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Abstract

Background: Traditional drug research and development is high cost, time-consuming and risky. Computationally
identifying new indications for existing drugs, referred as drug repositioning, greatly reduces the cost and attracts ever-
increasing research interests. Many network-based methods have been proposed for drug repositioning and most of
them apply random walk on a heterogeneous network consisted with disease and drug nodes. However, these
methods generally adopt the same walk-length for all nodes, and ignore the different contributions of different nodes.

Results: In this study, we propose a drug repositioning approach based on individual bi-random walks (DR-IBRW) on

the heterogeneous network. DR-IBRW firstly quantifies the individual work-length of random walks for each node
based on the network topology and knowledge that similar drugs tend to be associated with similar diseases. To
account for the inner structural difference of the heterogeneous network, it performs bi-random walks with the
quantified walk-lengths, and thus to identify new indications for approved drugs. Empirical study on public datasets
shows that DR-IBRW achieves a much better drug repositioning performance than other related competitive methods.

Conclusions: Using individual random walk-lengths for different nodes of heterogeneous network indeed boosts
the repositioning performance. DR-IBRW can be easily generalized to prioritize links between nodes of a network.
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Background

Traditional drug research and development depends on
cell-based or target-based screening of chemical com-
pounds to identify a small subset of ‘hits’ The identifica-
tion process aims to further increase their affinity, efficacy
and selectivity, before moving forward to animal tests and
clinical trials [1]. Drug development in general is compli-
cated, time-consuming and expensive with high-risk [2].
In light of these difficulties in traditional drug discovery,
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identifying new indications for existing drugs, also known
as drug repositioning, has attracted increasing interests
from both the pharmaceutical industry and research com-
munity [3]. Drug repositioning is much more economic
compared with traditional approaches, it offers a promis-
ing alternative to reduce the cost and time, since the
repositioned drug has already passed the required safety
tests.

However, most successfully repositioned drugs up to
date have been the consequence of incidental observations
of unexpected efficacy and side effects in the develop-
ment or on the market [4]. For example, Sildenafil was
originally tested for angina, now is indicated for erectile
dysfunction and pulmonary hypertension [2]; Minoxidil
was originally tested for hypertension; now is indicated for
hair loss [5]. With the influx of big biochemical and phe-
notypic data, drug repositioning holds great potential for
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precise medicine. It is profitable and promising to develop
computational methods to predict new indications for
approved drugs on large scale.

Some computational drug repositioning methods have
been proposed and they can be roughly divided into two
categories: focusing on the interactions between drugs
and the targets; and focusing on exploiting the knowledge
of diseases and drugs [6]. To name a few, Bleakley and
Yamanishi [7] developed a bipartite local model (BLM) to
predict target proteins of a given drug and target drugs
of a give protein, and then combine these two predictions
to give a final prediction for each candidate drug-target
interaction. Cheng et al. [8] used a drug-target bipartite
network topology similarity and a network based infer-
ence algorithm (NBI) to infer new targets for known
drugs. Wang et al. [9] used known drug-target interac-
tions as well as drug-drug and target-target similarities to
construct a heterogeneous network, and then introduced
a Heterogeneous Graph Based Inference (HGBI) method
to iteratively update the strength between unlinked drug-
target pairs based on all the paths in the network connect-
ing them. These drug-target prediction methods can be
readily adopted for drug repositioning.

Chiang et al. [10] attempted to predict novel associa-
tions between drugs and diseases based on the widely-
adopted ‘guilt-by-association’ principle. This principle
assumes that if a drug can treat one of two similar dis-
eases, then it might treat the other also; alternatively a
disease can be treated by two similar drugs. Following
this principle, Gottlieb et al. [11] measured the similarity
between the pertaining drug and disease of drug-disease
pairs that are known to be associated based on multiple
drug-drug sources and disease-disease similarity metrics,
and then ranked the accumulative evidence for association
using a logistic regression scheme to predict novel drug
indications. Wang et al. [1] integrated omics data about
diseases, drugs and drug targets to construct a hetero-
geneous network and then applied random walks on the
network to replenish missing associations between drugs
and diseases. Martinez et al. [6] integrated information
on diseases, drugs and targets (proteins) to construct a
heterogeneous network and then performed propagation
flow on the network to prioritize candidate associations
between diseases and drugs according to their intercon-
nections in the network. Luo et al. [12] proposed MBiRW
to predict drug-disease associations. MBiRW employs
known drug-disease associations to improve the drug-
drug and disease-disease similarity measures; and then
integrates the similarity networks and drug-disease asso-
ciations to build a drug-disease heterogeneous network;
after that, it performs bi-random walk with restart on the
network to predict novel potential drug-disease associ-
ations. Liu et al. [13] performed a drug-centric random
walk and a disease-centric random walk to obtain the
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association confidence between the disease nodes and
drug nodes of a heterogeneous network.

