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Abstract

Background: Flow cytometry (FCM) is a powerful single-cell based measurement method to ascertain
multidimensional optical properties of millions of cells. FCM is widely used in medical diagnostics and health research.
There is also a broad range of applications in the analysis of complex microbial communities. The main concern in
microbial community analyses is to track the dynamics of microbial subcommunities. So far, this can be achieved with
the help of time-consuming manual clustering procedures that require extensive user-dependent input. In addition,
several tools have recently been developed by using different approaches which, however, focus mainly on the
clustering of medical FCM data or of microbial samples with a well-known background, while much less work has
been done on high-throughput, online algorithms for two-channel FCM.

Results: We bridge this gap with flowEMMi, a model-based clustering tool based on multivariate Gaussian mixture
models with subsampling and foreground/background separation. These extensions provide a fast and accurate
identification of cell clusters in FCM data, in particular for microbial community FCM data that are often affected by
irrelevant information like technical noise, beads or cell debris. flowEMMi outperforms other available tools with
regard to running time and information content of the clustering results and provides near-online results and optional
heuristics to reduce the running-time further.

Conclusions: flowEMMi is a useful tool for the automated cluster analysis of microbial FCM data. It overcomes the
user-dependent and time-consuming manual clustering procedure and provides consistent results with ancillary
information and statistical proof.

Keywords: Flow cytometry, Clustering, Data analysis, Statistical analysis, Microbial communities,
Expectation-Maximization

Background
Flow cytometry (FCM) is a high-throughput technology
to measure multidimensional optical properties of single
cells. Flow cytometry is widely used in medical diagno-
sis and health research but there is also a large area of
applications in the context of complex microbial commu-
nities. Microbial communities are present everywhere in
our environment. They are also used in biotechnologi-
cal applications e.g. for the treatment of waste water, the
production of biogas or the manufacturing of platform
chemicals. Here, FCM can be used for process monitor-
ing such as for testing drinking water quality, process
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control and process improvement [1–5]. Natural systems
can also be well described by flow cytometry and ecolog-
ical measures such as diversity and stability indices that
were recently established [6–8]. Flow cytometry was also
already used to analyze the mice gut microbiome [9] and
the human oral microbiome [10, 11].
The main concern in all of these applications is to fol-

low microbial population [12] or microbial community
structure variations. Evenmachine learning methods have
been tested to identify exclusive strains in cytometrically
measured in-silico communities [13]. As the generation
times of microbial cells are very short and change popula-
tion and community structures rapidly and thus also their
interactions with environmental surroundings, informa-
tion about structure variations need to be obtained in a
very short time and in an automated way. Bioinformat-
ics tools such as flowCHIC [14, 15] and flowCyBar

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3152-3&domain=pdf
http://orcid.org/0000-0001-9517-5839
mailto: choener@bioinf.uni-leipzig.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ludwig et al. BMC Bioinformatics          (2019) 20:643 Page 2 of 17

[16, 17] were developed to reveal insights into microbial
community variations.
While flowCHIC is an automated approach based on

whole dot plot pixel densities and can be used to reveal
pairwise structural variations between microbial commu-
nities, flowCyBar is based on gate/cell cluster infor-
mation and provides insight into community structures
based on numbers of subcommunities, the position of
subcommunities within the dot plot and the number of
cells inside subcommunities. flowCyBar allows to fol-
low community evolution and if environmental param-
eters are involved in the evaluation pipeline, correlation
analyses between those and subcommunity cell numbers
can be performed in order to reveal functional depen-
dencies. Subcommunities of interest can be flow sorted
which allows further cell analysis employing next gen-
eration sequencing or proteomic approaches. Therefore,
flowCyBar is an essential tool to determine cytometric
community characteristics.
To perform the flowCyBar analysis, subcommunities

have to be clustered according to their optical proper-
ties. These subcommunities are likely to have a certain
function within biological processes and show correla-
tions to certain environmental (abiotic) factors that can
be revealed by using flowCyBar. The clustering of these
subcommunities is the only step in the evaluation pipeline
which is still performed manually in an experience-based
and time-consuming way due to the high complexity
of the data. Different from standard cytometric data of
human samples, where cells are usually differentiated
using a variation of labeled antibodies, and of different
fluorescent excitations and emissions (resulting in only
two or three different subpopulations per each 2D-plot)
in bacterial flow cytometry the number of subcommu-
nities can increase to up to 30 in each 2D-plot. Only
two parameters (usually a nucleic acid dye and FSC) are
sufficient to resolve bacterial community structures and
follow their dynamics. The appearance of dozens of dif-
ferent clusters within only two dimensions is only known
for bacterial samples and requires specialized evaluation
procedures. These clusters provide information on cell
abundance changes and anticipated cells can further be
processed after cell sorting.
The automatic definition of that many gates in a 2D-plot

is a bottleneck that cannot be solved by existing tools with
satisfactory precision. To alleviate this issue, we developed
a statistical model-based approach with as few as possible
parameters (that require user control) that fulfills all the
requirements on the outcomes of the clustering procedure
of microbial community data.
Therefore, the approach (i) regards only two channels,

(ii) recognizes typically between 10 to 20 clusters by (iii)
evaluating high cell numbers per sample (200 000 cells)
in a (iv) short time because samples are taken within

generation times of bacteria (usually 60 min). The data
should be available in-time to allow for on-linemonitoring
approaches.

Previous work
To identify cell clusters, several approaches have been
developed in the past three decades. These approaches
can be classified into (i) manual, (ii) semiautomatic and
(iii) fully automatic approaches.
(i) Manual approaches are common and are represented

by cytometric visualization and evaluation software
like the commercially available FCS Express (https://
www.denovosoftware.com/), the device-specific FloMax
(https://www.sysmex-partec.com/), and Summit (Dako
Colorado Inc. Summit), or the freeware FlowPy [18]. All
of these tools provide a 2D graphical representation of
cytometric data. The measured parameters (e.g. forward-
scatter (FSC) or fluorescence intensity) used as axes of a
2D dot plot can be selected by the user. Each axis is divided
into channels representing the signal intensity of an event
after amplification. To mark cell clusters, the user can
draw rectangle, ellipsoid, quadratic or polygonal regions
inside the dot plot. Each of these regions identifies a cell
cluster. The counts (number of cells) for each cell cluster
can be extracted for further analysis. These approaches
are time-consuming and user-dependent as the number of
marked cell clusters as well as the position and the size of
the marked regions is based on the experience of the user
[19–21].
(ii) Semiautomatic approaches are represented by cyto-

