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Abstract

Background: During procedures for conducting multiple sequence alignment, that is so essential to use the
substitution score of pairwise alignment. To compute adaptive scores for alignment, researchers usually use Hidden
Markov Model or probabilistic consistency methods such as partition function. Recent studies show that optimizing
the parameters for hidden Markov model, as well as integrating hidden Markov model with partition function can
raise the accuracy of alignment. The combination of partition function and optimized HMM, which could further
improve the alignment’s accuracy, however, was ignored by these researches.

Results: A novel algorithm for MSA called ProbPFP is presented in this paper. It intergrate optimized HMM by particle
swarm with partition function. The algorithm of PSO was applied to optimize HMM’s parameters. After that, the
posterior probability obtained by the HMM was combined with the one obtained by partition function, and thus to
calculate an integrated substitution score for alignment. In order to evaluate the effectiveness of ProbPFP, we
compared it with 13 outstanding or classic MSA methods. The results demonstrate that the alignments obtained by
ProbPFP got the maximum mean TC scores and mean SP scores on these two benchmark datasets: SABmark and
OXBench, and it got the second highest mean TC scores and mean SP scores on the benchmark dataset BAliBASE.
ProbPFP is also compared with 4 other outstanding methods, by reconstructing the phylogenetic trees for six protein
families extracted from the database TreeFam, based on the alignments obtained by these 5 methods. The result
indicates that the reference trees are closer to the phylogenetic trees reconstructed from the alignments obtained by
ProbPFP than the other methods.

Conclusions: We propose a new multiple sequence alignment method combining optimized HMM and partition
function in this paper. The performance validates this method could make a great improvement of the alignment’s
accuracy.
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Background
In bioinformatics, multiple sequence alignment is a foun-
dermental conception. It aim to align more than two
biomolecular sequences and applied for various biolog-
ical analysis tasks, for example, protein structure pre-
diction and phylogenetic inference [1]. Using MSA to
find sequence differences can assist in the construction
and annotation of biological ontologies, for example, the
largest ontology in the world, Gene Ontology [2], on
which researchers conduct a lot of works [3–7]. For the
purpose of extracting and sharing knowledge of alignment,
researchers established some ontologies based on multi-
ple sequence alignment [8]. In addition, multiple sequence
alignment could help to call SNP and thus to find disease-
related gene variants [9–13].

There are many types of methods for multiple sequence
alignment, and most of them are progressive [1]. Using
a progressive method to align a set of sequences, first
of all, for each paired sequence, we need to do pairwise
alignment, then to compute the distance of the pair. A dis-
tance matrix was constituted from the distances of every
pair. Subsequently, a guide tree was generated on the basis
of the distance matrix. As the last step, on the ground
of the provided order, which offered by the guide tree,
profile-profile alignment was executed progressively.

For two sequences, the pairwise alignment task simply
applies dynamic programming. And the scoring function
for dynamic programming is usually based on a substi-
tution matrix, for example, BLOSUM62 and PAM250 for
protein sequences. In the multiple sequence alignment
problems, when we need to align given sequences x and y,
also the algorithms apply dynamic program, however the
scoring function is not simply based on certain substitu-
tion matrix any more, since if residue xi should be aligned
with residue yj is not just concerned about sequences
x and y but also concerned about others. Numerous
algorithms utilize the posterior probability P(xi ∼ yj|x, y)
to compute the substitution scores. P(xi ∼ yj|x, y) repre-
sent the probability that residue on position xi in sequence
x and residue on position yj in sequence y are matched in
the “true” multiple sequence alignment [14].

For the sake of calculating the posterior probability, a
large number of approaches are practiced by different
algorithms. Among those considerable amount of pro-
gressive alignment algorithms, most of them apply Hidden
Markov Model to calculate the posterior probability, for
example, ProbCons [15]. But in the meantime, some algo-
rithms apply other probability consistency approaches,
for instance, partition function, which was applied by
Probalign [16] to calculate the posterior probability.

