the BRCA data set, the classification accuracy
rate of integrative data set reaches 0.846, while the accu-
racy of DNAmethylation is 0.731, the accuracy of miRNA
expression is 0.769, and the accuracy of gene expression is
0.808. Meanwhile, in the GBM data set, the classification
accuracy rate of integrative data set reaches 0.885, while
the accuracy of DNA methylation is 0.596, the accuracy
of miRNA expression is 0.539, and the accuracy of gene
expression is 0.865. In the OV data set, the classification
accuracy rate of integrative data set reaches 0.840, while
the accuracy of DNA methylation is 0.640, the accuracy

Table 3 Performance comparison of the proposed method with
multiple and single dimensional data

Cancer
type

DNA
methylation

miRNA
expression

Gene
expression

Integrative
Data

BRCA 0.731 0.769 0.808 0.846

GBM 0.596 0.539 0.865 0.885

OV 0.640 0.640 0.760 0.840
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of miRNA expression is 0.640, and the accuracy of gene
expression is 0.760. Table 3 demonstrates that integrative
data improves classification accuracy compared to only
using one omics data as input. Figure 1 shows the clas-
sification results of different omics data. As can be seen
from Fig. 1, when gene expression data and integration
data are used as inputs, the accuracy is higher, however,
DNA methylation and miRNA expression are less accu-
rate. Themain purpose of proposedHI-DFNForest frame-
work is to use DNA methylation and miRNA expression
as supplementary information for gene expression in can-
cer subtype classification. The experiments prove that
the proposed integration method has improved the per-
formance as compared to only using gene expression
data.

Comparison with other dimensionality reduction methods
In HI-DFNForest, a hierarchical integration SAE frame-
work is used to learn the representation of input data.
To assess the performance of SAE in learning features,
comparing with traditional principal components analy-
sis (PCA) and non-negative matrix factorization (NMF)
methods using DNA methylation, miRNA expression,
gene expression and integrative data on BRCA, GBM and
OV dataset. Classification accuracy is used as a criterion
for judging the learning features of these three dimension-
ality reduction methods.
Tables 4, 5 and 6 show the comparison of our SAE

dimensionality reduction method with PCA and NMF on
BRCA, GBM and OV data sets, respectively. The accuracy
of our SAE this kind of deep learning model is signifi-
cantly higher than the traditional PCA and NMFmethods
for different types of data. For example, our SAE has accu-
racy of 0.731, while PCA is 0.692 and NMF is 0.654 for
DNA methylation data on the BRCA dataset in Table 4.
Meanwhile, our SAE has accuracy of 0.865, while PCA is
0.808 and NMF is 0.781 for gene expression data on the
GBM dataset in Table 5. Furthermore, SAE has accuracy

Table 4 Performance comparison of dimensionality reduction
methods on BRCA dataset

Data PCA NMF SAE

DNA methylation 0.692 0.654 0.731

miRNA expression 0.731 0.692 0.769

Gene expression 0.769 0.731 0.808

Integrative Data 0.808 0.769 0.846

of 0.840, while PCA is 0.760 and NMF is 0.720 for inte-
grative data on the OV dataset in Table 6. We can see
that the accuracy of SAE is the highest as compared to
the other two methods, which shows that this deep learn-
ing model can learn better than original features while
reducing the dimension. Figure 2 clearly demonstrated
the performance comparison of our proposed SAE frame-
work, PCA and NMF using integrative data on BRCA,
GBM andOV datasets. Under the purpose of learning fea-
tures and performing dimensionality reduction, our SAE
has the best performance, followed by NMF and PCA.
Therefore, our hierarchical integration SAE method can
effectively integrate multi-omics data, which is conducive
to the cancer subtype classification.

Comparison with other classification methods
To evaluate the performance of our proposed framework,
we tested four different models, i.e., k-nearest neighbor
(KNN), support vector machine (SVM), random forest
(RF), and multi-grained cascade forest (gcForest) instead
of DFNForest model in our framework. Integrative data
processed by stacked autoencoders are as input to KNN,
SVM, RF, gcForest and DFNForest classifiers. Moreover,
we compare HI-DFNForest model with mixOmics [45]
to evaluate the performance of data integration method.
The results are measured by classification accuracy. For
fairness, 5-fold cross-validation is used to evaluate the
performance of the different classifiers.

