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Background: Infections by RNA viruses such as Influenza, HIV still pose a serious threat to human health despite
extensive research on viral diseases. One challenge for producing effective prevention and treatment strategies is
high intra-species genetic diversity. As different strains may have different biological properties, characterizing the
genetic diversity is thus important to vaccine and drug design. Next-generation sequencing technology enables
comprehensive characterization of both known and novel strains and has been widely adopted for sequencing viral
populations. However, genome-scale reconstruction of haplotypes is still a challenging problem. In particular,
haplotype assembly programs often produce contigs rather than full genomes. As a mutation in one gene can mask
the phenotypic effects of a mutation at another locus, clustering these contigs into genome-scale haplotypes is still

Results: We developed a contig binning tool, VirBin, which clusters contigs into different groups so that each group
represents a haplotype. Commonly used features based on sequence composition and contig coverage cannot
effectively distinguish viral haplotypes because of their high sequence similarity and heterogeneous sequencing
coverage for RNA viruses. VirBin applied prototype-based clustering to cluster regions that are more likely to contain
mutations specific to a haplotype. The tool was tested on multiple simulated sequencing data with different
haplotype abundance distributions and contig sizes, and also on mock quasispecies sequencing data. The benchmark
results with other contig binning tools demonstrated the superior sensitivity and precision of VirBin in contig binning

Conclusions: In this work, we presented VirBin, a new contig binning tool for distinguishing contigs from different
viral haplotypes with high sequence similarity. It competes favorably with other tools on viral contig binning. The
source codes are available at: https://github.com/chjiao/VirBin.
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Background

High genetic diversity within viral populations has been
observed in patients with chronic infection with RNA
viruses such as Human Immunodeficiency Virus (HIV),
Hepatitis C Virus (HCV), etc [1-5]. The genetic diver-
sity could be caused by multiple infections of different
strains or by mutations during the virus replication inside
the host. In the latter case, the high replication rate, cou-
pled with the low fidelity of the viral polymerase in most
RNA viruses, results in a group of different but related
strains infecting the same host, which is often termed as
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“quasispecies” [6]. Previous studies have revealed that
patients with chronic virus infections, such as Acquired
Immune Deficiency Syndrome (AIDS), are often the reser-
voir of new viral variants, which are likely produced dur-
ing the replication process [7]. Because different strains
could have very different biological properties such as
virulence, transmissibility, antiviral drug resistance etc,
characterizing the genetic diversity within viral popu-
lations is very important for developing effective pre-
vention and treatment strategies. For example, if some
strains have developed antiviral drug resistance, they
may become the dominant strains and lead to treatment
failure. Thus, characterization of the strain-level diversity
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of viral populations is indispensable for understanding the
viruses and is of great clinical importance.

Sequencing viral quasispecies for genetic diversity
analysis was one of the first applications of next-
generation sequencing (NGS) technologies [3]. Applying
whole genome shot-gun sequencing to viral quasispecies
does not require cultivation and can sequence diver-
gent strains from known virus families. It thus has
become a favored choice for characterizing the diversity of
quasispecies.

Given the sequenced viral quasispecies, different types
of analysis can be conducted to probe the genetic diversity.
A relatively straightforward analysis is to understand the
local diversity of known viruses by performing read map-
ping against reference genomes. While this type of analy-
sis can produce a collection of local changes (mutations,
insertions, or deletions) of the strains inside the quasis-
pecies, it is not sufficient to infer the biological properties
of the strains, which are more likely to be determined
by multiple genes. In particular, epistatic interactions are
abundant in RNA viruses, where the mutation of one gene
masks the phenotypic effects of a mutation at another
locus. Thus genome-scale reconstruction of the strains is
essential for phenotype prediction of viruses [8].

Reconstructing the genome-scale strain sequences
inside quasispecies is often referred to as genome-scale
haplotype reconstruction, where the genomes of strains
are called haplotypes. The goal is to assemble short reads
from sequenced viral populations into correct haplo-
type sequences. When the reference genome is available,
read mapping can be conducted first to identify local
mutations and then cluster the local mutations (or short
contigs) into genome-scale haplotypes. When quality ref-
erence genomes are not available, which is often the case
for emerging viruses such as Severe Acute Respiratory
Syndrome (SARS) coronavirus, read mapping is not a very
effective strategy to identify all mutations. Thus, de novo
assembly is needed to stitch the reads into haplotypes.