Most of these aforementioned methods in essence are
random walk based solutions. Although they make use
of the network topology from different perspectives, they
ignore the different contributions of different nodes on
transferring the information on the network and almost
all adopt a fixed walk-length for all nodes. To overcome
this issue, we propose a novel drug repositioning approach
(called DR-IBRW) that performs bi-random walk with
restart on a heterogeneous network with quantified indi-
vidual walk-length for each node. DR-IBRW uses disease
symptom information [14] and drug chemical fingerprints
[15] to construct a composite disease-disease similarity
network, drug-drug similarity network. It then quanti-
fies the individual walk-length for each node based on
the topology of known drug-disease association network.
Next, it constructs a heterogeneous network based on
these three networks. After that, it performs bi-random
walks with the quantified walk-lengths to account for the
structural differences of these networks and contribu-
tion differences of different nodes (including diseases and
drugs), and to predict new associations between drugs and
diseases, and thus to accomplish the drug repositioning.
We evaluate and compare the performance of DR-IBRW
on several public datasets. DR-IBRW obtains much bet-
ter performance than other related comparing methods
[7-9, 12, 16] in identifying new indications for existing
drugs, and the quantified individual walk-length indeed
contributes to an improved prediction performance. We
want to remark that the proposed individual bi-random
walk solution is different from existing personalized ran-
dom walk solutions [17, 18] that mainly focus on setting
different restart probabilities for different nodes.

Materials and methods

Dataset

The datasets used in this work include drug-disease asso-
ciations, drug fingerprints and disease symptoms. We
collected 4219 diseases from MeSH [19] and 322 symp-
toms for each disease from the supplementary material of
[14]. The drug-disease association dataset was obtained
from [20], it includes 3250 known drug-disease associa-
tions involving 799 drugs and 719 diseases. We also col-
lected 881 fingerprints for each drug from PubChem [15].
Since only 525 diseases can find their relevant symptom
information from the supplementary material of [14], the
final processed dataset includes 525 diseases, 718 drugs
and 2177 drug-disease associations. All these data were
collected on November 1st, 2017.

Similarity measures
We separately apply a four-step measurement to quantify
the inner-similarity between diseases and between drugs.
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The first three steps are based on the comprehensive sim-
ilarity measurement used by Luo et al. [12]. In the fourth
step, we use Gaussian interaction profile kernel similarity
[21] to measure the similarity between drugs and diseases.
Finally, we combine these similarities to form the compos-
ite similarity between diseases and between drugs. The
four-step procedure of measuring the similarity between
drugs is briefly introduced as follows.

Step 1: Based on the chemical fingerprints of the drug
molecules, we can initially measure the similarity S! €
R " between n, drugs via the widely used Cosine sim-
ilarity metric [22]. Let r; and r; be the vector forms of
the chemical fingerprints of drug r; and rj, the chemical
similarity S} (r;, ;) between drug r; and r; is defined as:

T
S} = 1)
leill [z

Step 2: Too small similarity provides little information
for drug repositioning and can be transformed into zeros
for accurate prediction [9, 12]. We partition S} into ten
subranges ((0,0.1], (0.1,0.2], etc.) and calculate the aver-
age similarity of drug pairs with shared diseases for each
subrange. We also randomly shuffle S! and repeat the par-
tition and calculation process again. If the average of the
non-shuffled subrange is smaller than that of the respec-
tive shuffled subrange, the drug similarities divided into
this subrange are viewed as not informative; otherwise,
they are informative. We then adopt a logistic function
[23] to shrink these non-informative similarities to zero
and to enlarge these informative similarities. The logistic
function is defined as follows:

1

2. i) — i,
S; (rl’rl) 1+ ecS}(Viij)+d’

(2)
where ¢ and d are the parameters can be tuned to control
the adjustment of S}. ¢ is the upper bound of the first sub-
range whose average similarity is smaller than that of the
respective shuffled subrange, d = log(999). After that, we
obtain a updated drug similarity matrix S2.

Step 3: Two drugs are more similar if they are grouped
into the same cluster. To make use of this assumption, we
first construct a new weighted drug sharing network with
drugs as nodes and edge weight reflecting the number
of common diseases by respective pair nodes. After that,
we adopt a graph clustering method, ClusterONE [24], to
identify potential drug clusters on the network. We then
add the clustering cohesiveness of a cluster with S2 if and
only if the two drugs belong to that cluster.

Win(C)
(VVM(C) + Wbound(c) +P(C))’
where W, (C) denotes the total weight of edges within a

cluster of vertices, Wp,,,4(C) represents the total weight
of edges connecting nodes of this cluster to nodes of other

S = 3)
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clusters, and P(C) is the penalty term. Suppose that drug
r; and drug r; locating in the same cluster C, the compre-
hensive drug similarity S3(r;, ;) between drug r; and r; is
defined as (1 + f(C)) Sf(r,', rj). In this way, we obtain an
improved drug similarity matrix S3.