Fig. 1 Comparison of classification accuracy between different data
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Tables 7, 8 and 9 show the comparison of DFNFor-
est, KNN, SVM, RF, gcForest and mixOmics on BRCA,
GBM and OV data sets, respectively. As we can see,
DFNForest has higher classification accuracy than other
classifiers. For example, the accuracy of using the integra-
tive data of DFNForest is 0.846, while the KNN is 0.796,
the SVM is 0.796, the RF is 0.808, the gcForest is 0.808 and
the mixOmics is 0.808 on the BRCA dataset in Table 7.
Moreover, the accuracy of using the integrative data of
DFNForest is 0.885, while the accuracy of KNN is 0.635,
the SVM is 0.846, the RF is 0.846, the gcForest is 0.865
and the mixOmics is 0.846 on the GBM dataset in Table 8.
Meanwhile, the accuracy of using the integrative data of
DFNForest model is 0.840, while the KNN is 0.720, the
SVM is 0.720, the RF is 0.760, the gcForest is 0.800 and
the mixOmics is 0.760 in Table 9. It can be observed that
most classification methods achieve better performance
when using multi-omics data than only using single omics
data, which illustrates that DNA methylation and miRNA
expression data can be used as complementary informa-
tion for gene expression data. In addition, compared to
the traditional methods like KNN, SVM and RF, gcFor-
est and DFNForest have higher performance because the
deep learning models can extract more complex features
when processed data layer by layer. However, DFNFor-
est outperforms than gcForest because DFNForest is more
applicable to process continuous data. The performance
of mixOmics is better than that of traditional methods
like KNN, SVM and RF, but worse than DFNForest model.
Because mixOmics is a linear model, the performance
on such complex multi-omics data is not as good as the
proposed HI-DFNForest which is a deep learning model.
To assess the overall performance of different classifiers
on BRCA, GBM and OV datasets, the average precision,
recall and F-1 score of each model were considered. As
illustrated in Fig. 3, the DFNForest model has achieved
better performance than other methods in cancer subtype
classification.

Discussion
Many computational methods have been proposed to
classify cancer subtypes [17–21], however most of them
generate the model by only employing gene expression
data. Gene expression data is used as input to DFNForest

Table 5 Performance comparison of dimensionality reduction
methods on GBM dataset

Data PCA NMF SAE

DNA methylation 0.558 0.577 0.596

miRNA expression 0.519 0.500 0.539

Gene expression 0.808 0.781 0.865

Integrative Data 0.827 0.808 0.885

Table 6 Performance comparison of dimensionality reduction
methods on OV dataset

Data PCA NMF SAE

DNA methylation 0.600 0.560 0.640

miRNA expression 0.560 0.520 0.640

Gene expression 0.720 0.680 0.760

Integrative Data 0.760 0.720 0.840

classifier [46]. However, it has been shown that integration
of multi-omics data contributes to cancer subtype classifi-
cation [22–24]. Guo [47] has attempted to use the stacked
autoencoder to cluster cancer subtypes, but the difference
of our work is that our proposed framework uses three dif-
ferent stacked autoencoders to integrate gene expression,
miRNA expression and DNA methylation data, and then
using the learned representations as input to the DFN-
Forest model. When gathering multi-omics data, there
are usually two main challenges. One is that different
input data comes from different platforms, so each type of
data has its properties, and the other is that each type of
input data cannot be independent. To deal with the above
problem, we adopted the hierarchical integration stacked
autoencoder. First, the complex features of gene expres-
sion, miRNA expression and DNA methylation data are
learned by three SAEs with different structures, respec-
tively. After that, the final integrative feature is learned
through a layer of AE. Our SAE framework takes both the
intrinsic statistical properties of individual types of data
and the correlation of different omics data into account.
There are some other multi-omics integration methods
proposed, such as mixOmics [45]. Although these meth-
ods are simpler and easier to implement, they are linear
computational models, so the processing performance on
complex multi-omics data is not as good as the deep
learning model we proposed.
The characteristics of biological data are high dimen-

sionality and small sample sizes, which poses great
challenge to traditional classification methods. Recent
advances in deep learning have allowed direct processing
of such high dimensional data. However, the performance
of deep neural networks depends largely on its structure,