With or without reference genomes, genome-scale hap-
lotype reconstruction in quasispecies remains a compu-
tationally challenging problem. High similarity between
haplotypes in the same quasispecies and the heteroge-
neous sequencing depth along the viral genomes present
barriers to adoption of existing assembly programs. A
recently published comparison showed that none of the
tested haplotype reconstruction tools were able to suc-
cessfully reconstruct the five known strains for a mock
HIV quasispecies [9]. We had the same observations when
comparing several popular metagenomic assembly tools
and haplotype assembly tools such as IDBA-UD [10], IVA
[11], SAVAGE [12], MLEHaplo [13] on the same data set
[14]. Many methods output a set of contigs with various
sizes that are much shorter than the genomes. With these
outputted contigs from assembly programs, it still remains
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to infer the number of haplotypes and to match the contigs
to their originating haplotypes. Thus, there is a need to
cluster the contigs into different groups so that each group
represents a haplotype. This step is called contig scaffold-
ing or binning and has been applied for bacterial strain
characterization.

Contig binning for viral quasispecies has its unique
challenges. First, the goal of binning is to distinguish con-
tigs from different viral strains rather than species. Thus,
composition-based features such as tetranucleotide fre-
quencies or GC contents are not informative enough to
separate contigs from different haplotypes, which usually
share high sequence similarity (over 90%). Tools that heav-
ily rely on sequence composition-based features will not
be able to estimate the number of haplotypes correctly.
Second, RNA virus sequencing tends to be compounded
by gene expression and fast degradation and thus the
observed sequencing coverage along each haplotype, or
even a contig, can be more heterogeneous than expected.
In addition, if a contig contains a region that is com-
mon to multiple haplotypes, that region tends to have
higher coverage than a haplotype-specific segment. All
these challenges require carefully designed methods to
use the coverage information for contig binning.

Related work

Although a number of contig binning algorithms have
been developed [15-21], they all possess limitations in
distinguishing contigs from different viral strains of the
same species. Most of the existing contig binning tools
for microbiome sequencing data are designed for bacteria.
These methods usually estimate the bin number by align-
ing metagenomic data to a pre-established marker gene
database, and then assign assembled contigs to differ-
ent bins using sequence composition information and
read coverage levels. For example, MaxBin [15] uses both
tetranucleotide frequencies and contig coverage levels to
assign assembled contigs into different bins.

Some binning tools [18] leverage co-abundance of genes
across multiple metagenomic samples. The rationale is
that if two contigs are from the same bin, their cov-
erage profiles across multiple samples should be highly
correlated.

Recently, there are a couple of newly developed tools
for strain level analysis from metagenomic data, such as
Constrain [20] and StrainPhlAn [21]. Both rely on species
identification using clade-specific genes, then zoom in
to identify the strains. However, both tools were mainly
tested on bacteria.

Our method is designed to cluster contigs produced
by existing assembly tools. There are another group of
methods conducting haplotype reconstruction via read
clustering [22, 23], which groups variant sites obtained
by read mapping against reference genomes. These tools
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don’t usually output contigs and thus do not use contig
binning.

Here we present VirBin, a method designed specifically
for binning contigs derived from viral quasispecies data.
The input to VirBin is a set of contigs derived from assem-
bly tools. The output includes the estimated number of
haplotypes, the grouped contigs for each haplotype, and
the corresponding relative abundances. Unlike many bac-
terial contig binning tools that require multiple samples,
our method works on a single sample.

Results

We evaluate the haplotype number estimation and clus-
tering performance of VirBin on both simulated and mock
HIV quasispecies sequencing data. The simulated data
provide us with known ground-truth for accurate eval-
uation of the clustering performance. To evaluate how
the number of haplotypes affects the haplotype infer-
ence performance, we produced simulated quasispecies
sequencing data consisting of 5 haplotypes and 10 haplo-
types, respectively.

For each experiment, we evaluate the performance of
VirBin from three aspects: haplotype number estima-
tion, clustering performance, and the computed haplotype
abundance. When the originating haplotypes of the input
contigs are known, we can evaluate both the recall and
precision for the clustering step. First, we map the clusters
to haplotypes based on the consensus haplotype label of
the component contigs. If there is no consensus haplotype
membership (e.g. a tie), we map the clusters to haplotypes
based on the ranking of the abundance. Let a cluster be
B and its paired haplotype be H. As the input to our pro-
gram is a set of contigs, let the contig set originating from
H be CH. Define BN CH as the common regions between
the two contig sets. Following other contig binning tools

[15, 18], the base-level recall for H is thus ‘Liggllil, which

quantified how many of the bases in C' are correctly clus-
tered in B. The base-level precision is defined as L TBC|H‘ s
which quantifies how many of the bases in cluster B are
from contig set C7. Similar metrics can be defined for

contig-level, which can be found in the Additional file 1.

