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Abstract

Background: Lung cancer is one of the most malignant tumors, causing over 1,000,000 deaths each year
worldwide. Deep learning has brought success in many domains in recent years. DNA methylation, an epigenetic
factor, is used for model training in many studies. There is an opportunity for deep learning methods to analyze the
lung cancer epigenetic data to determine their subtypes for appropriate treatment.

Results: Here, we employ variational autoencoders (VAEs), an unsupervised deep learning framework, on 450K DNA
methylation data of TCGA-LUAD and TCGA-LUSC to learn latent representations of the DNA methylation landscape.
We extract a biologically relevant latent space of LUAD and LUSC samples. It is showed that the bivariate classifiers on
the further compressed latent features could classify the subtypes accurately. Through clustering of
methylation-based latent space features, we demonstrate that the VAEs can capture differential methylation patterns
about subtypes of lung cancer.

Conclusions: VAEs can distinguish the original subtypes from manually mixed methylation data frame with the
encoded features of latent space. Further applications about VAEs should focus on fine-grained subtypes
identification for precision medicine.
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Background
Lung cancer is one of the most malignant tumors with
the fastest growth in morbidity and mortality, causing
over 1,000,000 deaths each year. There are two common
histological subtypes of lung cancer, lung adenocarci-
noma (LUAD) and lung squamous cell carcinoma (LUSC).
In order to understand the heterogeneity of lung can-
cer, many researchers have done a lot of work based
on immune-response genes, DNA mutations and DNA
methylation [1–4]. As a well-defined epigenetic factor,
DNA methylation plays an important role in pathways
as well as regulation of gene expression, so it can be
used for monitoring of cancer diagnosis, development and
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treatment. However, with lung cancer rates progressively
increasing, more efficient methods are needed for preci-
sion medicine finding ways to target subtypes for effective
treatment.

In recent years, deep learning has been performed
and achieved state-of-art performances in many domains,
including speech, image classification, text and natu-
ral language processing, but has seen slow adoption
for in bioinformatics[5]. Nevertheless, several studies
have revealed interesting results by training deep models
to diagnose melanoma based on image classification
or to predict impact of non-coding variants [6, 7].
However, extracting specific biological features remains
challenging.

Variational autoencoders (VAEs), which are unsuper-
vised deep learning approaches, have become more and
more popular in the research area. Interestingly, through
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feature compression and nonlinear activation functions,
the VAEs can capture an underlying data manifold from
input data [8]. Compared to traditional autoencoders,
the VAEs are stochastic and learn to interpret the dis-
tribution of features over samples while the former are
deterministic discriminative models and trained by mini-
mizing the empirical reconstruction error [9]. There have
been some successful efforts to apply VAEs to biologi-
cal datasets. For instance, Way and Greene used RNA-seq
data from TCGA as input to a VAE and obtained RNA-
seq expression patterns in specific cancer-types [9]. Titus
et al. learned a meaningful representation of the mea-
sured methylome for different subtypes of breast cancer
by employing a VAE on 450K DNA methylation data [10].

Here, we use a VAE model in the study of lung can-
cer - including two subtypes: LUAD and LUSC - epi-
genetic data. Although the samples of lung cancer from
TCGA are labelled, we chose unsupervised learning here
instead of supervised learning to verify whether the recon-
structed features by VAEs can represent the original data
labels. We demonstrate that the encoded 100-dimensional
latent space holds meaningful information of the origi-
nal methylome. It is showed that the features of latent
space represents the patterns of LUAD and LUSC epige-
netics and the VAE model may be available for analysing
DNA methylation data to extract features associated with
subtypes.

Results
In order to verify the feasibility of VAEs to extract a
biologically meaningful latent space from DNA methyla-
tion data, we employed a VAE model on the top 300,000
probes that were chosen by median absolute deviation

(MAD) of methylation beta values across 917 samples
containing LUAD and LUSC subtypes. The 300,000 fea-
tures were encoded to an intermediate layer with 100
dimensions which were then encoded back to 300,000
dimensions by a non-linear combination. For an insight
into the 100 dimensions space, t-Distributed Stochastic
Neighbor Embedding (t-SNE) [11] method was performed
to reduce the dimensionality to 2. Then the 2D features
were used to train logistic regression classifiers over the
merged data frame.

Latent features of the VAE model
It took about 2 hours to complete the model training on
a server (Ubuntu 16.04.6) with 1T memory and no GPUs.
The process of model training is shown in Fig. 1, where
the validation loss drops rapidly after 10 epochs and then
remains at a low level. The activation sum of most fea-
tures in the latent space is high which indicates that the
model is not zeroing out features (Fig. 2). Figure 3 shows
the results of unsupervised hierarchical clustering with
the 100-dimensional features of the latent space on the
merged data frame. It can be seen that all samples are
roughly grouped into four classes which are consistent
with their original labels. We thought that the underly-
ing DNA methylation patterns of different classes could
be captured by the 100-dimensional features of the latent
space. However, some LUSC-01 samples were classified
into the LUAD-01 group, which indicated that a small
fraction of LUSC tumor samples may have similar DNA
methylation expression with the LUAD tumor. The dis-
tance between the two normal classes (LUAD-11 and
LUSC-11, which gather in the middle part in Fig. 3) is
smaller than that between the two tumor classes.