Table 7 Comparison of overall accuracy on BRCA datasets

Data KNN SVM RF gcForest mixOmics DFNForest

DNA
methylation

0.615 0.692 0.615 0.731 0.692 0.731

miRNA
expression

0.654 0.731 0.731 0.731 0.692 0.769

Gene
expression

0.731 0.769 0.769 0.769 0.769 0.808

Integrative
Data

0.769 0.769 0.808 0.808 0.808 0.846
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Fig. 2 Performance comparison of proposed SAE framework, PCA and NMF using integrative data

but no effective structural optimization algorithms have
been proposed, usually depending on the individual expe-
rience of the researcher. DFNForest was proposed as an
alternative to neural networks, which solves structural
design problems. Therefore, we design a hierarchical inte-
gration deep flexible neural forest framework based on
the SAE and DFNForest to integrate multi-omics data to
classify cancer subtypes.
Test results on the BRCA, GBM and OV datasets

demonstrate that the integration of gene expression,
miRNA expression and DNAmethylation data have better
performance as compared to only using gene expression
data, which indicates that DNA methylation and miRNA
expression can be used as complementary information
for gene expression data in cancer subtype classification.
Furthermore, the HI-DFNForest framework can not only
integrate different omics data well but also can achieve
good classification performance, which may be that our
SAE can obtain a better high-level representation of raw
data and DFNForest is more applicable to process biologi-
cal data. In conclusion, the purpose of our HI-DFNForest
framework is a new data integration model. Although our
HI-DFNForest framework is used to integrate different
omics data for cancer subtype classification, it can also be
applied to other types of data from different platforms that
need to be integrated.

Conclusions
It is of importance to classify cancer subtypes to promote
accurate cancer diagnosis and personalized treatment.
Due to the heterogeneity of cancer, it has been proved
that integration of multi-omics data has an effect on
cancer subtype classification. A deep flexible neural for-
est framework is proposed to integrate different omics
data for cancer subtype classification. Cancer subtype
classification is verified on BRCA, GBM and OV data

sets from TCGA by integrating gene expression, miRNA
expression and DNA methylation data. The autoencoder
are stacked to learn data representations from each omics
data, then the learned representations are integrated into
another autoencoder to learn complex representations.
The complex representations that are ultimately learned
are used as the input to DFNForest model to classify
cancer subtypes. Experiments have shown that integrat-
ing multiple omics data improves the accuracy of cancer
subtype classification than only using gene expression
data, and other omics data can be used as complemen-
tary information for gene expression data. Moreover,
SAE is actually a dimensionality reduction approach, so
we compared it with traditional PCA and NMF meth-
ods. The results show our SAE model can better learn
the original features and reduce the dimensionality. In
addition, the DFNForest model has higher performance
compared to the other classifiers. In conclusion, our
HI-DFNForest framework based on hierarchical integra-
tion stacked autoencoders and DFNForest model pro-
vides an option to integrate multi-omics data in the
cancer subtype classification.

Table 8 Comparison of overall accuracy on GBM datasets

Data KNN SVM RF gcForest mixOmics DFNForest

DNA
methylation

0.404 0.558 0.558 0.577 0.558 0.596

miRNA
expression

0.539 0.442 0.462 0.558 0.539 0.539

Gene
expression

0.635 0.827 0.827 0.846 0.827 0.865

Integrative
Data

0.635 0.846 0.846 0.865 0.846 0.885
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Table 9 Comparison of overall accuracy on OV datasets

Data KNN SVM RF gcForest mixOmics DFNForest

DNA
methylation

0.440 0.520 0.560 0.560 0.520 0.640

miRNA
expression

0.480 0.520 0.480 0.640 0.560 0.640

Gene
expression

0.680 0.680 0.720 0.720 0.720 0.760

Integrative
Data

0.720 0.720 0.760 0.800 0.760 0.840

Methods
In this section, the stacked autoencoder, deep flexible neu-
ral forest and lastly proposed hierarchical integration deep
flexible neural forest framework are explained.