Howell et al. [17] and McCaskill et al. [18] use parti-
tion function to predict RNA secondary structure. Song
et al. [19] use partition function to align RNA pseudoknot
structures. Using partition function to do alignment was

pioneered by Miyazawa [20]. Wolfsheimer et al. [21] stud-
ied the parameters partition function for the alignment.
MSARC use a residue clustering method based on par-
tition function to align multiple sequence [22]. Retzlaff
et al. [23] use partition function as a part of calculation for
partially local multi-way alignments. Partition function is
a useful model for alignment.

Some algorithms apply integrated approaches, for
instance, MSAProbs [24] and QuickProbs [25] calculate
the posterior probability according to the combination
of HMM and partition function, while for GLProbs [26],
based on the mean of sequences’ identity in a set, the pos-
terior probability was calculated adaptively. These papers
indicated that, a preferable result will be produced by
combining two or more types of posterior probability,
while the one using a single type will produce worse result.

For the purpose of optimizing the parameters of HMM
in MSA problem, many kinds of optimization algorithms
are employed by various algorithms, such as Particle
Swarm Optimization [27–30], Evolutionary Algorithms
[31] and Simulated Annealing [32], to make the align-
ment’s accuracy improved.

Won et al. [33] use an evolutionary method to learn
the HMM structure for prediction of protein secondary
structure. Rasmussen et al. [27] use a particle swarm
optimization—evolutionary algorithm hybrid method to
train the hidden Markov model for multiple sequence
alignment. Long et al. [28] and Sun et al. [29] use
quantum-behaved particle swarm optimization method to
train the HMM for MSA. And Sun et al. [30] also use
an random drift particle swarm optimization methods to
train the HMM for MSA.

Nevertheless, combination of the partition function and
the optimized HMM was ignored by these studies. So, a
novel algorithm for MSA called ProbPFP is presented in
this paper. ProbPFP integrates the posterior probabilities
yield by particle swarm optimized HMM and those yield
by partition function.

We compared ProbPFP with 13 outstanding or clas-
sic approaches, that is, Probalign [16], ProbCons [15],
DIALIGN [34], Clustal� [35], PicXAA [36], KALIGN2
[37], COBALT [38], CONTRAlign [39], Align-m [40],
MUSCLE [41], MAFFT [42], T-Coffee [43], and ClustalW
[44], according to the total column score and sum-of-pairs
score. The results indicated that ProbPFP got the max-
imum mean scores among the two benchmark datasets
SABmark [40] and OXBench [45], along with the second
highest mean score on the dataset BAliBASE [46].

Methods
Maximal expected accuracy alignment and posterior
probability
A lot of multiple alignment methods construct alignment
with maximum expected accuracy. A dynamic program
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need to be executed to determine the expected accuracy.
The substitution score for the dynamic programming is
set as the posterior probability when two correspond-
ing positions in each sequence are aligned. The posterior
probability was denoted as Px,y(xi ∼ yj) = P(xi ∼
yj|x, y), then the dynamic programming will be executed
according to the following formula.

A(i, j) = max

⎧
⎨

⎩

A(i − 1, j − 1) + Px,y(xi ∼ yj)
A(i − 1, j)
A(i, j − 1)

(1)

For two sequences x and y, the maximal expected
accuracy alignment will be generated when the dynamic
programming finished. The alignment will get a corre-
sponding maximum global score GS(x, y) = A(|x|, |y|).
Posterior probability calculating by partition function
Partition function is a core concept in statistical physics.
It is similar to path integral mathematically. By calculating
the partition function, the microstates can be related to
the macroscopic physical quantity. And all of the thermo-
dynamic functions that characterize the equilibrium ther-
modynamic properties of the system can be represented
by partition function.

In equilibrium, the distribution of particles at each
energy level follows the Boltzmann distribution, as the
formula below:

Pi ∝ e− εi
kT (2)

Pi indicates the probability that the particle is at the i-th
level, T represents the thermodynamic temperature of the
particle system, εi represents the free energy of the i-th
level, and k represents the Boltzmann constant.