metric visualization and evaluation software such as
FlowJo (https://www.flowjo.com/). Besides the manual
marking of cell clusters, FlowJo provides a semiauto-
matic auto-clustering tool to identify cell clusters based
on equal probability distributions which is restricting the
shape of the clusters. The user can adjust the size and the
shape of each identified cell cluster by moving the mouse
over the dot plot and changing the vertices of the poly-
gon gate. The number of clusters that can be identified
in this way is not restricted and the counts for each cell
cluster can also be extracted for further analysis. As the
cell clusters are identified in a semiautomatic way, this
approach is less time-consuming but the results still need
manual effort by the user and are dependent on the user’s
experience.
(iii) Automated approaches comprise software tools that

were developed to provide user-independent and repro-
ducible clustering results of flow cytometry data. Recently,
new approaches were developed to achieve clustering
results automatically that fit the expectations of the user.
flowFP [22] is using the Probability Binning (PB)

algorithm [23]. The binning procedure divides the two-
dimensional dot plot into rectangular regions (bins) that
contain nearly equal numbers of data points. This step of
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dividing the dot plot areas is performed multiple times
based on the number of recursions adjusted by the user.
SamSPECTRAL [24] uses a modified spectral clustering

algorithm which is based on data subsampling (faithful
sampling), graph-theoretical principles and the k-Means
algorithm [25]. SamSPECTRAL has the capability of iden-
tifying arbitrary shape clusters since it is a non-parametric
approach that makes no assumptions on the shape and
distribution of clusters. The main parameters of this
approach are the scaling parameter sigma defining the
“resolution” in the spectral clustering stage and the sep-
aration factor being a threshold that controls to what
extend clusters should be combined or kept separated. In
principle, with a larger sigma smaller clusters will be iden-
tified and with a larger separation factormore clusters will
be identified. Both parameters have to be adjusted prop-
erly by the user. A strategy to adjust both parameters by
reference to one’s own data is provided in the user manual
of the package. The general way is to run SamSPECTRAL
multiple times using the same data and to change both
parameters until they fit the requirements described in the
user manual.
The concept of flowDensity [26] is sequential

bivariate clustering. flowDensity estimates the region
around cell populations using characteristics of a marker
density distribution (e.g. the number, height, and width of
peaks and the slope of the distribution curve). Predefined
cell subsets are identified based on the density distribu-
tion of the parent cell population by analyzing the peaks of
the density curve. flowDensity aims to gate predefined
cell populations of interest where the clustering strategy is
known.
flowMeans [27] is based on the k-Means algorithm.

The number of modes is counted in every single dimen-
sion followed by multidimensional clustering. Adjacent
clusters are merged using Euclidean or Mahalanobis dis-
tance and the number of clusters is determined by a
segmented regression algorithm to detect the change
point in the distance between the merged clusters. As
this approach is based on the k-Means algorithm which
is not considering cluster distributions, it is used to find
equal-sized, non-spherical clusters.
flowClust [21] is using a model-based clustering

approach based on the estimation of distribution param-
eters of clusters by using the Expectation-Maximization
(EM) algorithm. The number of clusters to be found can
be fixed or determined by using the Bayesian Informa-
tion Criterion (BIC) in a manual way. The number of data
points per cluster is calculated and outliers can be iden-
tified by specifying quantiles (e.g. 90%) of the clusters.
This approach is providing good results for Gaussian dis-
tributed cell clusters. An extension, flowMerge [28] pro-
vides automated selection of the best number of clusters,
as well as merging overlapping cluster components.

FLAME [29] is an online software placed on the public
server of the Broad Institute (Cambridge, Massachusetts,
USA) and is a model-based clustering approach using
the EM algorithm to estimate the distribution parame-
ters of clusters. To determine the appropriate number
of samples, the Scale-free Weighted Ratio (SWR) was
invented. This measure is based on the average Maha-
lanobis distances, normalized for the distinct variances
(which determine shape, dispersion, orientation, etc.) of
different clusters, that are computed for pairs of points
within and across clusters. FLAME also provides the con-
struction of a global template of clusters which can be
used to identify clusters across samples and to follow
dynamics.
From this review, we can draw the conclusion that each

of the stated tools has advantages towards manual cluster-
ing if the complexity of the data is not that high (e.g. a low
number of clusters or a low number of data points) and the
information content of the clustering results is restricted
to general statements like the membership of a measured
cell to one of the identified clusters. Each of these tools
has different limitations. Based on the data we work with,
and which forms the basis of the later evaluation, we point
to the following limitations shared to some degree by the
above-mentioned tools. Some of the tools are not practi-
cable for microbial flow cytometry data that are different
from medical data. The most important point here is the
abundance of clusters we are faced with, while medical
data tend to have few, mainly two, clusters in samples.
Furthermore, our data have only two channels but a large
number of distributed subcommunities within this range.
We detect changes in the structure of bacterial communi-
ties by counting numbers of subcommunities per 2D-plot
by recognizing the position of the subcommunities in the
same 2D-plot and by counting cell numbers per subcom-
munity (technically, per gate). This type of analysis can
be performed every few minutes without noticable effort
time or financial effort. A wealth of information can be
drawn from the clusters if community dynamics (i.e. dense
sampling) are pursued.
Medical applications e.g. in oncology or hematology are

the broadest field for the use of flow cytometry. Thus
most of the automated approaches were designed to fit
the requirements of these data sets. The cells measured
in medical applications are relatively big (e.g. size of
blood cells is around 10-20 μm) and are usually labeled
with differently fluorescent antibodies that specify the
cell type. As a result, the cytometric data of one sam-
ple provide multiple fluorescence parameters besides the
intrinsic cell parameters such as forward-scatter (FSC)
or side-scatter (SSC). Several 2D plots are required to
describe all cell types in a typical sample. Therefore, the
number of gates per one 2D plot is frequently low and
does not surpass 3 to 5 subpopulations which can be
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seen in data sets such as GvHD (graft-versus-host disease
[19, 30], http://flowrepository.org/id/FR-FCM-ZZY2) or
HSCT (hematopoietic stem cell transplant [19], http://
flowrepository.org/id/FR-FCM-ZZY6).
In microbial applications, in particular in applications of

microbial community analyses, the cells are much smaller
(0.7-2 μm) and are usually treated with only one fluores-
cent dye to mark all cells in a community and to separate
the cells from noise and debris. Commonly, DAPI (4’,6-
di-amidino-2-phenyl-indole) or SYBR Green are used that
stain the DNA or the nucleic acid of all cells, respectively.
In contrast to the highly resolving DAPI the resolution of
microbial communities by SYBR Green is much lower and
results mainly in only two subcommunities such as low
nucleic acid (LNA) and high nucleic acid (HNA) bacte-
ria. Recently, an attempt was made to resolve these two
subcommunities even further by applying a deconvolution
model [31].
Instead, the data generated from microbial community