Step 4: Based on the assumption that similar drugs tend
to show similar interaction and non-interaction profiles
with the diseases, we further use Gaussian interaction
profile kernel similarity to measure the similarity between
drugs [21, 25, 26]. The interaction profile IP(r;) of drug
r; is defined as a binary vector encoding the presence or
absence of the known associations between the drug and
ny diseases. The Gaussian interaction profile kernel simi-
larity between two drugs (r; and r;) is computed as follows:

SXR (13, 1)) = exp (=Y, IIP(r;) — IP(r)|1?), (4)

B 1 &
T, =7,/ (n§ ||1P<ri>||2>, ®)
ri=1

where Y, is the kernel bandwidth, T, is the average num-
ber of associated diseases per drug.

To this end, we combine S? and SX% into the composite
similarity matrix S, between 7, drugs as follows:

S, = (si’ + s£<R) /2 6)

Following the above four-step, we can also compute the
composite similarity S; € R”4*"d between n, diseases
based on the symptom information of these diseases and
drug-disease associations.

Quantifying individual walk-length

Network-based drug repositioning methods generally
apply random walk on a network with a fixed walk-length
for all nodes to explore the network topology [12, 27,
28]. They ignore the different contributions of different
nodes to some extent. Given that, we introduce an indi-
vidual walk-length measure and try to make better use
of the topology of known drug-disease association bipar-
tite network W,; € R"*" of n, drugs and n, diseases.
W, (ri,d;) = 1 if the association between the drug r; and
disease d; is known; and 0 otherwise.

The walk-length of a node generally depends on its
influence in the network [29]. We extend the Jaccard index
measure introduced by Lu et al. [16] to quantify the indi-
vidual walk-length of nodes. Suppose AN/"(r;) denote the
set of neighbours of drug r; and \' d (d)) denote the set of
neighbours of disease dj, if r; and d; share many common
neighbours, they will be more probably influenced with
each other. For a randomly selected feature f of either r; or
dj, traditional Jaccard index measures the probability that
both r; and d; have that feature as follows [30]:
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N7 () NN ()]
N7 () UN (dp)|

Since there is no relationship between diseases or
between drugs in the drug-disease bipartite network,
NT@r) N ./\/'d(dj) is an empty set. For this reason, we have
to modify the definition of Jaccard index for a bipartite
graph. Particularly, we define N7 (r;) = UcenropN¥(c)
as the set of drugs associated with r;’s neighbours. Then
the Jaccard index on the bipartite network is defined as
follows:

7)

(i, dj) =

V() NN ()
N7 () N ()|
JI(ri, d;) represents the influence between drug-disease
pair (r;,d;). We assume that a node with high quanti-
fied influence has more probability to interact with others
during the random walk process, and this node should
have larger walk-length. Based on this assumption, we can
measure the walk-length of each node as follows:

(ri,dj) = (8)

nyg ny
L) =Y Jid), L) =) Jlrid), (9
j=1 i=1

where L, € R™ and L; € R" store the individual walk-
lengths of n, drugs and n, diseases, respectively.

Individual bi-random walk

Based on the inner similarity network (defined by S”) of
drugs, the inner similarity network (defined by $%) of dis-
eases, and the drug-disease bipartite network initialized
by known drug-disease associations, we can construct a
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heterogeneous network of drugs and diseases (see Fig. 1
for example). We adopt a bi-random walk with restart
procedure [27] on the heterogeneous network. Compared
with traditional random walk with restart, the bi-random
walk with restart can separately propagate information in
different subnetworks, instead of the global network [28].
For this reason, bi-random walk can separately account
for the inner structure of disease similarity network and of
drug similarity network, and also make use of associations
between drugs and diseases.

A random walker can take a drug as the starting node,
its associated diseases as intermediate nodes, and then
traverse to other disease nodes. In this way, we can get
probabilistic associations between the drug and new dis-
eases, and thus identify potential new indications of the
drug. To mimic this process, we perform random walk
with restart starting from drug nodes and then travers-
ing to disease nodes based on the quantified individual
walk-length and the heterogeneous network topology as
follows:

o szzl Sd(dk’ dj)FfA_l (ris dk)+
(1 — o)Wy (risdy),if t < |Ly(ri) ]
Fo by, dy),

Fi(ri, dj) = (10)

otherwise

where FL(r;, d;) is the predicted relevance between drug

r; and disease dj in the ¢-th iteration, F(r) =W,5,a >0

controls the probability for a walker staying at the starting
1 1

point, §; = D;E * S % D;E is the Laplacian normalized
result of S; and Dy is a diagonal matrix with D4(d}, d;) =
EZilsd(dj»dk)~ If t > L,(r;), the random walker starting

Drug Similarity

/() =
. O g

Network Drug-Disease association Network
Network
O 1 § M
(ot | ( J/ ’
/ ™ i - ~__‘———______ AT
W _ /—7_?-,_q'~‘1_-—__~.-’ L
~ Rl ()

Disease Similarity

and diseases, which are the new indications of drugs

Fig. 1 A heterogeneous network consists of drug similarity network S, € R™*" with n, drugs, disease similarity network Sg € R"4*"¢ with n4
diseases, drug-disease association network W4 € R™*"d between n, drugs and ng diseases. Each circle represents a drug, each hexagon represents
a disease. In the drug (disease) similarity network, the solid edges describe the similarities of drug (disease) pairs. In the drug-disease association
network, the solid edges indicate the known drug-disease associations, and the dashed edges indicate the potential associations between drugs
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from r; will not jump any more. We want to recomment
that unlike traditional random walks and bi-random walks
that adopt the same walk-length for all the nodes, the
walk-length of a node in Eq. (10) is adaptively set based on
its topology relationship with other nodes and is different
from the walk-lengths of other nodes.