Simulated 5-haplotype quasispecies data

First, we constructed 5 haplotypes with average sequence
similarity around 93%. Second, in order to simulate hap-
lotypes of different relative abundances, we generated 3
sets of reads following different abundance distributions.
Third, we generated contigs using two different methods.
In method 1, we simulated 5 sets of error-free contigs
of different sizes directly from the reference genomes. In
method 2, we applied available assembly tools to gener-
ate contigs from the reads. The simulated contigs are not
dependent on any assembly tool and thus are ideal for
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evaluating the binning method. For simulated contigs, we
have 3 (sets of reads) x5 (sets of simulated contigs), i.e.,
15 sets of input to our program. For assembled contigs,
we have 3 (sets of reads) x2 (sets of assembled contigs)
as input to VirBin because we applied two assembly tools.
Additional file 1: Figure S1 sketches the process of input
data generation. The data simulation details can be found
below.

Data simulation
HIV haplotype construction: There are many sequenced
HIV strains in the HIV Sequence Database [24]. However,
many of the strains do not possess sufficiently high simi-
larity to be included in simulated quasispecies. Thus, we
use both real and simulated strain sequences to simulate
haplotypes of high similarity. Simulated strains were pro-
duced by mutating, deleting, or inserting bases at random
positions from a real strain in the HIV database. As a
result, the five-haplotype dataset contains a HIV-1 strain
FJ061 from HIV Sequence Database, 3 simulated haplo-
types from FJ061, and another HIV-1 strain FJ066. The
sequence similarity between the simulated haplotypes and
its originating sequence is 97%. The average sequence
similarity between all the five haplotypes is around 93%,
which is comparable to the sequence similarity between
haplotypes in a mock HIV quasispecies dataset [9].
Reads simulation using different haplotype abun-
dance distributions: With available HIV haplotypes, sim-
ulated reads were generated from them by ART-illumina
[25] as error-containing MiSeq paired-end reads, with
read length of 250 bp, average insert size of 600 bp, and
standard deviation of 150 bp. With the total coverage of
1000-x, three sets of reads are produced using different
abundance distributions. The first one is based on the
power law equation [26]. The second and the third sets
of reads represent challenging cases where different hap-
lotypes have similar abundances, which create difficulties
for abundance-based binning algorithms. The abundance
differences in the second and third data set are 0.06 and
0.03, respectively. In total, there are 38,914 simulated
reads for 5 HIV haplotypes. The relative abundance for
five haplotypes in each read set can be found in Table 1.

Table 1 Relative abundance for 5 simulated HIV haplotypes in
three read sets

Relative abundance %

Haplotype  FJO61  FJO61-h1  FJo61-h2  FJ061-h3  FJO66
power 390 233 16.0 128 90
equal (6%) 320 259 20.1 140 80
equal 3%) 260 230 200 17.0 14.0

"power” is the read sets generated based on the power law equation. “equal (6%)" is
the abundance distribution with equal difference of 0.06. “equal (3%)" is the
abundance distribution with equal difference of 0.03
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As the total coverage is 1000-x, the sequencing coverage
of each haplotype is the product of the total coverage and
the relative abundance.

Contig simulation: For each reference genome (denote
its length as L), we randomly generated a list of location
pairs (p1,p2), where 1 < p; < py < L. Each location
pair represents a candidate contig’s starting and ending
position. Then, in the simulated contigs, we only keep the
ones above 500 bp (i.e. p» — p1 + 1 > 500). In addition,
we would like to simulate the hard case where the contigs
cannot be extended any more using large overlaps. Thus,
we sort all the remaining contigs by p; and remove the
ones that have overlaps of size above 100 bp with previous
contigs in the sorted list. The five sets of simulated con-
tigs have different N50 values and are referred to as “1000”
to “5000’, indicating the upper bound of the contig length
in each set. Additional file 1: Table S1 shows the detailed
properties of the five sets of contigs. All the simulated data
sets can be downloaded from VirBin’s Github repository.