measurements using DAPI appear as highly complex sys-
temwhich encompass high numbers of taxonomic entities
and fast variations in physiological states of the measured
cells [4, 9, 10]. In addition, DAPI is prone to find rare cell
types in a complex community as its fluorescence resolu-
tion is of high quality. As a result, the number of clusters
within the cytometric dot plot can be very large and their
separation becomes a difficult problem.
Based on our desiderata as mentioned above, this leads

to the following requirements on the clustering algorithm:
it must (i) be fast enough, (ii) determine the number of
gates automatically, (iii) separate cell clusters from back-
ground clusters containing irrelevant information, and (iv)
calculate the real number of data points for each cell
cluster. The previously presented automated approaches
hit their limits trying to by fulfill these requirements
and do not produce adequate results. As a consequence,
the identification of cell clusters is still performed in an
experience-based, manual way in microbial flow cytom-
etry. This severely limits the amount of data that can
be processed. To improve this situation, we developed
flowEMMi, a tool that is able to identify real cell clus-
ter distributions in microbial FCM data quasi on-line in
an automated way and to export necessary abundance
information of every cell cluster for further analyses.

Methods and implementation
Conceptual outline
Each single cell of a microbial community is visualized
as a data point in a two dimensional cytometric dot plot.
The cell is described by physiological properties such as
cell size measured by forward-scatter (FSC) and num-
ber of chromosomes per cell measured by fluorescence
intensity using DAPI (4’,6-di-amidino-2-phenyl-indole).
Both physiological properties were used in recent studies

of complex microbial community systems with success
[4, 9, 32]. Additional parameters can also be used for
evaluation such as cell density (side-scatter (SSC)) or pulse
width [33, 34].
Cell clusters are typically drawn as ellipsoid regions

within the dot plot by using cytometric visualization and
evaluation software such as Summit or FlowJo. Ellip-
soids as geometric boundaries make sense for at least
three reasons. (i) They are easy to calculate. (ii) They
conform to the way practitioners typically define bound-
aries of clusters in cytometry e.g. to define cell subsets
for cell sorting. (iii) More importantly, an ellipsoidal shape
conforms well enough to identified clusters in real data
because cells typically distribute as bivariate Gaussian
curves [33].
Let X ⊂ R

k be the set of data points x ∈ X obtained
from an experiment. The data considered here typ-
ically has k = 2, since clustering is performed on
projections onto two parameters. Ellipsoid regions of
arbitrary orientation are described via the equation
(x − v)TA(x − v) = 1 where v is the vector-valued
position of the center, A is a positive definite matrix,
and x denotes solution vectors to the boundary. The
corresponding statistical density function is the multi-
variate normal P(x) ∝ exp

(−(x − μ)T�−1(x − μ)
)
. Here

μ ∈ R
k is the mean, � ∈ R

k×k the covariance matrix,
and x ∈ R

k are points whose density is given by P(x).
Having more than one Gaussian distribution leads to a
mixture model

∑
i πiPi(x), with πi (πi ≥ 0,

∑
πi = 1)

describing the weight/probability of each Gaussian.
From a statistical point-of-view, multivariate normal
distributions provide the framework with which to
infer the most likely position of the ellipsoid regions
[35, 36]. The parameter space of the model is written
more succinctly as θ = (π , {μ1, . . . ,μn}, {�1, . . . ,�n})
for a mixture model with n elements, hence
logL(θ |X) = Pθ (X).
As the real distribution parameters are unknown, all

parameters, i.e., mean and covariance for each individual
Gaussian and the weight vector π have to be estimated.
Since no closed form solution exists, an iterative pro-
cedure has to be employed. It appears natural to use
the expectation-maximization (EM, [37]) algorithmwhich
is employed to find maximum likelihood estimates of
unknown parameters of statistical models. The estimated
parameters might not be the best solution as the EM algo-
rithm is only guaranteed to converge to a local optimum.
In the E (expectation) step (Eq. 1), the (log-)likelihood is

calculated based on the estimated parameters of each cell
cluster of the current iteration. In the M (maximization)
step (Eq. 2), new parameters of each cell cluster are com-
puted to maximize the (log-) likelihood from the E step.

Q(θ |θt) = EZ|X,θt logL(θ ;X,Z) (1)

http://flowrepository.org/id/FR-FCM-ZZY2
http://flowrepository.org/id/FR-FCM-ZZY2
http://flowrepository.org/id/FR-FCM-ZZY6
http://flowrepository.org/id/FR-FCM-ZZY6
http://flowrepository.org/id/FR-FCM-ZZY6
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θt+1 = argmax
θ

Q(θ |θt) (2)

Both steps are performed iteratively until a termination
condition is fulfilled by using the following criterion:

| logL(θt) − logL(θt−1)| ≤ 1 (3)

As the likelihood function is steadily growing, the esti-
mated parameters of each cell cluster are converging
toward a local optimum. Upon termination of the algo-
rithm, every two-dimensional data point has a probability
to belong to one of the determined cell clusters that are
defined by the estimated parameters of the underlying dis-
tribution. Due to the steady growth of the log-likelihood
function, the EM algorithm only finds one local optimum
and has therefore to be initialized several times with dif-
ferent start values. Nevertheless, even after a large number
of initializations it is possible that the global optimum for
the numbers of initializations will not be found and that
the calculated estimates of the parameters are not the best
possible solution [38].
Usually, the EM algorithm needs to be initialized with

start (prior) values for each distribution parameter in the
first (E) step. The number of parameters k to be initial-
ized is dependent on the number of clusters c and is equal
to 6c − 1. For c = 20, the user would have to pick 119
start values that also need to fulfill some requirements
(e.g.

∑c
i=1 πi = 1). This is a time-consuming procedure

and is prone to cause errors. For an easier initialization
we changed the order of the steps by choosing the M step
first. Thus, the probabilities of each data point belong-
ing to one of each cluster are randomly sampled from a
Dirichlet distribution, which can be used as a prior dis-
tribution for the probabilities [39] with hyper parameter
α = 1 ensuring that the probabilities of one data point
sum up to 1. Based on the probability matrix the distri-
bution parameters are calculated first and in the next step
the (log-) likelihood is calculated based on the estimates
of the parameters of the first iteration. If good prior dis-
tribution parameters are available (after the subsampling
procedure, see “Data reduction – subsampling” section–
Subsampling), these are used instead for the initialization.