Similarly, a random walker can also start from a disease
node and then traverse to drug nodes based on known
drug-disease relationships and drug similarity network. In
this way, we can obtain another probability between the
disease and drug. To simulate this process, we perform
random walk with restart from the disease node (d;) as
follows:

a Y Se(ri rOFS (i di) +
A —a)W,y(r;,dy),if t < |Ly(d))]
F;_l (ri,dj), otherwise

F(ri,dj) = (11)

where F;(r,-,dj) is the predicted relevance between drug
r; and disease d; in the ¢-th iteration, and the same nor-
malization procedure is applied to S, to construct the

1
normalization matrix S, = D, ?%S,%D, *, D, is a diagonal
matrix with D,(r;, r;) = EI»HZ’IS,(ri, 7).

After iteratively applying Eqs. (10-11) with individual
walk-lengths, we can obtain F, and F,;, which separately
reflect the association confidences between #, drugs and
n, diseases from the perspective of the disease similar-
ity network, and from the drug similarity network, along
with the known drug-disease associations. To this end, we
integrate them as follows:

F:Fr+Fd
2

Obviously, the larger the value of F(r;, d;), the larger the
probability that drug r; associated with disease d is. In this
way, we can finally identify new indications for existing
drugs. The whole procedure of DR-IBRW is described in
Algorithm 1.

(12)

Results and discussion

Performance comparison with other methods

DR-IBRW is compared with five related and recent meth-
ods (MBIiRW [12], BLM [7], JI (Jaccard Index) [16], HGBI
[9] and NBI [8]) on the processed dataset. MBiRW, BLM,
HGBI and NBI were introduced in the Introduction, the
last four methods are originally developed for predict-
ing drug-target interactions and can be directly adopted
to predict drug-disease associations. Parameters of these
comparing methods are set (or optimized) as the authors
suggested (or provided) in their respective papers or
codes. As to DR-IBRW, « for random walk restart prob-
ability is set to 0.1. To reach a comprehensive evaluation,
we use six widely used metrics, namely AUROC, AUPR,
Macro-F1, Micro-F1, Precision, Recall. These metrics are
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Algorithm 1: DR-IBRW

Input: Drug set R, disease set D, drug-disease
association matrix W,; and parameter o
Output: predicted drug-disease association matrix F
1 Calculate drug-drug (disease-disease) similarity
matrix S, based on Egs. (1-6);
2 Quantifying individual walk-length L, and L, for
drugs and diseases using Eqs. (7-9);
Wia = Wra/diag(3. Wra(:))), E) = Ej = Wg;
for t = 1 to max L, do
fori=1ton,do
‘ Update Fi(r;,:) using Eq. (10);
end
end
for t = 1 to maxL,; do
10 forj=1ton,; do
1 | Update F,(;, d)) using Eq. (11);
12 end

o NN s W

13 end
14 F=(F,+F;)/2
15 return F

also used by those comparing methods [7-9, 12, 16]. The
formal definitions of these metrics are omitted here, but
interested readers than can find the formal definitions of
these metrics in these references and references therein.
All these methods follow ten fold cross-validation exper-
imental protocol, and then report the average results and
standard deviation in Table 1. In addition, we also plot
the receiver operating characteristic (ROC) curve and
precision recall (PR) curve, and the value of area under
perspective curve in Fig. 2.

We can easily find that DR-IBRW achieves better per-
formance than these comparing methods. Although both
DR-IBRW and MBiRW utilize the drug similarity net-
work, disease similarity network and drug-disease asso-
ciation network to construct a heterogeneous network,
and then apply bi-random walks with restart to account
for the structural difference of this network, DR-IBRW
still performs significantly better than MBiRW. That is
because DR-IBRW takes into account the different con-
tributions of different nodes and applies individual walk-
lengths for them, whereas MBiRW equally treats all nodes
and applies the same walk-length. In addition, DR-IBRW
uses the Gaussian interaction profile kernel similarity to
strengthen the effect of known drug-disease associations.

