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Abstract

Background: We previously introduced a random-effects model to analyze a set of patients, each of which has two
distinct tumors. The goal is to estimate the proportion of patients for which one of the tumors is a metastasis of the
other, i.e. where the tumors are clonally related. Matches of mutations within a tumor pair provide the evidence for
clonal relatedness. In this article, using simulations, we compare two estimation approaches that we considered for
our model: use of a constrained quasi-Newton algorithm to maximize the likelihood conditional on the random effect,
and an Expectation-Maximization algorithm where we further condition the random-effect distribution on the data.

Results: In some specific settings, especially with sparse information, the estimation of the parameter of interest is at
the boundary a non-negligible number of times using the first approach, while the EM algorithm gives more
satisfactory estimates. This is of considerable importance for our application, since an estimate of either 0 or 1 for the
proportion of cases that are clonal leads to individual probabilities being 0 or 1 in settings where the evidence is
clearly not sufficient for such definitive probability estimates.

Conclusions: The EM algorithm is a preferable approach for our clonality random-effect model. It is now the method
implemented in our R package Clonality, making available an easy and fast way to estimate this model on a range of
applications.
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Background
Many studies have been published over the past 20 years
that involved examining pairs of tumors at the molecu-
lar level from a set of patients to determine if, for some
patients, the tumors are clonal, i.e. one of the tumors is
a metastasis of the other tumor. We focus in this article
on the setting where the data comprise somatic muta-
tions from a panel of genes. Various statistical methods
have been proposed in the literature. One approach has
been to characterize the evidence for clonality using an
index of clonal relatedness (see [1] and [2]). However in
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constructing the index these authors have focused solely
on mutations that are shared between the two tumors,
ignoring the information from mutations that occur in
one tumor but not the other, evidence that argues against
clonal relatedness. Other authors have used the propor-
tion of observed mutations that are shared as the index
[3, 4], while Bao et al. [5] formalized this idea by assuming
that the matched mutations follow a binomial distribu-
tion. All of these approaches analyze each case indepen-
dently. To our knowledge, the approach we discuss in
this article, improving upon Mauguen et al. [6], is the
only available method that models the data from all cases
collectively to obtain parametric estimates of the propor-
tion of cases in the population that are clonal. Also our
method relies heavily on the recognition of the fact that
the probabilities of occurrence of the observed mutations
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are crucially informative,especially for shared mutations.
Motivated by a study of contralateral breast cancer that
will be described in more detail in the next section, we
developed a random-effects model to simultaneously ana-
lyze each case for clonal relatedness and to obtain an esti-
mate of how frequently this occurs [6]. The corresponding
function mutation.rem has been added to the R package
Clonality, originally described in Ostrovnaya et al. [7].
Overall, the properties of this model were demonstrated
to be quite good, in the sense that the parameter esti-
mation has generally low bias except in small samples,
ie where only a few cases from the population are avail-
able [6]. Recently, in applying the model anecdotally, we
noticed that in such small datasets, examples can arise
where the maximum likelihood estimator of the propor-
tion of clonal cases is zero, even whenmutational matches
have been observed in some cases. This tends to occur if
the absolute number of cases with matches is small, either
because the overall number of cases is small, or the pro-
portion of cases that are clonal is small, or in clonal cases
the proportion of mutations that are matches is small.
This is problematic because it renders the probabilities
of clonal relatedness to be exactly zero for all individual
cases, an estimate that seems unreasonable, especially if
matches on rare mutations have been observed. We thus
became interested in alternate estimationmethods. In this
article we compare estimates obtained by the EM algo-
rithm versus our first approach using a one-step estimate
of the conditional likelihood.

Motivating example
We use data from a study that involved 49 women with
presumed contralateral breast cancer [8]. That is, in all
of these women the cancers in the opposite breasts were
diagnosed clinically as independent primary breast can-
cers. The tumors were retrieved from the pathology
archives at Memorial Sloan Kettering Cancer Center and
subjected to sequencing using a panel of 254 genes known
or suspected to be important in breast cancer. The key
data, i.e. the numbers of mutations and matches for
each case, as well as the probability of occurrence for
the matched mutations, are reproduced in Table 1. The
probabilities of occurrence of each specific mutation are
considered known, but must actually be estimated from
available sources, such as the Cancer Genome Atlas [9].
Six of the 49 cases had at least 1 mutational match, i.e.
exactly the same mutation in both tumors. For 3 of these
cases the match was observed at the common PIK3CA
H1047R locus, known to occur in approximately 14% of
all breast cancers. We note that common mutations like
this one can vary by disease sub-type but we elect to use
probabilities associated with breast cancer overall since
the study has a mix of sub-types. Since it is plausible these
common mutations could occur by chance in a pair of