According to the formula (2), Pi can be calculated by:

Pi = e−εi/kT

M∑

j=1
e−εj/kT

(3)

The denominator Z =
M∑

j=1
e−εj/kT is the partition

function, which is the weighted sum of microstates. It
described how does the probability of various microstates
distributed in the system, and the value of it characterizes
the ratio of particles’ amount in the system to particles’
amount at the ground state.

The partition function used in probability theory, infor-
mation theory and dynamical systems is the generaliza-
tion of the definition of partition function in statistical
mechanics.

For protein alignment, since “any scoring matrix essen-
tially corresponds to a log-odds matrix” [47], the total
score A(l) of an alignment l is proportional to the log-
likelihood ratio of l. So, the probability of an alignment
l is proportional to e(A(l)/T) which is similar to the

Boltzmann distribution [20], where T is a constant related
to the original scoring matrix.

If T was treated as the thermodynamic temperature, and
the total score of alignment as negative energy, the proba-
bility of an alignment l could be calculated by the partition
function defined as below:

Z =
∑

l∈L
eA(l)/T (4)

p(l) = eA(l)/T/Z (5)

while L represents the set of each possible alignment of
sequence x and sequence y.

The partition function for partial sequences of x[ 1 . . . i]
and y[1 . . . j] is denoted as Zi,j, and for that of x[ i . . . |x|]
and y[j . . . |y|] as Z′

i,j. Each one of them could use dynamic
program to calculated from the beginning or the ending of
the sequences. Then, the posterior probability of position
xi aligned to position yj could be calculated by the formula
as below:

Px,y(xi ∼ yj) = 1
Z

Zi−1,j−1 es(xi,yj)/T Z
′
i+1,j+1 (6)

where s(xi, yj) represents the score of aligning residue xi
with residue yj, in the original scoring matrix.

Posterior probability calculating by pair-HMM
Pair-HMM was used by numerous multiple sequence
alignment methods to calculate posterior probability. The
posterior probability that the i-th residue in sequence x
and the j-th residue in sequence y is aligned in the "true"
alignment of x and y is defined by the formula below:

Px,y(xi ∼ yj) = P(xi ∼ yj ∈ l∗|x, y)

=
∑

l∈L
P(l|x, y)1{xi ∼ yj ∈ l} (7)

while L represents the set of each possible alignment of
sequences x and y, l∗ represents the “true” alignment of
them, and 1(expr) represents the indicator function which
returns 1 if the expr is true or 0 if it is false.

The majority multiple sequence alignment methods
on the basis of pair-HMM use the Forward and Back-
ward algorithm to compute the posterior probability, as
explained in [14].

Nevertheless, for estimating the model parameters of
HMM, there are selected algorithms that use certain other
optimization methods instead of utilizing the Forward and
Backward algorithm, to prevent being trapped in local
optima, for example, particle swarm optimization.

Posterior probability calculating by particle swarm optimized
pair-HMM
Optimization algorithms are derived from computer sci-
ence. Nowadays, they are extensively applied in various
subjects, for example, life science and material science,
and so on [48, 49]. Optimization algorithms, for example,
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particle swarm optimization and random walk [5, 50–52]
are also widely used in bioinformatics.

PSO [53] is an optimization algorithm which is inspired
by foraging behavior of a bird flock. For an optimization
problem, a number of particles are set by PSO algorithm.
Position and velocity are the basic properties of all
particles. A particle’s position stand for a candidate solu-
tions in the solution space of the problem. The velocity of
a particle indicate where it will go next. The positions are
assessed by a fitness function.

PSO algorithms move the particles to “better” positions
iteratively, based on the best position that a particle have
reached along with the best position that the whole swarm
have reached.