Fig. 1 The process of the model training.The training loss is indicated by the blue line while the validation loss is indicated by the orange line during
model training. The two loss values approach the same level after about 30 epochs
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Fig. 2 The histogram for the 100-dimensional features of the latent space. Most of the latent features are activated with sum >500

Fig. 3 The heatmap of clustering results with the 100-dimensional latent features on 919 samples. Rows represent samples, which are annotated
with “Detail” and “Label” color bars. For the “Label” bar, 01 or 02 represents tumor samples and 11 represents normal samples. Columns represent
the latent features
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Dimensionality reduction
In order to further investigate the relative information of
the latent features, a well-known feature compress and
visualization method, the t-SNE, was performed on the
100-dimensional features of the latent space resulting in
2D features.

A scatter for the 2D features was plotted which showed
an obvious distribution with four main classes showing
separation (Fig. 4). The distance among the four classes
was captured significantly, revealing the underlying dif-
ferent DNA methylation patterns. It should be noted
that several samples failed to fall in the expected area
(for example, 3 LUAD-01 samples mixed into the area
of LUSC-01 samples) suggesting that a small fraction of
LUAD samples possess similar DNA methylation pat-
tern with that of LUSC, and vice versa. This analysis is
consistent with the result of Fig. 3.

Results of unsupervised hierarchical clustering with the
2D t-SNE features on the merged data frame are shown
in Fig. 5, which are in accordance with Fig. 3. How-
ever, two normal classes gathered in the lower portion
of Fig. 5, which demonstrated that the distance among
the original four labelled subtypes was recalculated after
dimensionality reduction.

Classification with the t-SNE features
To test the utility of the compressed 2D features, logis-
tic regression classifiers were performed on the merged
data frame with “1 vs The Rest” analyses by sklearn mod-
ule [12]. A half of the samples were used to train the

logistic regression model and the others were used to val-
idate the performance of the model. The performance of
classifiers are shown in Table 1. Classification precisions
were obtained for four subtypes, equal to 0.92, 0.99, 0.75
and 1.00 respectively for LUAD-01, LUSC-01, LUAD-11
and LUSC-11 samples. There are two reasons leading to
the lower precision for classifier of LUAD-11: i) the DNA
methylation pattern of a small fraction of LUAD-01 sam-
ples overlapped with that of LUAD-11 (as shown in Fig. 4),
and ii) the number of tested normal samples was small.
The ROC curves of the four classifiers are shown in Fig. 6.
The AUCs of four classifiers are all close to 1, and AUCs
of micro-average and macro-average ROC curve are also
high, suggesting that the classifiers consisting of the 2D
t-SNE features can effectively classify the four clusters.

Discussion
We transfer the application of Tybalt, which was devel-
oped to learn a latent space on pan-cancer RNA-seq data
by Way and Greene, on epigenetic data from lung can-
cer to extract a meaningful relevant space. The above
analyses show that epigenetic data of lung cancer is suit-
able for unsupervised deep learning to mine its subtypes.
Moreover, it shows that the VAE model could extract
a biologically relevant space and the meaningful infor-
mation still can be captured by the further compressed
features after dimensionality reduction with the t-SNE
method.

The successful applications of deep learning on many
domains give us a clue that it should be used for precision

Fig. 4 The scatter of 919 samples with the 2D t-SNE features. The x-axis represents the t-SNE feature 1, and the y-axis represents the t-SNE feature 2.
Each point with a color represents a sample of the corresponding subtype, as the legend shows
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Fig. 5 The heatmap of clustering results with the 2D compressed features on 919 samples associated with their original labels. Rows represent
samples, which are annotated with the “detail” bar. Columns represent the 2D t-SNE features

medicine for more effective treatments in the context of
cancer rates and cancer-related mortality fast increasing.

With the data of TCGA released publicly, large-scale
dataset and pan-cancer analyses can be achieved by deep
learning methods. In the future work, pan-cancer 450K
DNA methylation data can be trained by the VAEs to get a
latent representative space relevant to large-scale datasets

Table 1 Performance table of the logistic regression
classification on test dataset based on 2D t-SNE features

#Samples Recall F1-score Precision

LUAD-01 239 0.99 0.96 0.92

LUSC-01 183 0.96 0.97 0.99

LUAD-11 15 0.20 0.32 0.75

LUSC-11 22 1.00 1.00 1.00

micro average 459 0.95 0.95 0.95

macro average 459 0.79 0.81 0.92

from multiple tumors. To better understand the tumors,
further analyses and multi-omic data should be involved,
for example, fine-grained subtypes of a specific tumor
should be identified, and gene ontology (GO) enrich-
ment analyses can be run on CpGs with high weights,
and non-coding RNA data can be added into input
[13, 13–18].