Table 1 Study of contralateral breast cancers

Case # Somatic mutations Details of matches

Left breast Right breast Matches Mutations Probabilities

1 9 7 0

2 3 3 0

3 2 7 0

4 8 10 0

6 6 5 0

8 6 2 1 ARID1A E250fs < 1/1000

9 2 3 0

12 14 3 0

13 3 3 0

15 8 5 0

16 10 8 0

17 6 8 0

18 8 2 0

21 4 3 0

23 10 4 0

24 4 3 0

25 4 6 0

26 6 5 0

27 4 5 0

29 3 1 0

30 6 5 0

31 6 5 0

32 5 4 0

33 6 4 0

35 5 4 0

36 3 4 3 CDH1 S111fs < 1/1000

TBX3 T267fs < 1/1000

EPPK1 R2337H < 1/1000

38 8 2 0

40 10 1 0

41 0 9 0

43 4 4 0

44 9 21 0

45 3 4 0

48 2 3 2 MLH3M346R < 1/1000

MAP3K1 R248* < 1/1000

52 5 7 0

56 2 5 0

58 3 4 0

59 2 3 0
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Table 1 Study of contralateral breast cancers (Continued)

Case # Somatic mutations Details of matches

Left breast Right breast Matches Mutations Probabilities

62 4 4 0

63 3 9 1 PIK3CA H1047R 0.137

64 5 4 0

66 33 3 0

67 4 1 1 PIK3CA H1047R 0.137

70 5 2 0

71 3 1 0

72 1 3 0

74 2 1 0

75 4 3 1 PIK3CA H1047R 0.137

76 7 5 0

77 3 1 0

independent breast cancers, the evidence for clonal relat-
edness is much less strong than for the other 3 cases with
matches at rarely occurring loci, something very unlikely
to happen in independent tumors.
When we apply our random-effects analysis to these

data, described in more detail in the “Methods” section,
our estimate of the proportion of cases that are clonal
(denoted henceforth by π ) is 0.059, close to the pro-
portion 3/49, reflecting the fact that the model appears
to consider the 3 cases with rare matches as clonal

and the 3 cases with the common matches as inde-
pendent. Estimation problems can occur, however, in
datasets very similar to this one. For example, when
we eliminate from the analysis the two cases that are
most clearly clonal, cases #36 and #48, the estimate
of π is 0, despite the fact that case #8 possesses a
very rare match pointing strongly to clonal relatedness.
Thus, a different estimation method that reduces the fre-
quency with which boundary estimates of π occur is
advisable.

Results
Simulations were conducted for sample sizes of 25, 50 and
100, with the population proportion of clonal cases (π )
ranging from 0.10 to 0.75. The distribution of the clonality
signal is characterized by 3 different lognormal distribu-
tions plotted in Fig. 1. These three scenarios represent,
respectively, settings where a small proportion of muta-
tions in a clonal case will be matched (scenario 1), where
most of these mutations will be matched (scenario 3), and
an intermediate scenario. Note that scenario 1 is partic-
ularly problematic for estimation, especially when π is
small, since in this setting few of the cases will be clonal
and these few clonal cases will tend to have few, if any,
matches.
Table 2 presents the simulation results for the estimates

of π averaged over 500 simulations for each setting, along
with the standard deviations and ranges of the estimates.
Biases can be obtained by comparing these averages with
the true value of π in the second column of the table.

Fig. 1 Log-normal distributions of the clonality signal



Mauguen et al. BMC Bioinformatics          (2019) 20:555 Page 4 of 8

Ta
b
le

2
Si
m
ul
at
io
n
re
su
lts

O
ne

-s
te
p
m
ax
im

iz
at
io
n

EM
al
go

rit
hm

EM
al
go

rit
hm

-s
ub

se
t

N
ca
se
s

Tr
ue

π
Sc
en

ar
io

m
ea
n

(s
d)

ra
ng

e
N
0-
1

m
ea
n

(s
d)

ra
ng

e
N
0-
1

m
ea
n

(s
d)

ra
ng

e
N
0-
1

10
0

0.
10

1:
μ

=
−2

;σ
=

1.
5

0.
12
7

(0
.1
26
)

0.
01
0-
1.
00
0

0-
7

0.
08
6

(0
.0
36
)