HGBI also applies random walks with restart on the het-
erogeneous network, but it does not take into account
structural difference between drug similarity network and
disease similarity network. BLM tries to build a separate
classifier for each drug and each drug, but it is still suffered
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Table 1 The results of DR-IBRW and five comparing methods

Methods Micro-F1 Macro-F1 Precision Recall

DR-IBRW 0.39540.002 0.328 + 0.001 0.212+0.000 0.766 + 0.007
MBIRW 0.29440.004 0.245+0.003 0.158+0.001 0.572+0.016
BLM 0413 + 0.006 0.304+£0.002 0.224 £+ 0.003 0.740+£0.002

Jl 0.229+0.001 0.188+£0.001 0.123£0.000 0.427+£0.002
HGBI 0.013+£0.000 0.010+£0.000 0.007£0.000 0.021£0.000
NBI 0.009+0.000 0.007+£0.000 0.004£0.000 0.016£0.000

The entry in boldface represent the method perform best in this evaluation metric

from biased training data, since there are more nega-
tive samples than positive samples (known associations).
In fact, a number of negative samples should be posi-
tive ones. For this reason, BLM has a high Precision and
Recall but with a low AUPR value. JI takes into account
the influence of a node in the bipartite network and uses
common neighbours to predict drug-disease associations.
NBI only utilizes known drug-disease associations to run
a two-step diffusion model on the bipartite graph and
it can not predict new associations for a drug without
known associations. For these reasons, both JT and NBI are
outperformed by DR-IBRW.

Individual walk-length analysis

To study the contribution of our proposed individual
walk-lengths, we also test the performance of DR-IBRW
with fixed walk-lengths for all the nodes by varying walk-
length in the disease network and drug network from 0
to 10, respectively. Fig. 3 reveals the AUROC and AUPR
of DR-IBRW under different combined configurations of
L, and L;. From this figure, we can clearly see that the

AUROC stops increasing when L, and L are larger than
2, and the AUROC and AUPR values with a fixed walk-
length are smaller than those of DR-IBRW with individual
walk-lengths. This comparison further corroborates the
effectiveness and rationality of individual walk-lengths.

Drug and disease similarity analysis

As introduced in Section 5, we measure the composite
inner similarity between diseases and drugs in four steps.
To investigate the impact of these four steps and the con-
tribution of Gaussian interaction kernel profile similarity,
we introduce three variants (DR-IBRW123, DR-IBRW 124,
DR-IBRW134) of DR-IBRW. Particularly, DR-IBRW123
only uses the first three steps (as done by Luo et al. [12]),
or excludes the Gaussian interaction kernel profile sim-
ilarity, to measure the inner similarity between diseases
and between drugs. Similarly, DR-IBRW134 excludes the
second step without shrinking low similarity and enlarg-
ing high similarity. DR-IBRW124 follows the same naming
rule. The AUROC and AUPR values of DR-IBRW and
its variants by ten fold cross-validations are shown in

TPR

DR-IBRW (AUROC=0.961)

03 MBIRW (AUROC=0.933)
o BLM (AUROC=0.865)
: —— JI (AUROC=0.832)
o HGBI (AUROC=0.656)
: NBI (AUROC=0.505)
0 ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

FPR

Fig. 2 The ROC and PR curves of DR-IBRW and comparison algorithms. AUROC and AUPR are the values of area under the ROC and PR curve,

respectively

0.9 DR-IBRW (AUPR=0.341)
’ X MBIRW (AUPR=0.100)

08 \L BLM (AUPR=0.243)
1 —— JI (AUPR=0.119)

07l | HGBI (AUPR=0.0003)
: NBI (AUPR=0.00001)
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0.964

AUROC

0.35

Fig. 3 The AUROC and AUPR values of DR-IBRW with different fixed walk-lengths. The blue star is the value of DR-IBRW with individual walk-lengths

Fig. 4. Obviously, the AUROC and AUPR values of DR-
IBRW123 are lower than those of other methods, which
show the contribution of Gaussian interaction profile ker-
nel similarity for drug repositioning. Another interesting
observation is that DR-IBRW134 has a higher AUPR value
than other variants and DR-IBRW. The cause is that AUPR
and AUROC measure the performance from different
perspectives and under varying thresholds. The second
step may wrongly shrink low similarity and enlarge high
similarity, and thus compromise the performance.

Experiments on another two datasets

We collected another two datasets to further study the
performance of DR-IBRW. The first dataset (named ‘Got-
tlieb’s Dataset’), was obtained from [11]. This dataset con-
tains 1933 known drug-disease associations involving 593
drugs registered in DrugBank and 313 diseases listed in
the Online Mendelian Inheritance in Man (OMIM). The
another dataset (‘Luo’s Dataset’) is obtained from [12], it
includes 663 drugs registered in DrugBank, 409 diseases
listed in OMIM database and 2352 known drug-disease

0.97 T T T T

0.96

0951

0.941

AUROC

0.93|

092

0.911

DR-IBRW DR-IBRW123 DR-IBRW124 DR-IBRW134
Fig. 4 The AUROC and AUPR values of DR-IBRW and its variants

0.05¢

DR-IBRW DR-IBRW123 DR-IBRW124 DR-IBRW134
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associations. Table 2 reports the results of 10 fold cross-
validation of DR-IBRW and comparing methods on these
two datasets. The experimental setups are kept the same
as in previous experiments. From these tables, we can
also find that DR-IBRW again obtains much better per-
formance than these comparing methods across different
evaluation metrics.