In this approach, there exist a total of n particles. It
possess a stochastically yielded position vector xi and a
stochastically yielded velocity vector vi for each particle
i. In the algorithm, the formula (8) was used to renew
the velocity, and also formula (9) was used to renew the
position:

vk
i = wvk

i + f1r1
(

pk
i − xk

i

)
+ f2r2

(
pk

g − xk
i

)
(8)

xk+1
i = xk

i + vk
i (9)

In these formulas, pi represents the best position that
particle i achieved. pg represents the global best position
of the whole swarm achieved. w represents the inertia
weight that dominates the affects of the previous velocity.
f1 is the cognitive factor, while f2 is the social factor. r1 and
r2 are variables that yielded randomly in [0, 1].

The fitness of the global best position will be improved
as the renewing procedure iteratively runs. The renewing
procedure will be stopped when iterations reaches a pre-
viously given number or the fitness reaches a previously
given value.

For hidden Markov model, if we consider the parameter
set of it as the position in PSO, then it can be optimized by
PSO. For HMM in MSA problem, once the parameters of
HMM are computed, the posterior probabilities for MSA
will be computed subsequently.

Posterior probability calculating by integrating different
methods
In order to align two sequences by dynamic programming,
the most important element is the substitution score.
Numerous approaches are applied to compute the poste-
rior probabilities, and thus to compute the substitution
scores. Each approach has its own particular property and
matches distinct aspect of alignments. To integrate more
than one approach to calculate the posterior probability
is a conventional practice. MSAProbs [24] integrate the
partition function with HMM to calculate the posterior

probabilities, while GLProbs [26, 54] calculate the poste-
rior probabilities by integrating local, global and double
affine pair-HMMs.

Posterior probability calculating by integrating particle
swarm optimized pair-HMM and partition function
In this paper, a multiple sequence alignment method
which is called ProbPFP is proposed, while the posterior
probability is determined by integrating particle swarm
optimized HMM and partition function.

PSO was applied by ProbPFP to optimize the gap open
penalties, gap extend penalties and the initial distribution
of MSA. Thus for HMM in ProbPFP, the initial probabil-
ities was calculated based on the initial distribution, and
the transition probabilities was calculated based on these
two type of penalties.

As the first step, the parameters are yielded randomly
following a uniform distribution. Subsequently, the hid-
den Markov model for MSA was constructed by applying
these parameters and then was used to calculate the poste-
rior probabilities. We applied these posterior probabilities
as the substitution scores to execute pairwise alignment.

In this paper, the fitness function for PSO is defined
as SoP, i.e.,the standard sum-of-pairs score, which is
described as below:

SoP =
n∑

i=1

n∑

j=i+1
Score(li, lj)

=
n∑

i=1

n∑

j=i+1

|l|∑

k=1
s(rik , rjk)

(10)

In which, sequences i and j are aligned as li and lj by
inserting gaps to them. rik is a gap or a residue at the posi-
tion k on aligned sequence li. s(rik , rjk) is the score for
the two elements rik and rjk at position k. If the two ele-
ments are all residues, it is the substitution score for this
two types of residue. If one of the elements is gap, it is the
penalty of gap open or extend. In this study, the substitu-
tion matrix is the commonly used BLOSUM62. The gap
open penalty is set as -11, and the gap extend penalty as
-1, since the two values for these penalties are extensively
used.

In order to optimize the SoP score, we did a series of
experiments to determine how many particles and how
many iterations we need. We finally chose 10 particles for
30 iterations. The experiments are described in “results”
section. After that, the final trained parameters are used
to construct a hidden Markov model. We apply the model
to compute the posterior probability and denote this type
of posterior probability as Pa

x,y(xi ∼ yj).
The posterior probability computed by the partition

function are denoted as Pb
x,y(xi ∼ yj), and the final

posterior probability are defined as below:
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Px,y(xi ∼ yj) =
√

Pa
x,y(xi ∼ yj)2 + Pb

x,y(xi ∼ yj)2

2
(11)

Guide tree construction
Once the posterior probabilities were generated, they
are used as substitution scores in dynamic programming
method to align two corresponding sequences. We get
a final global score for the two sequences through the
dynamic programming. Using all of the scores, we estab-
lish a distance matrix from which we establish a guide tree
to guide the subsequent alignment.