Implementation
To be able to pass objects from R to C++ and back
and to achieve an efficient implementation of the EM
algorithm we used Rcpp [40] and the Eigen C++ tem-
plate library (version 3.3.3) which is provided by the
RcppEigen package (version 0.3.3.3.1, [41]). As the
EM algorithm is based on linear algebra operations,
including matrix-vector and matrix-matrix operations,
RcppEigen enables convenient access to a high-per-
formance framework to implement these operations effi-
ciently. This package needs to be installed to the R library
and is essential for the use of flowEMMi.

Other packages that need to be installed to the R
library for reading and working with the standardized
.fcs files, visualizing the cytometric dot plots, calculat-
ing the statistical significance of the results and for the
random initialization of the EM algorithm are flowCore
[42], flowViz [43], ggplot2 [44], randomcoloR [45],
mixtools [46] and gtools [47].

Removal of technical noise and beads
Technical noises (such as instrumental noise and cell
debris) are unavoidable during a cytometric measure-
ment. These are represented by extremely low fluores-
cence value or scatter signals in each dot plot. Before
automatic determination of gates, such technical noises
should be removed, in addition to the scatter and fluo-
rescence signals of beads, which are implemented in each
measurement for the alignment of samples. In this study,
technical noises and beads per sample were removed with
three steps (Fig. 1) by the software FlowJo (https://www.
flowjo.com/).
First, all events were visualized in the 2D-dot plot of

forward-scatter (FSC) vs. side-scatter (Fig. 1a), and a par-
ent gate (FSC-SSC) was set to remove technical noises
from FSC and SSC channels. Second, similarly, techni-
cal noise from the channel of the DAPI fluorescence was
removed by setting a parent gate (FSC-DAPI) in the 2D-
dot plot of FSC vs. DAPI fluorescence (Fig. 1b). Third,
bead events were removed via specific gates (Fig. 1c)
with the goal of retaining only events that represent
cells (Fig. 1, d). Once created, the FlowJo workspace
containing all these steps can be saved and automati-
cally applied to all samples of the experiment. The final
data, only containing cell events, are used as input for
flowEMMi.

Finding the best number of clusters
In microbial flow cytometry a large number of clusters
within one sample is very common. Furthermore, the
actual number of clusters is unknown independent of the
complexity of the data. To overcome the obstacle of a
manual selection, flowEMMi was designed to determine
this number automatically. Since the number of clusters
is unknown, a (usually larger) range (e.g. c ∈ {2, . . . , 20})
has to be defined by the user to find all clusters at the
first run of flowEMMi. A larger range is recommended
because flowEMMi should generally have no parameters
that need tuning and return the most appropriate number
of clusters regardless of whether it is low or high. This pre-
vents time-consuming initializations of the EM algorithm
and an overestimation with excessive numbers of clusters.
To determine the most appropriate number of clus-

ters we used the Bayesian Information Criterion (BIC,
[48, 49]). Besides other model selection criteria like
the Integrated Complete-data Likelihood (ICL) or Slope

https://www.flowjo.com/
https://www.flowjo.com/
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Fig. 1 Steps for removing noise and beads from the cytometric dot plot. a Technical noise removed by setting a parent gate in forward-scatter vs.
side-scatter. b Technical noise removed by setting a parent gate in forward-scatter vs. DAPI fluorescence. c Beads removed in forward-scatter vs.
DAPI fluorescence. d Cytometric dot plot only containing cells used as input for flowEMMi

Heuristics, the BIC is known to provide the true num-
ber of clusters for Gaussian mixture models in most cases
[35]. Such selection criteria have been used successfully
before [28]. Equation 4 describes of calculation of the BIC
for c clusters, with L(θ) being the achieved likelihood for
a model θ with c clusters, k parameters and i data points.

BIC(θ) = −2 logL(θ) + k log i (4)

The BIC curve can be plotted and shows the BIC value
for each number of clusters c. In most cases, the curve
has a positive exponential trend and for a particular c
the trend of the curve is getting nearly linear. Thus, the
value of c at this point gives a good hint about the most
appropriate number of clusters within the sample. There-
fore, we defined a threshold for the difference of the BIC
value between c and c + 1 for the whole range of c. If this
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difference is below 50 for the first time for the whole range
of c then this particular value of c is considered as themost
appropriate number of clusters cBIC≤50 for a given param-
eter set θc=1, . . . , θc=n where we suppress the individual θ ’s
in the notation below:

cBIC≤50 = argmin
c

(|BIC(c) − BIC(c + 1)| ≤ 50) (5)

Nevertheless, it is possible to select a higher value for c
than suggested by the BIC. A higher value would mean
that more clusters are found but the increase of informa-
tion/likelihood of the model is only marginal.

Data reduction – subsampling
The running time of the EM algorithm is dependent on
the dimension of the data points, the initialization values
of the model parameters (π , μ, �), the number of data
points i and the number of clusters c to be found. The
dimension is constant and as the initialization values are
sampled randomly (see section Idea, last paragraph), the
effect on the running time of the EM cannot be deter-
mined or adjusted from the very start. Good initialization
values result in a low number of iterations and therefore
decrease the running time whereby poor initialization val-
ues result in a high number of iterations and therefore
increase the running time.
The number of data points i used for the clustering can

be adjusted and has a notable and measurable influence
on the running time. It was shown before that the results
of the EM running on a subset of all data points is likely to
provide distribution parameters that differ not that much
from the distribution parameters resulting from the EM
running on all data points [50]. As the measurement of
the cells does not follow a certain order (e.g. small cells
first, big cells last), the data used as input for the EM are
unordered, too.
Thus, a subset of cells can easily be selected by choos-

ing e.g. every 20th data point of the full data set. With the
selection of a subset it is possible to reduce the running
time of the EM in order to rapidly get a good approxi-
mation for the estimates of the model parameters (π , μ,
�) of each cluster c. For the evaluation of flowEMMi
we used samples containing 200 000 cells (without noise
and beads) which ensures a high statistical significance
of the appearance of cells in respective segregated sub-
sets.Measuring fewer cells produces less precise statistical
data, therefore, subsampling is recommended instead of
working with fewer measured cell numbers per sample. By
creating a subset with, say, every 20th data point big clus-
ters will still be visible and detected by flowEMMi. Only
those clusters with a very low abundance may get lost. By
combining the subsampling procedure with the BIC (see
“Finding the best number of clusters” section), the best

number of clusters c can also be determined automatically
in a very short time.
Consequently, the reduction of the number of data

points and the use of the BIC reduces the running time
of the EM and provides the most appropriate value for
the number of clusters c as well as estimates for the
model parameters of each cluster (π ,μ,�). After this step,
these outcomes can be used as already fitted initializa-
tion values for the EM running on the full data set thus
preventing an elaborate and inaccurate initialization. In
addition, instead of random initialization values for sam-
ples with similar structures the same fitted initialization
values can be used as input which further increases com-
parison between samples and decreases the running time
substantially.