Case study

To further demonstrate that the drug-disease associations
predicted by DR-IBRW can be confirmed by biological
experiments, we apply DR-IBRW to prioritize potential
drug-disease pairs. Here, we use all the collected drug-
disease associations as training samples, and then select
the top 10 drug-disease pairs with the largest association
probabilities as the predicted drug-disease associations.
After that, we manually check these associations by refer-
ring to the associations stored in Comparative Toxicoge-
nomics Database(CTD) [31]. Particularly, we use the data
of chemical-disease associations labeled with therapeutic
downloaded from CTD. The label therapeutic represents
a chemical that has a known or potential therapeutic role
in a disease. For the predicted associations cannot find in
the CTD, we further manually check them on PubMed
and list the supportive PubMed IDs. We highlight the
drug-disease associations supported by recent papers in
PubMed but not included in CTD in boldface. The cur-
rently supported and un-supported associations are listed
in Table 3.

From Table 3, 6 out of top 10 predicted associations are
supported by associations in CTD, the other two drug-
disease pairs are supported by recent papers in PubMed
but not included in CTD. For instance, Labetalol is an
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effective agent in essential hypertension as documented
in open studies and controlled studies [32]. For another
instance, Greminger et al. confirmed the high efficacy of
captopril in treatment of severe hypertension refractory
to conventional drugs [33]. Meanwhile, ranolazine ther-
apy is safe and well tolerated in a pilot study involving
pulmonary arterial hypertension [34]. Although we can
not find the direct evidence for the associations of fluran-
drenolide and scalp dermatoses, flurandrenolide topical
is used to treat the itching, redness, dryness, crusting,
scaling, inflammation, and discomfort of various skin con-
ditions [35].

These predicted results confirm the capability of DR-
IBRW in identifying novel drug-disease associations with
high confidence. We want to remark that the 2 unsup-
ported associations should not be viewed as incorrect
associations. As more experimental evidence becomes
available, they maybe further supported.

We also report the top 10 repositioned examples made
by other comparing methods, and then manually check
these examples by referring to the associations stored in
CTD. We further check the associations that cannot find
in the CTD on PubMed and list the supportive PubMed
IDs. We highlight the drug-disease associations supported
by recent papers in PubMed but not included in CTD in
boldface. Tables 4, 5, 6, 7 and 8 list the currently sup-
ported and un-supported associations for MBiRW, BLM,
JI, HGBI and NBI, respectively.

From Table 4, 5 out of top 10 predicted associations are
supported by associations in CTD, the other two drug-
disease pairs are supported by recent papers in PubMed
but not include in CTD. From Table 5, we can clearly see
that 1 out of top 10 predicted associations is supported

Table 2 The performance results of DR-IBRW and comparing methods on Gottlieb’s dataset [11] and Luo’s dataset [12]

AUROC AUPR Micro-F1 Macro-F1 Precision Recall
Gottlieb's dataset
DR-IBRW 0.955 + 0.000 0499 +0.174 0613 + 0.006 0513 + 0.005 0332 +0.002 0.880+£0.000
MBIRW 0.933+0.000 0.213+0.028 0.294+0.004 0.244+£0.003 0.256+0.001 0.906 + 0.000
BLM 0.865£0.000 0.298+0.003 0.583+0.001 0.479+£0.001 0.315£0.000 0.891£0.000
Jl 0.845+0.001 0.247+£0.043 0.385+0.003 0462+0.004 0.250+0.001 0.894+£0.181
HGBI 0.811£0.000 0.016+0.000 0.187+0.001 0.157+0.001 0.101£0.000 0.367+0.007
NBI 0.503+0.000 0.00040.000 0.022+0.000 0.018+0.000 0.012+0.000 0.03940.001
Luo's dataset
DR-IBRW 0.964 + 0.000 0529 +0.167 0537 + 0.006 0.452+0.004 0.294 + 0.002 0.895 + 0.002
MBiRW 0.945£0.000 0.285+0.042 0.431£0.004 0.363+0.003 0.236+0.001 0.835+£0.013
BLM 0.892+0.000 0.424+0.017 0.527+0.003 0463 + 0.004 0.278+0.001 0.843+0.000
Jl 0.865£0.000 0.287+£0.041 0.537£0.004 0.447+0.003 0.294+£0.001 0.783+£0.000
HGBI 0.848+0.000 0.037+£0.001 0.170+£0.001 0.141£0.001 0.093+£0.000 0.318+0.005
NBI 0.479+0.000 0.00040.000 0.020+0.000 0.016+0.000 0.011£0.000 0.03240.000

The entry in boldface represent the method perform best in this evaluation metric
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Table 3 DR-IBRW predicted drug-disease associations (top 10 in ranking list), and the corresponding evidence

Drug Disease Evidence (PMID) Rank
Labetalol Hypertension 6124264; 25692529 1
Irbesartan Heart Failure 19001508 2
Enalapril Hypertension 2994986 3
Flurandrenolide Scalp Dermatoses without evidence 4
Hydralazine Hypertension 20687078; 22071816 5
Fenoldopam Hypertension 8105829 6
Captopril Hypertension 6754186; 3520132; 1747216; 23161035 7
Erythrityl Tetranitrate Hypertension without evidence 8
Nitroprusside Hypertension 21272230; 9796241 9
Ranolazine Hypertension 24464752; 26401256 10
The entries in boldface represent the drug-disease associations supported by recent papers in PubMed but not included in CTD

Table 4 MBIRW predicted drug-disease associations (top 10 in ranking list), and the corresponding evidence.