Conclusions
In this work, we demonstrate that the epigenetic data
of lung cancer samples is capable of unsupervised deep
learning with VAEs. A biologically meaningful latent
space can be extracted by the VAE model from the man-
ually merged dataset, which represents the distribution
about different subtypes of samples credibly. By com-
paring the results of unsupervised hierarchical clustering
with the original labels of samples, VAEs can capture
the different methylation expression patterns for various
subtypes.



Wang and Wang BMC Bioinformatics 2019, 20(Suppl 18):568 Page 6 of 7

Fig. 6 ROC curves of the four bivariate classifiers on test data. As the legend shows, the ROC curve for classifier of LUSC-01 is indicated by the blue
line, and so on

Methods
Data
All level-3 plain files of Illumina HumanMethylation450
(450K) DNA methylation data for LUAD and LUSC sam-
ples were downloaded from the The Cancer Genome
Atlas (TCGA) project (https://portal.gdc.cancer.gov/)
through the GDC data transfer tool.

TCGA-LUAD dataset contains 507 LUAD samples. It
consists of 32 tumor-adjacent normal samples (short for
LUAD-11) and 475 tumor samples. For tumor samples,
there are 473 primary solid tumor samples (short for
LUAD-01) and 2 recurrent solid tumor samples (short for
LUAD-02).

TCGA-LUSC dataset contains 412 LUSC samples. It
consists of 42 tumor-adjacent normal samples (short for
LUSC-11) and 370 solid tumor samples (short for LUSC-
01).

Table 2 shows the summary of the two datasets. All
the 919 files were merged into one big data frame with
Pandas [19] and Numpy [20] modules in Python lan-
guage. In filtering steps, we removed the probes that were
SNP-associated and sex-specific and contained any NA

Table 2 Summary of 450K DNA methylation datasets for
TCGA-LUAD and TCGA-LUSC

Subtype LUAD LUSC

Tissue Tumor Normal Tumor Normal

n 473 2 32 370 42

Code LUAD-01 LUAD-02 LUAD-11 LUSC-01 LUSC-11

beta-value, resulting in a data frame with a dimension of
356,464 * 919.

Model summary
We extend Tybalt [9], a VAE model, to extract a biological
relevant space for lung cancer epigenetic data in this work.
The original Tybalt was developed for extract a relevant
latent space from cancer transcriptomes of 10,459 tumors.
The original model consisted of an encoder and a decoder
where 5,000 input selected genes were encoded to 100
latent features and reconstructed back to the 5,000 genes.
Way et al. chose Keras (version 2.2.2) [21] to build the
model with a TensorFlow backend (version 1.5.0) [22] and
trained it with an Adam optimizer, included batch nor-
malization in the encoder and sigmoid activation in the
decoder. In our work, the dimension of the input data was
300,000 * 919 of which the 300,000 CpGs were selected by
median absolute deviation (MAD) over our merged data
frame. We selected the parameters in Tybalt with the fol-
lowing values: 50 for batch size, 0.0005 for learning rate, 1
for κ , 90/10 for training/validation ratio. We changed the
epochs from 50 to 100, expecting better training.

Latent features
The latent space consisted of 100 features compressed
from 300,000 CpGs. First, the 100-dimensional latent fea-
tures were evaluated whether they may represent the
different methylation patterns for LUAD/LUSC subtypes.
So, we performed unsupervised hierarchical clustering on
the merged data frame with the 100-dimensional latent
features then compared the clustering results with the
original labels of each sample.

https://portal.gdc.cancer.gov/
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Dimensionality reduction
For a more intuitive representation, we performed
dimensionality reduction on the 100-dimensional latent
features. The t-SNE method converts the Euclidean
distance to probability distribution using Gaussian
distribution making it suitable for feature compres-
sion and visualization [11]. We performed the t-SNE
method on the 100-dimensional latent features result-
ing in a 2D features. Then we performed the unsu-
pervised hierarchical clustering once more on our
merged data frame with the 2D features and compared
the clustering results with the original labels of each
sample.

Classification with the 2D t-SNE features
In order to test the utility of the 2D t-SNE features, “1 vs
The Rest” logistic regression classifiers were trained with
the 2D features from t-SNE analyses. Specially, to sim-
plify the model training, the labels of the only 2 LUAD-02
samples were converted to “LUAD-01”. So, four bivariate
classifiers (respectively for LUAD-01, LUSC-01, LUAD-11
and LUSC-11) were developed to classify samples using
the 2D features. The merged data frame was randomly
split into 50/50 using Pandas module for training/testing
sets where 50% of the samples from each subtype were
included.
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