Data separation
Another important step is to eliminate irrelevant data
points occurring from technical noise, beads or cell debris.
These data points are not needed for the analysis of the
cell clusters and therefore have to be separated from the
real data representing the cells (see “Removal of technical
noise and beads” section). In addition, not all cells clus-
ter as condensed ellipsoid regions and are instead more
evenly distributed across the dot plot. As every cluster
algorithm generally is designed to assign every data point
to one cluster, a mixed model was developed to create a
background model for the evenly distributed data points
and a foreground model for the relevant cell data points.
Cell clusters form condensed ellipsoid regions within

the dot plot but the data points of a background cluster
spread over a large area. Thus, the variance (of the main
diagonal of )� of a cell cluster distribution ismuch smaller
than the variance of a background cluster distribution.
A threshold can be defined to separate the clusters with
very high variance from the clusters with smaller variance.
A maximum standard deviation σ (square root of vari-
ance) value is predefined to separate background clusters
from foreground clusters but can be changed by the user
if required e.g. if only very small clusters (rare subcom-
munities) or bigger clusters (dominant subcommunities)
should be found. We default to a setting where a cluster is
set as a background cluster if mind(

√
�d,d) ≥ 2 500.

Nevertheless, it was shown that the cell numbers of
background distributions, denoted as off-gate cells, are of
importance as they can be an indicator for occurring dis-
turbances in microbial systems [4]. For this reason, the
off-gate cell number of all background clusters is saved in
a readable text file besides all cell numbers of the detected
cell clusters and can be used for further analyses.

Calculation of cell numbers/Confidence intervals
After the clustering procedure, the reduction of the data
set, and the separation of background clusters, some cell
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clusters may not have a clear ellipsoid shape and can also
contain outliers. For Gaussian distributions, the calcula-
tion of confidence intervals [51] is a statistically legitimate
way to select data points having a certain significance for
being part of an identified cluster. As a confidence inter-
val is the complement of the level of significance (usually
called p-value), a 95% confidence interval reflects a sig-
nificance level of 0.05 which is most commonly used in
statistics [52].
For multivariate Gaussian distributions the confidence

interval of each cell cluster c is determined by its mean
vector μ and its covariance matrix �. Based on these
distribution parameters, the data points lying inside the
confidence interval q = 1 − p can be calculated using the
following equation.

color(x) = argmax
c

N (x|μc,�c) (6)

A point x is considered to be part of the confidence inter-
val for the color c, if the following two Dirac-δ-functions
determine that both, the optimal color for x is c, and the
scaled density is higher than q.

confident(x, c)=δ(c = color(x))δ(N (x|μc,�c)(1−πc)≥q)
(7)

As a consequence, the shape of the data points enclosed
by the confidence interval is elliptic. If required, the user
can change the confidence level (e.g. to 90% or 99%). After
the calculation of the confidence intervals, the numbers
of data points of each cell cluster are saved in a .txt
file. These numbers can be used to compare the result of
the automated clustering with the results of the manual
clustering and for further analyses.

Results and conclusion
A real FCM sample set containing 10 samples (http://
flowrepository.org/id/FR-FCM-ZYK9) was used to inves-
tigate if the methods described above provide adequate
results and make our tool flowEMMi suitable for auto-
matic clustering in cytometric microbial community data.
In this section, the sample InTH_160712_025.fcs (Fig. 1)
was used representatively. The clustering results of the
other 9 samples can be found in the Supplementary infor-
mation (Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10).
First, we tested whether the optimal number of clus-

ters c can be determined using the BIC. To achieve good
approximations for the number of clusters c as well as for
the estimates of the model parameters of each cluster (π ,
μ, �) in this sample, the EM algorithm was initialized
with a subsample of all data points (every 40th data point)
and randomly sampled cluster probabilities for each data
point. Before subsampling, technical noise and beads were
removed. After removing noise and beads 200 000 data
points remained in the .fcs file. As only every 40th data

point was used in this step this means that only 5 000 data
points were used as input of flowEMMi. As the real num-
ber of clusters c was unknown the minimum number of
clusters to be found was set to 2 and the maximum num-
ber of clusters to be foundwas set to 20. Figure 2 shows the
results of flowEMMi after subsampling and calculation of
the BIC.
To show the impact on the choice of the number of

clusters we provide, in addition to the estimated number
of c = 13 clusters (Fig. 2c), two extra clustering results.
One result gave a very low number of c = 5 clusters
(Fig. 2d), and the other of c = 20 which are too many clus-
ters (Fig. 2e). c = 13 seems to be an appropriate value
as the trend of the BIC curve is nearly linear after this
point. The difference of the BIC value between c = 13 and
c = 14 is below 50 for the first time for the whole range
of c. This result can be derived by looking at the plot of
the BIC curve (Fig. 2a) as well as output information of
flowEMMi.
As the number of data points in the subsampling step

is only 1
40 of the original number it is possible that some

clusters are missed after subsampling. Due to that and
the possibility that one or more clusters may be identi-
fied as background clusters in the full data run, c = 13
can be seen as a very conservative value which allows
to identify the main clusters. If the user wants to detect
rare clusters the number of clusters to be found should
be set higher than suggested by the BIC for the full
data run (e.g. c ∈ {13, . . . , 16}). We can say that the
first run of flowEMMi using a subsampled data set and
the BIC provided the appropriate value for the number
of clusters c as shown by the BIC curve (Fig. 2a) and
good approximations for the parameter estimates (π , μ,
�) of each cluster. These data are saved as output of
flowEMMi and can be used as prior parameters for the
full data run.
Then it was tested if the subsampling procedure

decreases the running time by providing good estimates
for the number of clusters c and good approximations
for the parameter estimates of each cluster. flowEMMi
was executed three times without and with usage of the
subsampling procedure. Both ways were compared by
measuring the total running times as well as the num-
bers of iterations for each of the three runs needed for
c ∈ {13, . . . , 16}. Without subsampling flowEMMi was
initialized with a range for the number of clusters to find
c ∈ {2, . . . , 20} with only one initialization. With sub-
sampling, the same range was defined and 10 random
initializations were executed. Then, the outputs of the
subsampling procedure were used as input for the full data
run with a smaller range for c ∈ {13, . . . , 16} and only one
initialization was executed to keep the comparability to
the values achieved without subsampling. Table 1 shows
the outcomes of this comparison.