Drug Disease Evidence (PMID) Rank
Echothiophate Esotropia 13907355; 7166393 1
Cysteamine Cystinosis 22532830;23651769 2
Ethanol Complex Regional Pain Syndromes without evidence 3
Ethanol Warts 9557098 4
Foscarnet Herpes Genitalis without evidence 5
Ribavirin Respiratory Syncytial Virus Infections 11781627 6
Foscarnet Cytomegalovirus Infecti 11362300;11050094;10795660 7
Nitisinone Tyrosinemias 11488774 8
Hydroxocobalamin Alcoholic Neuropathy without evidence 9
Methimazole Goiter 14723259 10
The entries in boldface represent the drug-disease associations supported by recent papers in PubMed but not included in CTD

Table 5 BLM predicted drug-disease associations (top 10 in ranking list), and the corresponding evidence

Drug Disease Evidence (PMID) Rank
Cefixime Streptococcal Infections 2041146 1
Cefdinir Urinary Tract Infections 20573040 2
Ceftibuten Soft Tissue Infections without evidence 3
Ceftibuten Klebsiella Infections 25813819 4
Ceftibuten Urinary Tract Infections 11605809;2391749 5
Cefdinir Soft Tissue Infections 15313534;16765555 6
Cefditoren Urinary Tract Infections 20542206;8455334 7
Cefditoren Escherichia coli Infections without evidence 8
Cefprozil Urinary Tract Infections 26391612 9
Aztreonam Soft Tissue Infections without evidence 10

The entries in boldface represent the drug-disease associations supported by recent papers in PubMed but not included in CTD
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Table 6 JI predicted drug-disease associations (top 10 in ranking list), and the corresponding evidence
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Drug Disease Evidence (PMID) Rank
Alprostadil Tetralogy of Fallot 3543871 1
Alprostadil Tricuspid Atresia without evidence 2
Alprostadil Hypoplastic Left Heart Syndrome without evidence 3
Cefepime Escherichia coli Infections 26815433 4
Cefepime Urinary Tract Infections 26243291;1804010 5
Atorvastatin Hypercholesterolemia 24593216;20946910;20135644 6
Cefotaxime Escherichia coli Infections without evidence 7
Clofibrate Hypercholesterolemi 1175893;7080553;7157849 8
Fenofibrate Hypercholesterolemi 2492189;24593216;2045526 9
Levofloxacin Escherichia coli Infections without evidence 10
The entries in boldface represent the drug-disease associations supported by recent papers in PubMed but not included in CTD

Table 7 HGBI predicted drug-disease associations (top 10 in ranking list), and the corresponding evidence

Drug Disease Evidence (PMID) Rank
Lithium Conduct Disorder 7491395;7691178;7751258 1
Lithium Depressive Disorder 27752079:2723135:21252007 2
Ertapenem Pyelonephritis 22563210 3
Moxifloxacin Pyelonephritis without evidence 4
Gatifloxacin Pyelonephritis 11911553;15037328 5
Methotrexate Psoriasis 20178709;19626273;19323665 6
Levofloxacin Pyelonephritis without evidence 7
Cefamandole Staphylococcal Infections 9419181 8
Cefprozil Staphylococcal Infections without evidence 9
Vinblastine Kidney Neoplasms 8602639;11194540 10
The entries in boldface represent the drug-disease associations supported by recent papers in PubMed but not included in CTD

Table 8 NBI predicted drug-disease associations (top 10 in ranking list), and the corresponding evidence

Drug Disease Evidence (PMID) Rank
Flurandrenolide Facial Dermatoses without evidence 1
Levofloxacin Urinary Tract Infections 25931244 2
Cefoperazone Escherichia coli Infections without evidence 3
Flurandrenolide Scalp Dermatoses without evidence 4
Ceftazidime Proteus Infections without evidence 5
Ceftizoxime Escherichia coli Infections 24755996 6
Moxifloxacin Streptococcal Infections 19188393;18818055;17562794 7
Cefpodoxime Escherichia coli Infections 23537823 8
Ofloxacin Streptococcal Infections 19856068 9
Ampicillin Streptococcal Infections 2306432 10

The entries in boldface represent the drug-disease associations supported by recent papers in PubMed but not included in CTD
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by CTD and the other six associations are supported by
recent papers in PubMed. From Table 6, JI totally finds
6 drug-disease pairs with evidence among the top 10
predicted associations. From Table 7, 5 out of top 10 pre-
dicted associations are supported by associations in CTD,
the other two drug-disease pairs are supported by recent
papers in PubMed but not include in CTD. From Table 8,
NBI can find 6 associations with evidence. In summary,
DR-IBRW can make more confident drug-disease reposi-
tioning than these comparing methods.