0.
01
0-
0.
20
2

0-
0

0.
07
6

(0
.0
37
)

0.
03
4-
0.
13
8

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
10
5

(0
.0
38
)

0.
02
0-
0.
23
4

0-
0

0.
09
9

(0
.0
33
)

0.
02
0-
0.
21
2

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
10
1

(0
.0
31
)

0.
03
0-
0.
22
0

0-
0

0.
10
1

(0
.0
31
)

0.
03
0-
0.
22
0

0-
0

0.
25

1:
μ

=
−2

;σ
=

1.
5

0.
25
9

(0
.0
91
)

0.
07
9-
0.
72
9

0-
0

0.
21
4

(0
.0
51
)

0.
07
7-
0.
38
7

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
25
0

(0
.0
49
)

0.
12
1-
0.
38
7

0-
0

0.
24
5

(0
.0
47
)

0.
12
1-
0.
37
7

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
25
2

(0
.0
43
)

0.
13
0-
0.
38
0

0-
0

0.
25
2

(0
.0
43
)

0.
13
0-
0.
38
0

0-
0

0.
50

1:
μ

=
−2

;σ
=

1.
5

0.
51
8

(0
.1
13
)

0.
24
5-
0.
88
1

0-
0

0.
44
0

(0
.0
66
)

0.
23
0-
0.
62
1

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
49
8

(0
.0
55
)

0.
32
5-
0.
64
0

0-
0

0.
49
0

(0
.0
54
)

0.
31
9-
0.
62
4

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
49
8

(0
.0
49
)

0.
35
0-
0.
62
0

0-
0

0.
49
8

(0
.0
49
)

0.
35
0-
0.
62
0

0-
0

0.
75

1:
μ

=
−2

;σ
=

1.
5

0.
75
6

(0
.1
16
)

0.
49
5-
1.
00
0

0-
31

0.
66
2

(0
.0
68
)

0.
47
7-
0.
92
4

0-
0

0.
75
8

(0
.0
52
)

0.
62
3-
0.
92
4

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
74
7

(0
.0
50
)

0.
61
6-
0.
88
1

0-
0

0.
73
8

(0
.0
49
)

0.
60
9-
0.
87
5

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
74
8

(0
.0
43
)

0.
63
0-
0.
85
0

0-
0

0.
74
8

(0
.0
43
)

0.
63
0-
0.
85
0

0-
0

50
0.
10

1:
μ

=
−2

;σ
=

1.
5

0.
13
8

(0
.1
93
)

0.
00
0-
1.
00
0

19
-1
8

0.
08
3

(0
.0
49
)

0.
00
0-
0.
26
5

11
-0

0.
08
3

(0
.0
70
)

0.
00
0-
0.
26
5

11
-0

2:
μ

=
−1

;σ
=

1.
0

0.
11
3

(0
.0
79
)

0.
00
0-
1.
00
0

4-
1

0.
10
1

(0
.0
48
)

0.
00
0-
0.
27
2

3-
0

0.
03
8

(0
.0
56
)

0.
00
0-
0.
12
5

3-
0

3:
μ

=
0.
7σ

=
0.
3

0.
10
0

(0
.0
42
)

0.
00
0-
0.
26
0

2-
0

0.
10
0

(0
.0
42
)

0.
00
0-
0.
26
0

2-
0

0
(0
.0
00
)

0.
00
0-
0.
00
0

2-
0

0.
25

1:
μ

=
−2

;σ
=

1.
5

0.
27
0

(0
.1
45
)

0.
04
3-
1.
00
0

0-
4

0.
21
0

(0
.0
71
)

0.
04
3-
0.
45
6

0-
0

0.
19
4

(0
.0
49
)

0.
12
2-
0.
23
4

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
25
5

(0
.0
76
)

0.
10
0-
0.
71
4

0-
0

0.
24
5

(0
.0
64
)

0.
10
1-
0.
44
7

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
24
8

(0
.0
61
)

0.
10
0-
0.
44
0

0-
0

0.
24
8

(0
.0
61
)

0.
10
0-
0.
44
0

0-
0

0.
50

1:
μ

=
−2

;σ
=

1.
5

0.
52
0

(0
.1
54
)

0.
22
2-
1.
00
0

0-
7

0.
44
1

(0
.0
91
)

0.
21
2-
0.
80
4

0-
0

0.
64

(0
.0
97
)

0.
49
4-
0.
80
4

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
50
1

(0
.0
75
)

0.
29
6-
0.
73
9

0-
0

0.
49
2

(0
.0
73
)