Stacked autoencoder
An autoencoder (AE) is an unsupervised method of
dimensionality reduction and feature representation of
raw data. Considering the X = x(1), x(2), x(3), ..., x(N)

be the training data set, Where x(k)εRn , N and n are
the number of samples and features in the training data
set. AE attempts to learn latent features which provide
a better representation of the original data [43]. Suppose
H =

{

h(l)
1 , h(l)

2 , h(l)
3 , ..., h(l)

m
}

is a set of hidden variables,
and the main idea of AE is to learn the function hW ,b(·)
, in which the targeted value is set to be equal to the
input hW ,b(x) = x. AE has two main parts known as
an encoder and a decoder. Figure 4a shows the encoder
section, where x data points are used as input for the AE
and that are converted to a high level representation h by
using the encoder function f (W , bx, x), where W and bx
are the parameters of the encoder function. In decoder
section, the function f (W ′, bh, x) tries to approximate the

x′ of the raw input through the learned high-level rep-
resentations, where W ′ and bh are the parameters of the
decoder. Essentially, the goal of the AE training process is
to find a set of optimal parameters (W ,W ′, bx, bh) by min-
imizing the difference between the given input to encoder
“x” and reconstructed output by decoder “x′”.
The difference of AE can be expressed in terms of a cost

function. The formula is as follows.

JAE(θ , x) = 1
N

N
∑

i=1
||x(i) − dθ ′(eθ (x(i)))||2

+λ||W ||22 (2)

The first term is the mean squared error (MSE) and
the second term is the L2 regularization term to prevent
overfitting. The eθ (·) refers to an encoder part having a
parameter θ(W , bx) that transforms x ∈ Rn to represent
h ∈ Rm according to the activation function f (Wx + bx).
W ∈ Rm×n is the weight matrix of the encoder, and bx ∈
Rm is the bias term. Alike, dθ ′(·) refers to an decoder part
with the parameter θ ′(W ′, bh), which converts h ∈ Rm

into x′ ∈ Rn according to f (W ′h + bh), where W ∈ Rn×m

is the weight matrix of the decoder, and bh ∈ Rn is the bias
term.
The training process of AE minimizes the difference

error by using the gradient descent method to optimize
the following.

Fig. 3 Comparison of overall performance of different classifiers on BRCA, GBM and OV datasets. The average precision, recall and F-1 score of each
dataset were evaluated on BRCA, GBM and OV datasets
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Fig. 4 Architecture of autoencoder. a Structure of basic autoencoder. b Structure of three-layer stacked autoencoder

argminθ ,θ ′ JAE(θ , θ ′, x) (3)

The stacked autoencoder (SAE) consists of a multi-
layer autoencoder with the output of each hidden layer
connected to the input of successive layers [47, 48]. The
hidden variable for each layer provides a complex repre-
sentation for the next layer in the SAE. For SAE, high-
dimensional data is expected to obtain advanced features
for downstream analysis [49, 50]. Figure 4b shows the
structure of a SAE with 3 hidden layers. To make it simple,
we have not shown the decoder part of the SAE at each
layer. The hidden layers and hidden variables in each layer
can be defined as needed.

Deep flexible neural forest
A flexible neural tree (FNT) model was proposed by [40, 41],
which solved the design problem of neural network

structure. The tree structure optimization algorithm was
used to select themodel structure automatically. However,
the structure of FNT was not useful to deal with multi-
class problems [46, 51]. Increasing the depth of FNT can
improve the performance of the model, but the cost of
the parameter optimization algorithm increases. To solve
above problem, a deep flexible neural forest (DFNForest)
model was exploited to classify cancer subtypes [46].
The cascade structure allows the depth of FNT to be

increased without adding other parameters. As shown
in Fig. 5, the cascade structure means processing fea-
tures layer by layer, each layer can obtain new features,
and the new features concatenated with the raw features
are used as the input to next level. Although DFNForest
model is inspired by deep forest [39], the base classi-
fiers are different. Decision trees (DT) are used in deep