Distance matrix computation
Since in bioinformatics, similarity is an important con-
cept, various approaches are developed to measure simi-
larity on numerous research fields [55–60]. For alignment
problems, the dynamic programming can be performed
to generate the maximal expected accuracy alignment by
applying Eq. 1 iteratively based on posterior probability.
The corresponding maximal expected accuracy can be
calculated as the following formula:

GS(x, y) = A(|x|, |y|) (12)

It is the sum of posterior probabilities for every aligned
residue pair on the yielded alignment of sequences x and
y, so it indicates the similarity of this two sequences. And
then, the distance of them can be defined as shown:

dis(x, y) = 1 − GS(x, y)/min{|x|, |y|} (13)

The distance matrix of a set of sequences, was consti-
tuted by the distances for every pair of sequences.

Guide tree building from distance matrix
Guide tree is a binary tree, that each node has two chil-
dren. Each leaf of guide tree stands for a sequence, each
internal node stands for an alignment of the sequences
that the leaves of the corresponding sub-tree represent,
and the root represents the final alignment. It can be
built according to the distance matrix by using various
clustering methods, for example, UPGMA and Neighbor-
Joining. We applied UPGMA, which is a greedy linear
heuristic methods, to build the guide tree, in this study.

When the two closest remaining nodes Ni and Nj are
united to a node Nk , for any other node Nl, the distance
between Nk and Nl is defined as the average distance of
each pair of sequences that one from Nk and another from
Nl.

dkl =

∑

x∈Nk

∑

y∈Nl

dxy

|Nk| · |Nl| (14)

So it can be calculated by:

dkl = |Ni|dil + |Nj|djl

|Ni| + |Nj| (15)

Progressive alignment
Progressive alignment is the last procedure of ProbPFP.
An unaligned sequence or the alignment of some aligned
sequences is called profile. Starting from the set of orig-
inal sequences, the core idea of progressive alignment is
choosing the closest pair of profiles in the set and aligning
them to generate a new profile to replace them in the set.
As mentioned in the previous subsection, we learned that
the aligning order is actually determined by the guide tree.

Before we apply progressive alignment, we first apply
the probabilistic consistency transformation described in
MSAProbs [24]. Probabilistic consistency transformation
is a step to re-estimate the probabilities by considering the
other sequences’ effect on the pairwise alignment. After
that, as similar to pairwise alignment of two sequences,
the profile-profile alignment also apply dynamic program-
ming. It is intuitive that the substitution score for a pair
of columns from these two profiles is determined by the
mean of the posterior probability for every residue pair,
that one residue located in the column from the first pro-
file, while the other one located in the column from the
second profile. The formula for the score is listed as below:

Score(Xi, Yj) =

∑

x∈X,y∈Y
wxwyP′

(xi ∼ yj|x, y)
∑

x∈X,y∈Y
wxwy

(16)

where X and Y are profiles, i and j are the i-th and j-
th columns. P′ is the transformed probabilistic matrix,
and wx and wy are the weights which were calculated
according to the methods in ClustalW [44].

We will execute the profile alignment progressively until
there will be only one profile. The last profile will be the
initial alignment that we seek for the set of sequences.

As the last step, we divide the alignment into two ran-
dom groups and realignment them by profile alignment.
After a fixed number of iterations (10 by default), we got
the final alignment.

The steps for ProbPFP are displayed in Fig. 1.

Results
We compared ProbPFP with 13 outstanding or clas-
sic MSA methods, i.e., Probalign, ProbCons, T-Coffee,
PicXAA, CONTRAlign, COBALT, Clustal�, MUSCLE,
KALIGN2, MAFFT, ClustalW, Align-m and DIALIGN.
These 13 methods were all run with their default parame-
ters. The particle swarm optimization in ProbPFP utilized
10 particles and iterated for 30 times.