Haplotype number estimation

According to our methods, the haplotype number esti-
mation only depends on the alignment results of contigs.
For all five sets of simulated contigs with different aver-
age lengths, the consensus window depth of the 50 longest
windows is 5 for all. The histogram of window depth for
5 simulated contig sets is shown in Fig. 1. It is clear that
window depth 5 dominates longest windows. Thus, the
estimated number of haplotypes is 5, reflecting the truth
for our data sets. In general, the percentage of windows
with depth 5 increases with increasing contig lengths.
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Clustering

We applied VirBin to cluster contigs into 5 groups. Since
the ground truth about the haplotype membership of each
contig is known, we were able to evaluate the cluster-
ing results by calculating the precision and recall at the
base level. The evaluation results are shown in Fig. 2. The
performance of clustering is worst for shortest contig set
(denoted as 1000 along the Y-axis). With increasing contig
lengths, the clustering performance becomes better for all
three different abundance distributions. When the contigs
are long, the clustering performance for haplotypes with
different abundance distributions is comparable.

The results were compared with MaxBin, which is a
binning tool for metagenomic contigs based on tetranu-
cleotide frequencies and reads coverage levels. MaxBin
requires marker genes to identify seed contigs for bin-
ning. We were able to run the core clustering program
of MaxBin by inputting both the number of haplotypes
(i.e. 5) and the seed contigs manually. We randomly chose
one contig from each haplotype as the seed contig and
calculated the contigs’ abundances by mapping reads to
them using Bowtie2. Although the haplotype number was
explicitly provided to MaxBin, empty clusters can be pro-
duced by MaxBin. The results from MaxBin are shown in
Fig. 3.

For the shortest contig set, MaxBin only reported two
clusters with one contig for each cluster, leaving 59 (96.7%)
contigs unclassified. For contigs sets from 2000 - 5000,
MaxBin was able to generate five clusters, but with ~30%
contigs unclassified. The results of MaxBin usually have
lower precision or recall values than VirBinin addition,
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for contig sets from 1000 - 4000, there are haplotypes
without correctly assigned contigs. The lower sensitivity
of MaxBin could be caused by its dependency on both
sequence composition and contig coverage for clustering.
Due to high sequence similarities between viral haplo-
types, sequence composition is not informative enough in
differentiating contigs from different viral strains. Instead,
MaxBin could mistakenly cluster contigs from the homo-
geneous regions of the viral genome, leading to more
chimeric clusters.

StrainPhlAn [21] is also able to to characterize the
genetic structure of viral strains in metagenomes. It takes
the raw sequencing reads and MetaPhlAn2 [27] database
of species-specific reference sequences as input and aims
to output the most abundant strain for each sample.
However, it failed to detect any viral species at the first
step running MetaPhlAn2. ConStrains [20] is another tool
designed to identify strain structures from metagenomic
data. It uses bowtie2 to map reads to a set of universal
genes and infers the within-species strains abundances by
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Fig. 3 The recall and precision of contig binning results by MaxBin. X-axis represents each haplotype, in decreasing order of relative abundance.
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utilizing single-nucleotide polymorphism (SNP) patterns.
This tool again did not get enough mapped reads to report
any strain abundance. And it takes considerable efforts for
us to modify their codes for our inputs. Thus, we cannot
report the results from StrainPhlAn or ConStrains.
Relative abundance computation: Once the iterative
clustering algorithm converges, the abundance of each
cluster can be computed as the weighted average abun-
dances for all contigs from this cluster. Fig. 4 compares
the known haplotype abundance profiles with our com-
puted ones. There are three read sets with different

abundance distributions (Table 1). For each distribu-
tion, there are five sets of contigs (Additional file 1:
Table S1). Thus, three plots of five curves are presented
to compare the ground truth and the computed abun-
dance. In addition, we applied x2-test to compare the
ground-truth distribution and each computed abundance
distribution. The p-values from all the tests are larger
than 0.99, indicating that the distributions are not sta-
tistically different. As MaxBin only correctly clustered
several contigs, we did not include the abundance
comparison.
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Results on assembled contigs

In addition to simulated contigs, we also tested VirBin
on assembled contigs by two de novo assembly tools:
a generic assembly tool SGA [28] and a viral haplotype
reconstruction tool PEHaplo. The assembled contigs were
evaluated by MetaQuast [29] and the results are listed
in Additional file 1: Table S2. Both PEHaplo and SGA
produced enough contigs to cover almost all the five
haplotypes. Contigs produced by PEHaplo have larger
N50 values than contigs by SGA. While both tools apply
overlap graph for assembly, PEHaplo utilizes a paired-
end information guided method for path finding, which
can potentially connect some of the nodes together.
Therefore, it produced longer contigs than SGA. The
contigs are paired with haplotypes based on the highest
sequence similarity. All of the contigs and their originating
haplotypes have similarity of at least 98%.