http://flowrepository.org/id/FR-FCM-ZYK9
http://flowrepository.org/id/FR-FCM-ZYK9
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Fig. 2 Results of flowEMMi after subsampling and calculation of the BIC for the sample shown in Fig. 1 with separation of cell clusters and
background clusters. Background clusters are not encircled and have a gray colour. a Curve of the BIC value shown for c ∈ {2 . . . 20}. b R dot plot
with linear axes values from 0 to 65 536 containing only every 40th data point. c Clustering result of flowEMMi for c = 13 calculated as the most
appropriate number of clusters with 10 cell clusters and 3 background clusters. d Clustering result of flowEMMi for c = 5 with 4 cell clusters and 1
background cluster. e Clustering result of flowEMMi for c = 20 with 14 cell clusters and 6 background clusters
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Table 1 Comparison of running time without and with usage of the subsampling procedure. Mean values (mean) and standard
deviations (SD) of the total running time and the number of iterations for c ∈ {13, . . . , 16} were calculated based on three executions
of flowEMMi, respectively

Number of iterations for c ∈ {13, . . . , 16} Total running time (mm:ss)

mean SD mean SD

without subsampling 228 83 24 : 11 00 : 24

with subsampling 102 31 05 : 31 00 : 34

We can draw the conclusion that the subsampling pro-
cedure decreases the number of iterations needed for
c ∈ {13, . . . , 16} up to approximately 60% with a much
smaller standard deviation and the total running time
up to approximately 75% with a nearly similar standard
deviation. Therefore, we strongly recommend to use the
subsampling procedure in order to achieve good results in
a short time.
In the next step, the full data set is used as input with the

extended range for c ∈ {13 . . . 16} to find rare clusters as
calculated by the BIC and the prior parameter estimates of
each cluster as calculated before by use of the subsampling
procedure. Now, an additional threshold was defined to
separate cell clusters from background. Figure 3 shows the
final clustering results of flowEMMi running on the full
data set.
Only clusters with a standard deviation below the

threshold value are marked as cell clusters and are plotted

in colors distinct from the gray background. In the next
section, a benchmark procedure is performed to compare
these final results i) to the results of manual clustering
using FlowJo and ii) to the results obtained by the other
tools.

Benchmarking
To compare the results of flowEMMi with the man-
ual clustering procedure, the sample InTH_160712_025
(Figs. 1, 2 and 3) was clustered independently by five
expert users to identify the number of clusters, the range
of the abundance values of all clusters and the percent-
age of background and foreground cell numbers based
on 200 000 cells. For manual clustering the commercial
program FlowJo was used and for comparison with
the data generated by flowEMMi the data were biexpo-
nential transformed as by default. the following formula
was used: 10(mean/(65 536/4)). Note: The value of 65 536

Fig. 3 Final result of flowEMMi using prior distribution parameters achieved from the subsamling procedure and an extended range of
c ∈ {13 . . . 16} achieved from the BIC to find rare cell clusters. a R dot plot with linear axes values from 0 to 65 536 containing all data points. b
Clustering result of flowEMMi for c = 14 with 12 cell clusters and 2 background clusters. Background clusters are not encircled and have a gray
colour
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corresponds to the resolution of the cytometer device
(here: InFlux, BD Bioscience, New Jersey, USA). For com-
parison, only those clusters found by flowEMMi that have
the same or similar mean values in both parameters (FSC
and DAPI-Fluorescence) as the clusters found by manual
clustering are considered and counted. Table 2 shows the
outcome of this comparison. The mean values of each
cluster calculated by FlowJo and flowEMMi are given
in the additional file 025.csv which is part of the file
tables.tar.gz.
It can be seen that the number of cell clusters found

by the expert users is in the similar range of the 12 clus-
ters found by flowEMMi and varying from 13 to 16. The
range of abundances and the proportions of foreground
and background cell numbers is slightly in favor of the
expert users which covered more cells within the clusters.
Further 9 samples were tested in this regard. The out-
comes can be seen in the Supplementary information. For
flowEMMi and all previously introduced automated clus-
tering tools (flowFP, SamSPECTRAL, flowDensity,
flowMeans, flowClust and FLAME) we also com-
pared the running time, the abilities to determine the
number of cell clusters automatically, to separate cell clus-
ters from background clusters and to calculate the cell
numbers for each cell cluster. Table 3 shows the results of
this comparison.
In addition to this table, the clustering results of all

tools are displayed in Fig. 4. Results for flowMerge have
been separated out into Table 4 and Additional file 11, as
flowMerge has a similar feature set. From a user stand-
point, the better F1 measure and vastly improved running
times of flowEMMi are most important.
Table 3 and Fig. 4 show that none of the other tools

used for this comparison can separate cell clusters from
background clusters. This is important as not only the
cell numbers of real cell clusters can be used for further
evaluation tools but also background cells as additional
information which is useful for some applications. Both,

the number of predicted cell clusters, and the relative
number of cells, predicted to be part of clusters are impor-
tant. As such, any tool that severely underestimates the
number of clusters will almost certainly mispredict the
number of cells that form clusters which makes down-
stream analysis complicated and can lead to misinter-
pretation of results. A reasonable estimate of the cor-
rect number of clusters is only provided by flowEMMi,
flowClust, and flowMerge. For SamSPECTRAL and
flowMeans the calculated number is in a good range
but too small. The correct shape of clusters and therefore
the required distribution parameters are only provided by
flowEMMi, flowClust and SamSPECTRAL. The shape
of clusters produced by all other tools does not reflect
real cell cluster distributions. In addition, the running
time of flowEMMi is with 15 times lower than the run-
ning time of flowClust and achieves better results.
The flowMerge software extends flowClust and is
the most close in terms of the set of features we require
and therefore we performed an in-depth analysis of its
F1 measure and running times compared to flowEMMi.
In comparison, as shown in Table 4, flowEMMi
delivers higher F1 values at vastly superior running
times.
flowEMMi provides all information needed for the

evaluation of microbial community FCM data. It fulfills all
the requirements of the users and outperforms other tools
that were tested with regard to running time and output
features.