The numbers of particles and iterations are determined
by a series of experiments according to the SoP score on
the RV11 and RV12 subsets of BAliBASE3 benchmark.
To determine the number of particles and the number of
iterations, we applied 5, 10, 15, 20, 25 and 30 particles to
the families in RV11 and RV12, and iterated from 1 to 60
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Fig. 1 Framework of the ProbPFP algorithm

times. The mean SoP scores of this families are calculated.
The results are described in Fig. 2. We noticed that the SoP
scores increased a lot, as the number of particles increased
from 5 to 10. But when the number increased from 10 to
15, 20, 25 or 30, the SoP scores increased only a little. In
addition, when the number increased from 10 to 15, as the
iterations increased, the SoP scores even decreased. So, we
chose 10 particles which is enough.

From Fig. 2, we noticed that the SoP score increased
as the number of iterations grow. But the increment
speeds become slow after about 15 times, and even slower
after about 30 times. So, we chose 30 iterations which is
enough.

we applied these 14 algorithms to align the sequence
sets in three commonly used protein multiple sequence
alignment public benchmarks: SABmark 1.65, OXBench
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Fig. 2 Comparison of mean SoP scores for different numbers of
particles and iterations

1.3 and BAliBASE 3. These benchmarks were obtained
from a collection which was downloaded from Robert C.
Edgar’s personal website that is listed in the “Availability
of data and materials” sections. Edgar gathered these
benchmark datasets into the collection and converted the
format of all these sequences to the convenient standard
FASTA. In particular, only the RV11 subsets and the RV12
subsets in BAliBASE 3 and the Twilight Zone subsets and
the Superfamily subsets in SABmark 1.65 were used in
the comparison. As reported in [41], these subsets are
consistent for experiments.

The algorithms were compared based on the total col-
umn score and sum-of-pairs score. For each benchmark
and each algorithm, the mean of the TC scores of align-
ments for every family is calculated, as same as the mean
of the SP scores.

Table 1 listed the mean TC scores and the mean SP
scores on OXBench 1.3 of ProbPFP and the other 13
methods. The table demonstrated that ProbPFP got the
maximum mean scores while Probalign got the second
largest mean scores. Probalign calculated the posterior
probabilities only by partition function model which
“might be more successful in locating highly similar
regions” [24], while ProbPFP do that by combining par-
tition function with optimized HMM, and this strategy
makes the score increased.

Table 2 listed the mean TC scores and the mean
SP scores on BAliBASE 3. It indicated that ProbPFP
got the second largest mean scores, and these scores
were very close to the highest that Probalign got. “The
partition function probabilistic model might be more
successful in locating highly similar regions” [24] while
“BAliBASE is heavily biased toward globally related pro-
tein families” [61]. We thought that is why Probalign got

Table 1 Mean TC and SP Scores for 14 Aligners on OXBench

Aligner Mean TC score Mean SP score

ProbPFP 81.70 90.15

Probalign *81.68* *89.97*

ProbCons 80.86 89.68

T-Coffee 80.50 89.52

PicXAA 80.74 89.64

CONTRAlign 79.87 89.34

COBALT 79.73 88.96

Clustal� 79.99 88.91

MUSCLE 80.67 89.50

KALIGN 78.88 88.39

MAFFT 77.96 88.00

ClustalW 80.16 89.43

Align-m 76.06 86.95

DIALIGN 72.14 83.97

The scores in this table are multiplied by 100. In each column, the maximum score is
highlighted in bold, while the second highest score is displayed between two
asterisks

the highest scores. In this case, combining with optimized
HMM might not benefit the scores but rather decrease
them.

Table 3 listed the mean TC scores and the mean
SP scores on SABmark. This table also indicated that
ProbPFP got the maximum mean scores. Because most
families in SABmark are divergent, Probalign didn’t get
the second largest mean scores, but T-Coffee got the sec-
ond largest mean TC score since it combined local and
global alignment. The result shows that the combination