For all three sets of contigs assembled by PEHaplo
and SGA on three sets of reads, the consensus window
depth of the 50 longest windows is 5, revealing the actual
haplotype number.

Figure 5a presents the clustering results on contigs gen-
erated by PEHaplo and SGA. It shows that VirBin achieved
good clustering results on contigs assembled by both
assembly tools. The clustering results on SGA’s contigs are
similar to PEHaplo’s contigs, with both high precision and
recall. This observation is consistent with the results on
simulated contigs that when the contigs are long enough,
VirBin can produce good results.

Again we compared our results with MaxBin. The clus-
tering results of MaxBin on assembled contigs are shown
in Fig. 5b. For contigs assembled by PEHaplo, MaxBin
correctly clustered all corresponding contigs to the strain
FJ061-h2 as the recall is 1.0. However, this cluster also
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Fig. 5 The clustering results of VirBin (a) and MaxBin (b) on contigs assembled by PEHaplo and SGA

involves many contigs from other strains as the precision
value is low.

The comparison between the predicted abundance by
VirBin and the ground-truth on two sets of assembled
contigs is presented in Additional file 1: Figure S2.

We also simulated reads from 10 haplotypes and tested
VirBin on this data set. The data generation and also the
detailed results, clustering results is presented in Addi-
tional file 1: Table S3 and the relative abundances for each
haplotype are shown in Additional file 1: Figure S3, can be
found in the Section 3 of Additional file 1.

Mock HIV population MiSeq data set

In this experiment, we applied VirBin to a mock HIV qua-
sispecies data set (SRR961514), sequenced from the mix
of five HIV-1 strains (89.6, HXB2, JRCSF, NL43, YU2)
with Illumina MiSeq sequencing technology [30]. This
data set contains 1,429,988 (250 bp) of reads that cover
the five strains to 20,000x. The raw data set was pre-
processed with FaQCs/1.3 [31] and Trimmomatic [32] to
trim and filter low-quality reads or adapters. The remain-
ing reads were then error-corrected with Karect [33].
After pre-processing, 774,044 reads were left. By mapping
pre-processed reads to the available 5 reference genomes
by bowtie2, we were able to estimate the abundance for
each haplotype as shown in Fig. 6.

We use the contigs assembled by PEHaplo as input for
VirBin. PEHaplo produced 24 contigs from the real MiSeq
HIV data set that can cover about 92% of the five HIV-1
strains. These contigs have a N50 value of 2223 bp and the
longest contig is 9133 bp.

Haplotype number estimation: VirBin was applied to
the aligned contigs for haplotype number estimation. All
the windows were sorted in descending order of window
length. Out of the top 50 windows, 27 contain 5 contigs, 16
contain 6 contigs, and 2 contain 4 contigs. Out of the top
25 windows, 17 contain 5 contigs, 5 contain 6 contigs, and
1 contains 4 contigs. Similar to the simulated data, using
the consensus window depth (i.e. 5) correctly predicted
the haplotype number.

Clustering results: The clustering algorithm was
applied to cluster the contigs into 5 groups. For each
contig, its originating haplotype is determined by com-
paring the contig with all reference genomes. The
haplotype with the highest similarity and above 98%
is assigned. The outputs of VirBin and MaxBin are
shown in Table 2. StrainPhlAn and ConStrains were
applied on this real HIV data set. StrainPhlAn was
able to identify the HIV species, but could not report
any strain information. ConStrains could not align
enough reads to marker genes for further strain-level
analysis.

Compared to the simulated contigs or assembled con-
tigs using simulated reads, the results of VirBin on the real
sequencing data have generally lower sensitivity and pre-
cision. There are two major reasons. First, the assembled
contigs for real reads are more likely to contain errors.
Second, this data set has several haplotypes with very
similar average abundances. Referring to Fig. 6, the abun-
dance difference between the 2 least abundant haplotypes
is < 2%. Thus, the clustering algorithm could mix contigs
from these haplotypes.
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Fig. 6 The true abundance distribution for real HIV quasispecies data and the computed relative abundance profiles by VirBin and MaxBin. The true
average abundances sorted in descending order are: 29.79%, 25.18%, 21.68%, 12.62%, 10.87%

For the mock data experiment, we also present the recall
and precision at contig level in Additional file 1: Table S4.