Mock communities
For additional testing of flowEMMi two artificial
microbial cytometric mock communities were used
consisting of either three or four different bacterial
species. One of the artificial communities was har-
vested from plates and comprised three strains, namely
Stenotrophomonas rhizophila DSM 14405, Kocuria rhi-
zophila DSM 348, and Paenibacillus polymyxa DSM 36,

Table 2 Comparison of clustering results from manual clustering performed by 5 experts using FlowJo and automated clustering
using flowEMMi

# clusters Range of abundances (%) Cell numbers (%) # congruent clusters

Foreground Background

flowEMMi 12 1.56 - 20.72 71.6 28.4 12

User 1 13 0.25 - 27.7 76.5 23.5 10

User 2 15 0.21 - 30.0 82.1 17.9 11

User 3 13 0.24 - 28.2 79.1 20.9 11

User 4 16 0.26 - 31.2 90.7 9.3 11

User 5 15 0.22 - 32.1 91.6 8.4 11

Compared were i) the number of clusters that were found, ii) the range of the abundance values of all clusters, iii) the cell numbers of foreground/background cell and iv) the
number of congruent clusters that were found by the user and flowEMMi, respectively. Congruent clusters are cell clusters having the same or similar mean values in both
parameters (FSC and DAPI-Fluorescence)
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Table 3 Comparison of automated clustering approaches

Tool Running time (h:mm:ss)a Output features

Determine number of clusters Shape of clusters Separate background Calculate cell numbers

flowEMMi 0 : 05 : 31 yes ellipsoid yes yes

flowFP 0 : 00 : 03 no rectangular no not applicable

SamSPECTRAL 0 : 06 : 25 space-part. arbitrary no not applicable

flowDensity 0 : 00 : 02 no rectangular no not applicable

flowMeans 0 : 00 : 17 space-part. non-spherical no not applicable

flowClust 1 : 15 : 30 yes ellipsoid no yes

flowMerge (Table 4) yes ellipsoid yes yes

FLAME −∗ −∗ −∗ −∗ −∗

Automated approaches were compared regarding the running time and the abilities to identify rare cell types, to separate cell clusters from background clusters and to
calculate the real cell numbers for each cell cluster. a Running time calculated on a Intel(R) Core(TM) i5-3210M CPU @ 2.5 GHz with 4096MB RAM and Windows 7 Enterprise
64-Bit Edition. FLAME: “−∗” denotes that no results were received as our submitted “jobs” were always in the queue for several days and later cancelled by the server.
flowEMMi is the implementation discussed in this work. space-part. denotes k-means type algorithms that do not produce tight clusters

while the other was harvested from liquid culture and
comprised four strains, namely Stenotrophomonas rhi-
zophila DSM 14405, Escherichia coli DSM 4230, Kocu-
ria rhizophila DSM 348, and Paenibacillus polymyxa
DSM 36.
The respective strains were separately cultivated in in

Lysogeny Broth (LB, composition: yeast extract 5gl−1,
NaCl 5gl−1, tryptone 10gl−1, pH 7.0, and agar 20 gl−1 in
case of plates; Carl Roth GmbH, Karlsruhe, Germany).
The cells were harvested and washed in PBS as described
elsewhere [32], stabilized by adding para-formaldehyde
solution (PFA, 2% in PBS), and, after a washing step, fixed
in ethanol (70% in bi-distilled water) for storage at -20◦C.
DNA staining was performed using DAPI as described by
[32]. For the plate microbial cytometric mock community
the strains were mixed at proportions: S. rhizophila: 1%,
K. rhizophila: 19%, P. polymyxa: 80%; and for the liquid
microbial cytometric mock community the strains were
mixed at proportions S. rhizophila: 2.5%; K. rhizophila:
20%, P. polymyxa: 70 %, and E. coli 7.5% as was determined
by OD (dλ 700nm = 0.5 cm). Finally, the two mock commu-
nities were measured by flow cytometry with regard to
blue fluorescence (355 nm excitation) vs. forward scatter
(488 nm excitation) using a BD Influx v7 Cell Sorter
(Becton, Dickinson and Company, Franklin Lakes, NJ,
USA). The raw data are available at http://flowrepository.
org/id/FR-FCM-ZYNW (file plate mock commu-
nity: mCMC80.1.19.fcs; file liquid mock community:
70.2.5.20.7.5.fcs).
The resulting flow cytometric patterns are shown in

Additional file 12 while the results of flowEMMi are
shown in Additional file 13 and 14. The data clearly show
the powerful performance of flowEMMi which not only
could separate the four, respective three strains of the two
microbial cytometric mock communities but also even
subpopulations of the used pure mock strains.

Discussion
We compared the outcomes of flowEMMi to the out-
comes of the manual clustering performed by 5 expert
users (Table 2) using FlowJo based on one representa-
tive sample (Figs. 1, 2 and 3). The clusters found manually
by using FlowJo and automatically by flowEMMi were
very similar concerning the percental abundances and the
location of the cell clusters. flowEMMi slightly underes-
timated the abundances of cell clusters which might be
caused by the fact that manually set clusters do not fol-
low statistical conditions e.g. confidence intervals. Cell
clusters only containing a small number of cells typi-
cally (at least for our data) do not conform to a Gaussian
distribution, and instead have a mostly flat density.
Furthermore, cell clusters that are big and isolated very

often vary in size and comprise only low numbers of cells
which nevertheless seem to belong to the respective clus-
ter but without statistical confidence. flowEMMimay not
recognize such clusters since the cells might not be within
the required confidence interval of the respective clus-
ter and thus are not assigned with statistical significance.
This gives an additional value to the quality of the clus-
tering result. Nevertheless, the size of the cell clusters can
be controlled by the user by decreasing or increasing the
confidence interval.
We put an additional focus on the comparisons between

flowEMMi and other automated approaches (Table 3). By
using flowFP, one bin is always divided into two smaller
bins of the same size. Therefore, the size and the location
of each cluster is constrained to spatial subdivison and the
number of clusters to be found is always a power of two
where the exponent is the recursion depth. The clustering
results can also not be used for cell sorting as the cells
of interest are always surrounded by a rectangular region
that contains more cells which are not of interest and is
not reflecting the real distribution of the cell cluster.