0.
29
3-
0.
71
3

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
49
8

(0
.0
69
)

0.
32
0-
0.
70
0

0-
0

0.
49
8

(0
.0
69
)

0.
32
0-
0.
70
0

0-
0

0.
75

1:
μ

=
−2

;σ
=

1.
5

0.
74
7

(0
.1
43
)

0.
48
0-
1.
00
0

0-
52

0.
65
9

(0
.0
91
)

0.
46
9-
0.
93
3

0-
0

0.
78
3

(0
.0
72
)

0.
65
0-
0.
93
3

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
74
6

(0
.0
75
)

0.
53
0-
1.
00
0

0-
2

0.
73
6

(0
.0
71
)

0.
52
7-
0.
93
8

0-
0

0.
92
6

(0
.0
18
)

0.
91
3-
0.
93
8

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
74
6

(0
.0
60
)

0.
60
0-
0.
92
0

0-
0

0.
74
6

(0
.0
60
)

0.
60
0-
0.
92
0

0-
0



Mauguen et al. BMC Bioinformatics          (2019) 20:555 Page 5 of 8

Ta
b
le

2
Si
m
ul
at
io
n
re
su
lts

(C
on

tin
ue
d)

O
ne

-s
te
p
m
ax
im

iz
at
io
n

EM
al
go

rit
hm

EM
al
go

rit
hm

-s
ub

se
t

N
ca
se
s

Tr
ue

π
Sc
en

ar
io

m
ea
n

(s
d)

ra
ng

e
N
0-
1

m
ea
n

(s
d)

ra
ng

e
N
0-
1

m
ea
n

(s
d)

ra
ng

e
N
0-
1

25
0.
10

1:
μ

=
−2

;σ
=

1.
5

0.
12
8

(0
.1
97
)

0.
00
0-
1.
00
0

10
1-
18

0.
09
9

(0
.0
79
)

0.
00
0-
0.
44
3

46
-0

0.
08
8

(0
.1
12
)

0.
00
0-
0.
44
1

46
-0

2:
μ

=
−1

;σ
=

1.
0

0.
11
8

(0
.1
21
)

0.
00
0-
1.
00
0

46
-4

0.
10
3

(0
.0
63
)

0.
00
0-
0.
36
5

26
-0

0.
05
6

(0
.0
84
)

0.
00
0-
0.
36
5

26
-0

3:
μ

=
0.
7σ

=
0.
3

0.
10
3

(0
.0
61
)

0.
00
0-
0.
33
0

29
-0

0.
10
1

(0
.0
56
)

0.
00
0-
0.
28
0

22
-0

0.
01
8

(0
.0
45
)

0.
00
0-
0.
22
8

22
-0

0.
25

1:
μ

=
−2

;σ
=

1.
5

0.
27
6

(0
.1
92
)

0.
00
0-
1.
00
0

6-
9

0.
21
6

(0
.1
03
)

0.
03
9-
0.
54
3

0-
0

0.
22
2

(0
.1
08
)

0.
03
9-
0.
43
2

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
26
2

(0
.1
10
)

0.
04
0-
1.
00
0

0-
1

0.
24
6

(0
.0
92
)

0.
04
0-
0.
61
8

0-
0

0.
17
6

0.
17
6-
0.
17
6

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
25
0

(0
.0
87
)

0.
04
0-
0.
52
0

0-
0

0.
24
9

(0
.0
88
)

0.
04
0-
0.
52
0

0-
0

0.
50

1:
μ

=
−2

;σ
=

1.
5

0.
51
5

(0
.1
98
)

0.
12
2-
1.
00
0

0-
19

0.
43
3

(0
.1
24
)

0.
10
9-
0.
87
8

0-
0

0.
62
2

(0
.1
45
)

0.
38
4-
0.
87
8

0-
0

2:
μ

=
−1

;σ
=

1.
0

0.
50
5

(0
.1
10
)

0.
20
1-
1.
00
0

0-
1

0.
49
2

(0
.1
02
)

0.
20
1-
0.
84
6

0-
0

0.
49
0

0.
49
0-
0.
49
0

0-
0

3:
μ

=
0.
7σ

=
0.
3

0.
50
0

(0
.0
96
)

0.
20
0-
0.
76
0

0-
0

0.
50
0

(0
.0
96
)

0.
20
0-
0.
76
0

0-
0

0.
75

1:
μ

=
−2

;σ
=

1.
5

0.
75
2

(0
.1
75
)

0.
35
8-
1.
00
0

0-
82

0.
66
5

(0
.1
36
)