We again compared the predicted abundance profile
with the known one in Fig. 6. The x2-test output p-value
0.9999 and 0.9995 for VirBin and MaxBin, respectively,
indicating that the predicted abundance distributions by
VirBin and MaxBin are not statistically different from the
ground truth.

Discussion

Overall, VirBin can cluster more contigs into their orig-
inating haplotypes than MaxBin. While VirBin focuses
on sub-contigs that are more likely unique to one hap-
lotype, MaxBin clusters whole contigs, which could con-
tain regions common to multiple haplotypes and makes
read coverage more heterogeneous. In addition, sequence
composition-based features such as tetranucleotide fre-
quencies are not effective in distinguishing highly similar
viral strains. Our experimental results show that VirBin
works better for longer contigs that can cover bigger
regions of the underlying genomes. When the genome
coverage by the contigs is below 70%, the performance of
VirBin deteriorates because it becomes harder to estimate
the correct number of haplotypes. In addition, the empiri-
cal experience shows that it is difficult to classify two viral
strains when the abundance difference between them is
below 3%. Thus, although we have demonstrated much
better contig binning performance for distinguishing viral

Table 2 Base-level clustering results on assembled 5 real
haplotype contigs for VirBin and MaxBin

VirBin MaxBin

Precision (%) Recall (%) Precision (%) Recall (%)
JRCSF 65.1 50.8 0.0 0.0
NL43 185 174 9.6 21.6
89.6 58.0 56.5 0.0 0.0
YU2 34.0 30.0 56.6 509
HXB2 48.5 70.2 39.1 27.0

The haplotypes are sorted in decreasing order of abundance

haplotypes than other contig binning tools, genome-scale
viral haplotype construction is still a challenging problem.

Conclusion

In this work, we presented VirBin, a new contig bin-
ning tool for distinguishing contigs from different viral
haplotypes with high sequence similarity. By conducting
experiments on multiple simulated data sets of differ-
ent haplotype abundance distribution, different number of
haplotypes, and different sets of simulated or assembled
contigs, we demonstrated that our tool can produce more
accurate clustering results than popular contig binning
tools for viral haplotype reconstruction.

Methods

The overall pipeline of our method is shown in Fig. 7.
There are mainly two steps: (1) estimate the number of
haplotypes by aligning contigs and identifying windows;
(2) calculate relative abundances in each window and
apply a clustering algorithm to group clusters of the same
haplotype.

The underlying algorithm of grouping contigs into hap-
lotypes is prototype-based clustering [34]. Features such
as the overlaps and paired-end connections have limited
usage in grouping distant contigs from the same haplo-
type. The clustering will mainly use the features based on
the abundance distributions. Although abundance-based
clustering has been used for contig binning from mul-
tiple samples [15, 19], existing tools are not designed

Wiow, wy W

Viral contigs Binning results
—
Alignment Contigl
—) Contig2 E Bint
Contig3 e
Contigd - Bin2

4 4

" Sub-contig relative
Bin number
abundances

| Prototype-based clustering algorithm |—

Bin3

Fig. 7 The pipeline of VirBin
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to tackle key challenges of distinguishing contigs of dif-
ferent haplotypes. First, the observed coverage of each
contig not only depends on the abundance of the under-
lying haplotype, but also depends on whether it is a
unique or shared region by two or more haplotypes.
Second, heterogeneous coverage of each haplotype in
an RNA viral quasispecies is common, which is caused
by sequencing-related biases and compounded by gene
expression. Thus, directly applying existing prototype-
based clustering models such as Gaussian-mixture model
to contigs is not expected to produce accurate clustering.
Our solution to this problem is to cut the contigs into
“windows” and to apply the clustering on sub-contigs that
are more likely to represent one haplotype. In addition,
instead of assuming any parametric distribution, which is
usually not the case for haplotype contigs, we will use a
non-parametric distribution.

Step 1: estimate the number of haplotypes via contig
alignment

Although the high similarity between haplotypes presents
a barrier to adoption of kmer-based features for dis-
tinguishing contigs from different haplotypes, it brings
opportunities for haplotype number estimation. With
stringent alignment threshold, contigs that can be aligned
with each other usually come from the same region of
the virus and thus the number of aligned contigs can be
carefully used for haplotype number estimation.