Quantified individual walk length is reasonable

The drug-disease association prediction task is frequently
modeled as a link prediction problem in a heterogeneous
graph [36-38]. The link prediction relies on calculat-
ing the similarity between nodes. The number of paths
between nodes and walk lengths are regarded as effec-
tive similarity metrics in the social network and biological
network [36, 39, 40]. The similarities between drugs and
diseases can be measured based on the number of walks
that connect drug nodes and disease nodes in the net-
work. Integrating the number of walks and their lengths
can more comprehensively quantify the potential associ-
ation probability of the drug-disease pair. In addition, the
contribution of different nodes in the heterogeneous net-
work is different. In other words, the information carried
by each node in the heterogeneous work is imbalanced.
Therefore, it is an issue to adopt a fixed walk-length for all
nodes in link prediction.

In order to answer why the choice of quantified indi-
vidual walk length is reasonable, we calculate the shortest
path for each drug and disease node, and measure the dif-
ference between shortest path and quantified individual
walk length. We use the matrix SP(r;, d;) to represent the
shortest path from the i — th drug to j — th disease, SP €
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ROw+72)x (0 +1a) To calculate SP, we firstly construct an
adjacency matrix W:

_ |:Wrr Wrd :|
War Wi

where W, € R"*" contains the shortest path between
each two drug nodes, W, ; € R"4*" contains the short-
est path between each two disease nodes. W,; is the
drug-disease association matrix and W, is the transpose
of W,4. Then, we adopt the Dijkstra algorithm to com-
pute the shortest path between two nodes in matrix W.
P, = (rp1,1p2,...,1Dis ..., py,) Where rp; represents the
longest path in the shortest path between i-th drug and all
the diseases. Py = (dp1,dpa, ..., dpj, ..., dpn,) where dp;
represents the longest path in the shortest path between j-
th disease and all the drugs. In other words, rp; is the max-
imum shortest path for drug i, which can include nearly
all the path information with diseases. dp; is the maxi-
mum shortest path for disease j and it can approximately
represent the path between disease j and all the drugs. L,
and L store the quantified individual walk-lengths of #,
drugs and n, diseases. After that, we calculate the mar-
gin between P, and L, for drugs, and that between P; and
L, for diseases. The statistical results are shown in Fig. 5.
We can find that nearly 60% nodes’ differences are no
larger than one. It can explain that the quantified individ-
ual walk lengths of most nodes are inline with the shortest
path between the respective nodes. However, the maxi-
mum shortest path can only partially represent the path
information from a drug node to a disease node. L, can
give more emphasize on shorter path between diseases
and drugs than maximum shortest path, and it gener-
ally has a smaller value than P,. It is recognized that the
shorter the distance between two nodes, the larger the

500

400

w
o
o

drug node number
N
o
o

100

0-1 2-5
difference value

6-10 >10

350

300

250

200

150

100

disease node number

50

0-1 2-5
difference value
Fig. 5 The margin between P, and L, for drugs (Left), and the margin between P4 and Ly for diseases (Right)

6-10 >10




Wang et al. BMIC Bioinformatics 2019, 20(Suppl 15):547

Page 12 0of 13

Average shortest path

2508607108402

Drug pair similarity bins

A0

A ! 3,04, o
009105503508, 0

Average shortest path
'S
T

A 3, 0k 6. 07..08,09
0-09A-0%80-035.08,02¢.08¢ 001084 024

Disease pair similarity bins

A0

Fig. 6 The average shortest path in different drug similarity subranges (Left), and in different disease similarity subranges (Right)

similarity between them is. For these reasons, our random
walk with individual walk achieves more prominent per-
formance than random walk fixed walk length (as shown
in Fig. 3)

We also perform the correlation analysis on drug sim-
ilarity matrix S, and drug shortest path matrix W,,. We
firstly partition S, into ten subranges ((0, 0.1], (0.1, 0.2],
etc.) and then partition W, into ten subranges to ensure
that all the drug pairs in each subrange of S, falling into
the corresponding subrange of W,,. Next, we calculate
the average shortest path of each subrange for W,,, and
compute the correlation of average shortest paths and
drug similarities between W,, and S, in each subrange.
Similarly, we conduct the correlation analysis on disease
similarity S; and disease shortest path matrix W, in the
same way and report the results in Fig. 6. We can clearly
observe that the average shortest paths between drug pairs
or disease pairs decrease as the increases of their similar-
ities. This observation also differentiates the contribution
of different walk lengths based on the assumption that
nodes with shorter walk lengths contribute more to the
similarity between two nodes.

Conclusion

In this paper, we proposed a computational drug reposi-
tioning approach that encodes the drug chemical struc-
ture information, disease symptom information and
known drug-disease interactions information into a het-
erogeneous network. Our approach accounts for struc-
tural difference of subnetworks of the heterogeneous
network by bi-random walk, and for the contribution

differences of different nodes via specifying quanti-
fied individual walk-lengths to them. Experimental study
demonstrates that our approach performs better than
other related competitive methods and the individual walk
lengths contribute to an improved performance. We want
to remark that our proposed approach can be easily gener-
alized to predict links between nodes of a heterogeneous
network.
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