0.
33
2-
1.
00
0

0-
2

0.
83
5

(0
.0
97
)

0.
61
4-
1.
00
0

0-
2

2:
μ

=
−1

;σ
=

1.
0

0.
75
2

(0
.0
98
)

0.
48
9-
1.
00
0

0-
5

0.
74
1

(0
.0
94
)

0.
48
3-
1.
00
0

0-
1

0.
97
5

(0
.0
28
)

0.
94
1-
1.
00
0

0-
1

3:
μ

=
0.
7σ

=
0.
3

0.
74
9

(0
.0
84
)

0.
48
0-
0.
96
0

0-
0

0.
74
9

(0
.0
84
)

0.
48
0-
0.
96
0

0-
0

Th
e
EM

al
go

rit
hm

–
su
bs
et
re
su
lts

pr
es
en

tt
he

es
tim

at
es

ob
ta
in
ed

w
ith

th
e
EM

al
go

rit
hm

fo
rt
he

da
ta
se
ts
w
he

re
th
e
on

e-
st
ep

m
ax
im

iz
at
io
n
ga
ve

re
su
lts

on
th
e
bo

un
da
ry
.N

0-
1
sh
ow

s
th
e
nu

m
be

ro
ft
im

es
th
e
es
tim

at
e
w
as

ex
ac
tly

0
-

nu
m
be

ro
ft
im

es
it
w
as

ex
ac
tly

1



Mauguen et al. BMC Bioinformatics          (2019) 20:555 Page 6 of 8

These biases are generallymodest, though it is noteworthy
that our original one-step approach tends to have posi-
tive biases while the approach using the full likelihood and
the EM algorithm generally leads to negative bias. More
importantly, Table 2 also reports the numbers of times
the estimates were exactly on the boundary, i.e. 0 or 1.
These occurrences are much less frequent using the EM
algorithm and are mostly limited to the small case sample
(N=25), low π (0.10) setting. The columns on the right-
hand side of Table 2 summarize the results using the EM
approach for those datasets in which the one-step maxi-
mization produced an estimate of π of either 0 or 1. These
estimates are similar to the true π , showing the improved
performance with the EM estimation strategy.
The EM approach was used to re-analyze the breast can-

cer dataset described in the motivating example. When
the full dataset of 49 cases is analyzed both methods lead
to the same estimate, π̂ = 0.059. However, when cases #36
and #48 are removed, the EM approach leads to π̂ = 0.050
while the one-step method leads to the boundary value of
π̂ = 0. This is a reassuring result and is congruent with
the simulations in that for the preponderance of datasets
the use of EM does not affect the results. However, when
we move closer to a boundary, by for example removing
2 of the 3 cases with strong evidence of clonal related-
ness (cases 36 and 48), the new approach corrects the
estimation where the old approach was failing.

Discussion
Our method provides a strategy for estimating, in a sam-
ple of cases with tumor pairs, the proportion of these
cases that are clonally related, in addition to diagnostic
probabilities for each case. As compared to other meth-
ods described in the introduction, the proposed model
utilizes the information from a sample of patients, and
includes all mutations observed in only one or in both
tumors, in order to infer the probabilities of clonal relat-
edness. We now believe that an analysis of our proposed
random-effects model should involve maximization of the
likelihood using the EM algorithm rather than the one-
step strategy based on conditioning on the latent clonality
indicators that we had previously proposed. By doing
so, we greatly reduce the chances that the estimator of
the proportion of cases that are clonal will lead to an
unsatisfactory boundary value. Of note, the increased per-
formance comes at no cost regarding computation time.
Our available R package Clonality [10] which includes
the function to estimate the random-effects model, has
been updated to adopt the EM strategy (version 1.32.0 and
higher).

Conclusion
The EM algorithm is a preferable approach for our
clonality random-effects model. It is now the method

implemented in our R packageClonality, making available
an easy and fast way to estimate this model on a range of
applications.