Table 2 Mean TC and SP Scores for 14 Aligners on BAliBASE

Aligner Mean TC score Mean SP score

ProbPFP *67.03* *82.50*

Probalign 67.27 82.53

ProbCons 65.22 81.55

T-Coffee 64.93 80.82

PicXAA 66.08 81.33

CONTRAlign 58.10 77.59

COBALT 57.49 76.08

Clustal� 59.38 75.96

MUSCLE 58.27 75.60

KALIGN 59.66 76.99

MAFFT 52.58 72.46

ClustalW 49.21 69.63

Align-m 56.04 71.45

DIALIGN 48.22 68.63

The scores in this table are multiplied by 100. In each column, the maximum score is
highlighted in bold, while the second highest score is displayed between two
asterisks
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Table 3 Mean TC and SP Scores for 14 Aligners on SABmark

Aligner Mean TC score Mean SP score

ProbPFP 39.56 59.84

Probalign 38.63 59.53

ProbCons 39.17 *59.69*

T-Coffee *39.53* 59.14

PicXAA 39.11 59.37

CONTRAlign 35.59 57.54

COBALT 36.00 56.71

Clustal� 35.47 55.02

MUSCLE 33.47 54.51

KALIGN 33.22 52.13

MAFFT 32.57 52.63

ClustalW 31.37 51.92

Align-m 31.07 46.19

DIALIGN 27.11 47.09

The scores in this table are multiplied by 100. In each column, the maximum score is
highlighted in bold, while the second highest score is displayed between two
asterisks

strategy in our ProbPFP methods is also effective in diver-
gent families.

Furthermore, we utilized ProbPFP to assist the rebuild-
ing of the phylogenetic tree to assess the practicability
of it. On 6 protein families extracted from the database
TreeFam [62]. ProbPFP was compared with 4 other out-
standing methods. The alignments that aligned by these 5
methods are passed to the analysis tool MEGA5 [63]. And
in MEGA5, the phylogenetic trees of these 6 families are
rebuilt by applying the maximum likelihood approach.

To assess the quality of the reconstructed phylogenetic
trees, we need to calculate the distances between the ref-
erence trees with them. Here, we applied the commonly
used partition metric (Robinson-Foulds metric). A bet-
ter inferred tree has a smaller distance, since it is closer
to the reference tree. Table 4 listed the Robinson-Foulds
distances between the reference trees and the phyloge-
netic trees inferred from the alignments generated by

Table 4 Robinson-Foulds Distances between the Inferred
Phylogenetic Trees with the Reference Tree

TreeFam ID ProbPFP MUSCLE MSAProbs Clustal � T-Coffee

TF101116 (104) 0.87 0.87 0.97 0.98 0.90

TF105063 (133) 0.80 0.83 0.85 0.84 0.84

TF105629 (88) 0.62 0.66 0.67 0.68 0.65

TF105895 (89) 0.48 0.53 0.53 0.56 0.51

TF106377 (26) 0.39 0.48 0.48 0.48 0.43

TF101222 (48) 0.71 0.67 0.67 0.78 0.76

For each family, the number in the parentheses after the ID represents the
sequences amount of the family. The smallest distances are highlighted in bold, in
each row

this 5 aligners. It indicated that the trees computed from
ProbPFP are with the smallest distances in 5 of the 6 tests.

Discussion
ProbPFP was compared with 13 outstanding or classic
MSA methods based on TC and SP Scores. It achieved the
highest mean TC and SP Scores among these 14 methods
on the benchmark Sabre and OXBench. And on dataset
BAliBASE, ProbPFP achieved the second highest mean
TC and SP Scores and are very close to the highest scores
that Probalign obtained.

To illustrate the practicability of ProbPFP, We also com-
pared ProbPFP with 4 leading aligners according to phylo-
genetic tree reconstruction. Among the 6 tests, there are
5 tests in which the trees constructed from alignments
yielded by ProbPFP are nearest to those reference trees.

It can be seen that combining PSO optimized HMM
with partition function could make a great improvement
of the alignment quality.

Conclusions
The accuracy of sequence alignment could be raised by
optimizing the parameters of HMM for multiple sequence
alignment. It could also be improved by combining hidden
Markov model with partition function. In this paper, we
propose a new MSA method, ProbPFP, that integrates the
HMM optimized by PSO with the partition function. The
performance validates this method could make a great
improvement of the alignment’s accuracy.
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