We progressively build multiple sequence alignments
using contigs’ pairwise alignments. In this step, base-level
accuracy of the alignment is not a major concern and thus
progressive construction of the alignment between con-
tigs can serve the purpose well. We first sort the contigs
by their lengths in descending order. The longest contig
will be used as the first reference. All the other contigs
will be aligned to the reference using blast+ [35] to gen-
erate an alignment profile similar to multiple sequence
alignment. Two types of alignments are kept from the out-
put of blast+. One is the alignment that is local to the
reference but global to the shorter contigs. The other is
overlap alignment, which is the alignment between the
suffix/prefix strings of the contigs. If not all the shorter
contigs can be aligned to the reference contig, this pro-
cess will continue by using the second longest contig as
the reference until all the contigs are used. Figure 8c
shows the alignment between contigs from three hap-
lotypes in Fig. 8a using the longest contig as the refer-
ence, which is usually produced for the most abundant
haplotype.

Each multiple alignment can be divided into many win-
dows, which are formed whenever there is a change of the
sequences in the alignment. We define the number of con-
tigs inside each window as the window depth, d. Based on
these definitions, we have the following observations.
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When each position of the underlying haplotypes can
be covered by at least one contig, d is equal to or larger
than the number of haplotypes. Note that the common
regions between different haplotypes are regarded as dif-
ferent positions and thus should be covered by different
contigs. This conclusion can be proved by contradiction
easily.

Fig. 8b shows the contigs satisfying the conditions in
the ideal case. There are three haplotypes with different
abundances. They only contain mutations at three posi-
tions that are far away from each other. Because of the
long common regions among them, assembly programs
usually won't be able to recover all the three genomes.
Instead, they can generate short but correct contigs. In
Fig. 8b, each position in the three haplotypes is covered by
at least one contig. In this case, all the windows have depth
of at least 3. If every position of a haplotype is only cov-
ered by one contig, the windows will have depth N, which
is the number of haplotypes. As some positions can be
covered by multiple contigs, the overlaps between contigs
contribute to window depth larger than N. For example, in
Fig. 8b, the middle window contains the overlaps between

S;:>1k

d=3

d=2 d=3 d=3

Fig. 8 Window construction from aligned contigs. a Three
haplotypes with mutations at three locations. Line weights represent
the haplotype abundance. Sy and S, are two mutation-free regions
common to three haplotypes. S1 and S; are at least 1k bp. b The
alignment of contigs that satisfy the ideal condition. The grey-scale
intensity represents the coverage of a contig. Three windows are
produced. € The contigs that cannot cover all the three haplotypes.
There are six windows. Their depth values are denoted below each
window. For contig marked with “A S,", its sequencing coverage is
plotted above the contig
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two contigs from each haplotype and thus has depth 6. In
this ideal case, we can choose the smallest window depth
as the number of haplotypes in a sample.

In practice though, the assumptions about the contigs’
properties are not always true. Thus, in our implemen-
tation, we will use the consensus window depth as the
number of haplotypes, by assuming that most windows
cover all haplotypes and contain haplotype-specific muta-
tions. For the contigs shown in Fig. 8c, window depth 3 is
the most frequent one.

In the implementation, we first sort all the windows in
descending order of window length. Then we choose the
most frequent window depth of the top X windows as
the number of haplotypes. The default value of X is 50 in
our implementation. We will present the results of hap-
lotype number estimation using consensus window depth
for both simulated and real quasispecies data.

Step 2: contig clustering based on relative abundance
distribution

Let the number of haplotypes estimated by step 1 be N.
The final goal of the pipeline is to divide the contigs into
N groups so that each group contains contigs originat-
ing from the same haplotype. In this step, we conduct
clustering on subcontigs from windows with depth N.

Unlike many existing contig clustering tools, our clus-
tering is not applied to a complete contig. Because each
contig can contain both haplotype-specific region and
shared regions among different haplotypes, using the read
coverage profile of the whole contig will confuse the
clustering algorithm and makes the convergence slow or
leads to wrong assignment of the objects. For example, in
Fig. 8c, the contig “A S2” contains mutation A from one
haplotype and also a shared region Sy. Thus, significantly
more reads will be mapped to the shared region and make
the coverage for this contig highly heterogeneous. Thus,
the objects as input to the clustering algorithm are “sub-
contigs” in windows of depth N, where the sub-contigs are
substrings of the contigs in these windows. They are more
likely to represent the relative abundance of one haplo-
type. After clustering on sub-contigs, a post-processing
step will be applied to get the cluster membership for each
contig based on its sub-contigs’ memberships.