Methods
The informative data Yj for case j of n cases encompasses
a set of indicators for the presence of shared or private
mutations in the tumor pair at genetic loci denoted by i.
[Private mutations are those that occur in one tumor but
not in its pair.] The sets Aj and Bj contain the shared and
private mutations respectively. We denote Gj = Aj ∪ Bj.
Each mutation i has a known probability of occurrence pi
in a tumor. Let π denote the proportion of clonal cases in
the population, and ξj the clonality signal for case j. The
clonality signal represents the relative period of tumor
evolution in which mutations accrued in the originating
clonal cell, and thus represents the anticipated propor-
tion of mutations observed in a case that are matches. The
term Cj represents the true clonal status of the tumor pair,
taking the value 1 when the case is clonal and 0 when
the case is independent. Note that ξj = 0 if Cj = 0.
In clonal cases, we assume that − log(1 − ξj) has a log-
normal density, with mean μ and standard-deviation σ .
We use g(·) to denote density functions generically. As
explained in Mauguen et al. [6], we previously used a con-
ditional likelihood constructed in the following manner.
Recognizing that

P
(
Yj|ξj ,Cj =1

)=
∏

i∈Gj

{
ξj + (1 − ξj)pi

ξj + (1 − ξj)(2 − pi)

}I[i∈Aj ] { 2(1 − ξj)(1 − pi)
ξj + (1 − ξj)(2 − pi)

}I[i∈Bj ]

(1)

and

P
(
Yj|Cj = 0

) =
∏

i∈Gj

(
pi

2 − pi

)I[i∈Aj] {2(1 − pi)
2 − pi

}I[i∈Bj]

(2)

we elected to use case-specific likelihood contributions

Lj
(
π , ξj

) = πP
(
Yj|ξj,Cj = 1

) + (1 − π)P
(
Yj|Cj = 0

)

leading to

L (π ,μ, σ) =
n∏

j=1

∫ 1

0
Lj

(
π , ξj

)
g(ξj)dξj. (3)

This allowed us to perform the maximization to esti-
mate simultaneously the parameters π ,μ, and σ using
a one-step Box constrained quasi-Newton algorithm.
However, although in simulations the properties of this
process appear to indicate low bias, we found that it is not
uncommon, especially in small datasets or those where π

is close to a boundary of 0 or 1, for the parameter π to
have anMaximumLikelihood estimate of 0 or 1, rendering
the diagnostic probabilities for all cases to be either 0 or 1.
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This problem is caused by the fact that the simplified con-
ditional likelihood in (3) above does not fully recognize
the influences of the case-specific mutational profiles Yj
on the case-specific clonality signals ξj and the individual
levels of evidence regarding clonal relatedness Cj. In short
we used the parameter representing the overall probability
of clonality π in (3) rather than the case-specific proba-
bilities of clonality, P(Cj = 1|ξj,π ,μ, σ). To address this
problem we employ a likelihood structure that permits a
more specific use of these data from individual cases and
have constructed a strategy involving the EM algorithm to
estimate the parameters.
This approach recognizes the fact that the terms Cj and

ξj are latent variables and that our goal is to maximize the
likelihood that is not conditioned on these latent variables,
i.e.

L =
n∏

j=1
P

(
Yj|π ,μ, σ

)
. (4)

To perform the estimation we first recognize the follow-
ing:

P
(
Yj, ξj,Cj|π ,μ, σ

) = P
(
Yj|ξj,Cj

) × g
(
ξj,Cj|π ,μ, σ

)
(5)

= g
(
ξj,Cj|Yj,π ,μ, σ

)×P
(
Yj|π ,μ, σ

)
.

(6)

Note that the likelihood contribution of case j to (4)
is a component of the right-hand side of (6). The EM
algorithm permits us to instead maximize (iteratively) the
expectation of the logarithm of this full likelihood, aver-
aged over the latent variables conditioned on the data.
That is, the expected likelihood is given by

E =
n∏

j=1

∫ 1

0
log

{
P

(
Yj, ξj,Cj|π ,μ, σ

)}
g
(
ξj,Cj|Yj, π̃ , μ̃, σ̃

)
d(ξj,Cj)

(7)

where π̃ , μ̃, and σ̃ are the current estimates of the param-
eters. After choosing starting values for these parameters
the expectation and maximization steps proceed itera-
tively until convergence. To calculate E we recognize that
P(Yj, ξj,Cj|π̃ , μ̃, σ̃ ) is obtained easily from the defined
terms on the right-hand side of (5), represented by (1) and
(2) and the parametric model used for the distribution of
ξj. Further, g(ξj,Cj|Yj, π̃ , μ̃, σ̃ ) can be obtained from Bayes
Theorem, i.e.

g
(
ξj,Cj|Yj, π̃ , μ̃, σ̃

) = g
(
ξj,Cj|π̃ , μ̃, σ̃

)
P

(
Yj|ξj,Cj

)

∫ 1
0 g

(
ξj,Cj|π̃ , μ̃, σ̃

)
P

(
Yj|ξj,Cj

)
d(ξj,Cj)

.
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