Fig. 5 Illustration of the cascade forest structure. Three forests are generated by different grammar, the first forest (black) use function set F of
{+2,+3, +4}, the second forest (green) use {+2,+4, +5}, and the last forest (blue) use function set F of {+3,+4, +5}



Xu et al. BMC Bioinformatics          (2019) 20:527 Page 9 of 11

forests, while FNT is used in DFNForest. We have pro-
posed to use FNT as the base classifier instead of DT,
because DT are not applicable to process continuous data,
it is necessary to discretize continuous data first, which
inevitably leads to information loss. The considered bio-
logical data are continuous data, so FNT is a better choice
as a base classifier. The performance of ensemble learn-
ing is highly dependent on the accuracy and diversity of
the base classifier. In order to ensure diversity, we have
used different grammars to generate different FNT archi-
tectures. Suppose that three forests and two FNTs are
used in each forest. As is illustrated in Fig. 5, the first for-
est uses function set F of {+2,+3, +4}, the second forest
uses {+2,+4, +5}, and the last one uses {+3,+4, +5}.
For each forest, M-ary method is used to convert multi-
classification problem into multiple binary classification
problems.
Figure 6 shows the generation of class vectors in each

forest. Given a sample, each FNT generates an estimated
value. The estimated values of each FNT in a forest are
concatenated as a class vector. The class vectors of all the
forests in a layer are concatenated with raw input and con-
sidered as the input of the next layer. The entire data set
is divided into three parts: training set, validation set, and
test set. The validation set will verify the performance of
the entire current cascade structure. When the accuracy
does not change, the number of layers in the structure is
determined. The number of cascade levels is automatically
determined, which can be used for data set of different
size.
The obvious advantage of DFNForest is the automati-

cally design of the structure. The tree structure optimiza-
tion algorithm automatically optimizes the FNT structure
in each forest, and the cascade layers are adaptively deter-
mined, which can be used for data set of different size,
especially for small-scale biological data. Moreover, the
DFNForest model adopts the idea of ensemble learning,
and the diversity and accuracy of the base FNT classifier
can effectively improve the performance of our model.

Hierarchical integration deep flexible neural forest
framework
A hierarchical integration deep flexible neural forest
framework is designed based on the SAE and DFNFor-
est, named as HI-DFNForest, in which multi-omics data
is integrated for cancer subtype classification. Data rep-
resentations is learned respectively from each omics data
using stacked autoencoders and all the learned represen-
tations are integrated into a layer of autoencoder to learn
complex representations. Then the learned complex rep-
resentations that are ultimately learned are used as the
input to DFNForest model for cancer subtype classifi-
cation. Figure 7 shows the hierarchical integration deep
flexible neural forest framework. Three hidden layers in
each SAE model are shown as an example to show our
proposed hierarchical integration framework. Specifically,
we use SAE models of different structures to learn the
representation from gene expression, miRNA expression
and DNAmethylation data. Then learned representations
are integrated into a layer of AE models to learn the
complex representation. At last, the learned features are
used as input to DFNForest model for cancer subtype
classification.
The reason why we not only use gene expression infor-

mation is that the cancer subtype classification is closely
related to miRNA expression and DNA methylation [22–
24]. There are two main challenges in integrating differ-
ent omics data. First, multi-omics data usually come from
multiple platforms, which usually have different repre-
sentations and statistical properties. Second, multi-omics
data for the same cancer is unlikely to be independent.
Therefore, we propose a hierarchical integrated stack-
ing autoencoder, which has the significant advantage of
considering both intrinsic statistical properties of indi-
vidual data and the correlation of different omics data.
Given a sample, its input data consist of three omics data,
gene expression, miRNA expression and DNA methyla-
tion data. Each omics data is passed through SAE with dif-
ferent structures, and the learned features are integrated

Fig. 6 Illustration of class vector generation. Each FNT will generate an estimated value and then concatenated
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Fig. 7 The hierarchical integration deep flexible neural forest framework

into a layer of autoencoder to learn top-level representa-
tion. The final step is to use the previously learned features
as input to the DFNForest classifier, which gives the final
predicted label of the sample.
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