The clustering algorithm we adopt is prototype-based
clustering and is essentially an augmented K-means
algorithm. In a standard K-means algorithm, the centroid
of the objects in a cluster is the prototype of the cluster.
In our algorithm, the prototype is a distribution that is
derived from the sub-contigs and empirically describes
the relative abundance distribution.

The clustering algorithm will assign each sub-contig to
one cluster based on the posterior probability of the abun-
dance distribution. Although different clustering methods
such as Gaussian mixture model can be applied to cluster

Page 11 0f 13

the sub-contigs, the augmented K-means as shown below
has the fastest convergence with better clustering accu-
racy according to our tests. Before we describe the main
components, we first introduce the notations. The aver-
age relative abundance (denote as ¢) for a sub-contig ¢; in
a window of depth N is calculated as:

__ S)
YRS
where S(c;) is the total number of reads covering sub-

contig ¢;. Similarly, we can calculate the position-specific
relative abundance vector ¢ for a sub-contig ¢; as

cilk]
Sl Glk]

Ci

1)

cilk] = vk = L.|cil 2)

where c;[k] represents the reads coverage at position k of
sub-contig ¢;. |¢;| is the number of bases in the sub-contig.

N is the number of bins or haplotypes estimated by
Step 1. VirBin utilizes the position-specific relative abun-
dances of sub-contigs in windows with depth N to esti-
mate the probability that a sub-contig belongs to a bin. Let
the N bins be Hy, H, . .., Hy. Let E;j(x) be the probabil-
ity density function of relative abundance for sub-contigs
from bin i, where x is an observed abundance.

The iterative clustering algorithm contains four steps as
shown below:

Initialization: Initialize N groups by randomly assign
sub-contigs to them.

Updating the empirical abundance distribution E;:
For each bin i, the component sub-contigs’ relative abun-
dance profiles ¢s are aggregated to calculate the empirical
probability density function E;. The aggregation is per-
formed by calculating the normalized histograms for these
relative abundance profiles, so that the summation of
histogram values will be 1. The number of bars of the his-
togram is a parameter that can be set by users. The default
number is 1000. Given an abundance value «, it is nor-
malized to its closest bar value to get the corresponding
probability Ei(x).

Re-assignment of the sub-contigs: Once E; is derived,
the relative likelihood of ¢; being produced from the ith
prototype distribution can be calculated as Ei(c_j). The
prior probability of each bin (or haplotype) is a weighted
sum of the likelihoods of all the component sub-contigs.
The weights are determined by the total bases in the
sub-contigs. This weighted sum enables us to incorporate
both the total sub-contig bases and also the associated
abundance generation likelihood for estimating the prior
probability of a particular haplotype. The prior probability
Pr(H;) for bin i is:

> e Ei(@)lg]

Pr(H;) = il
dim1lN cheHi Ei(¢j) gl
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With both likelihood and prior from iteration ¢, the
expected probability that ¢; belongs to haplotype H; at
iteration £+ 1 can be calculated as likelihood * prior, that is

P(c¢j € Hil¢j) o< Ei(¢)) * Pr(H;) (4)

With the posterior probabilities calculated for each
group distribution, we can reassign the sub-contig c; to the
haplotype with the maximum posterior probability. The
same reassigning procedures are applied for all the sub-
contigs. With the assignment results, the distribution E;
and prior probability P(H;) can be updated.

Iteration: Iterate step 2 and 3 until the clustering results
do not change or the maximum number of runs have been
achieved. The default maximum number of runs is 100.

Step 3: post-processing

The output of the augmented K-means is the clustered
sub-contigs. For each cluster, its average abundance is
calculated as the weighted average of the abundances of
all sub-contigs in the cluster and the weight is determined
by the length of a sub-contig. The haplotypes’ abundances
are the average abundances of the clusters.

As each contig can contain multiple sub-contigs, which
could have different membership, the contig’s member-
ship is determined by the dominant membership of its
sub-contigs. For example, if a sub-contig is not in the
window of depth N, it is not an input to the clustering
step and will not be clustered. This could happen when a
region of a contig is common to multiple haplotypes. It is
also possible that the sub-contigs of a contig are assigned
to different clusters, which could be caused by assembly
errors.
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