http://flowrepository.org/id/FR-FCM-ZYNW
http://flowrepository.org/id/FR-FCM-ZYNW
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Fig. 4 Results of clustering tools. a Result of flowEMMi. 12 cell clusters and 2 background cluster were identified. b Result of flowFP for 4 recursion
= 16 clusters. c Result for SamSPECTRALwith adjusted parameters (σ = 1 000, separation=0.3) and automatically determined number of clusters. d
Result of flowDensity with overlapping densities. e Result of flowMeans with Voronoi like cluster shapes (MaxN=20). f Result of flowClust
with automatically determined best number of clusters for c ∈ {2 . . . 20} (cf. detailed analysis of flowMerge in Table 4 and discussion)
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Table 4 Running times and F1 score aggregated over experiments with different ε stopping criteria

Label ε ≤ Time (mean) Time (sd) F1 score (mean) F1 (sd)

flowEMMi 1.0 528 53 0.56 0.18

flowEMMi 0.01 1 080 214 0.59 0.17

flowEMMi 10−5 1 445 182 0.56 0.17

flowMerge 1.0 8 391 3 239 0.54 0.24

flowMerge 0.01 8 951 3 597 0.51 0.17

flowMerge 10−5 56 652 53 379 0.54 0.17

Times and F1 scores (and their standard deviation (sd)) are aggregated over four experiments and 5 expert user gatings, each. Note that the default flowMerge stopping
criterion of 10−5 yields running times in excess of 1 day. flowEMMi consistently yields better F1 measures with an average improvement of 4% to 16% over flowMerge,
with much better running times, easily yielding speed improvements of ×8 – ×15 or better. For both algorithms, having a more stringent EM stopping criterion tends to
increase the F1 score, however especially for flowMerge at prohibitive running time costs

By using SamSPECTRAL, even with adjustment of both
parameters (sigma and separation factor) as described in
the user manual, the number of clusters that were found
was in general too small. Besides, the final results of
SamSPECTRAL are always achieved after a subsampling
procedure which is necessary to keep the running time of
large data sets in an acceptable scale. The cell numbers
per cluster are therefore always relative to the numbers
of cells of the reduced input data. flowDensity is pri-
marily designed to gate predefined cell populations of
interest where the clustering strategy is known. As den-
sities of cell clusters are often overlapping within one
parameter (clusters with similar forward-scatter, i.e. cell
size but different fluorescence intensity, i.e. number of
chromosomes), these overlapping densities conflate into
one big density distribution with one very wide peak what
makes the separation almost impossible. Therefore, this
approach is only suitable if the cluster densities are not
overlapping to a high extend.
flowMeans is designed to find equal-sized, non-

spherical clusters. Therefore, this approach is not suit-
able for Gaussian distributed clusters that form ellipsoid
shapes and are very diverse in size. By using flowClust,
background clusters that are evenly distributed across the
dot plot are not separated from cell clusters. Besides, the
running time of flowClust is relatively long and the
number of cell clusters that are found is too low. We were
not able to receive results from the online tool FLAME as
our submitted “jobs” were always in the queue for several
days and later cancelled by the server.
To increase the reliability of finding correct clusters con-

cerning the location and abundances of cells, we used a
model-based approach to determine the parameters of a
mixture of multivariate Gaussian distributions. Our cur-
rent implementation of the EM algorithm utilizes a variant
of stochastic EM, which initializes the EM with different
starting points for each run. Naturally, this will lead to
slightly different clustering results for each run. Despite
the fundamental assumption that cells form Gaussian dis-
tributed clusters it is also possible that different cell cluster
distributions occur (e.g. flat distributions). In general, the

EM algorithm is able to estimate the parameters of each
existing distribution and also mixtures of different distri-
butions. It is possible to fit parameters of different distri-
butions to each cluster and to select which distribution
is describing the cluster more precisely from a statistical
point of view. We focused here on Gaussian distributions
and achieved satisfactory results. Allowing different dis-
tributions could lead to better results as also cell cluster
would be found that occur as e.g. clusters with essentially
flat densities.

Conclusion & outlook
In this work, we devised a method for the automated
clustering of flow cytometry data derived from microbial
communities. There is a big demand for an automated
clustering procedure for the evaluation of cytometric sam-
ples derived from biotechnology, natural environment as
well as agricultural und human health disciplines e.g. the
animal or human microbiomes [53].
Flow cytometric analysis of microbial communities

were recently proven to provide much deeper insight into
underlying mechanisms of community assembly in com-
parison to amplicon sequencing technologies [8]. Resolv-
ing the respective contributions of e.g. deterministic or
neutral paradigms to community structure and func-
tions is dependent on sample density which cannot be
provided by any other method within community obser-
vation time. Thus, the automated clustering procedure
derived from microbial communities contributes to an
even faster evaluation procedure and would close a gap
in currently available automated clustering procedures
that were mainly developed for samples with eukary-
otic background and diversification in many fluorescent
channels thus providing only few subpopulations per 2D
dot plot.
Our automated procedure is now able to find a high

number of previously unknown distributions in one 2D
dot plot which is a huge step forward for fast and nearly
on-line disposal of data to allow interventions for process
control or fast diagnostic decisions. Follow up tools for
on-line data evaluation were recently published [7].
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As cell clusters can not always be described as Gaus-
sian distributions the next step will be to allow different
types of distributions (e.g. distributions with flat densi-
ties) and to fit the most probable distribution to each
cluster. This will allow flowEMMi to find more clus-
ters being better described by the underlying distribution.
The EM algorithm is a powerful approach to estimate the
unknown parameters of distributions describing clusters
of cells with equal or similar optical parameters that are
measured by FCM. With this approach it is possible to
overcome the user-dependent and time-consuming clus-
tering procedure which is still performed in a manual
way.

Availability and requirements
Project name: flowEMMi
Project home page: http://www.bioinf.uni-leipzig.de/
Software/flowEMMi/
Operating system(s): Platform independent
Programming language: R, C++
Other requirements: optionally Nix or NixOS for auto-
matic dependency resolution (https://nixos.org)
License: GPL-3
Any restrictions to use by non-academics: see License

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3152-3.

Additional file 1: Clustering results for sample InTH_160719_039 using
flowEMMi with 2 congruent cell clusters and 94.1% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 2 cell clusters with 89.9% foreground cells (b). User 2
selected 8 cell clusters with 93.4% foreground cells (c). User 3 selected 2
cell clusters with 91.1% foreground cells (d). User 4 selected 6 cell clusters
with 98.6% foreground cells (e). User 5 selected 4 cell clusters with 97.7%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 039.csv.

Additional file 2: Clustering results for sample InTH_160728_034 using
flowEMMi with 2 congruent cell clusters and 94.1% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 3 cell clusters with 88.8% foreground cells (b). User 2
selected 10 cell clusters with 94% foreground cells (c). User 3 selected 2 cell
clusters with 88.7% foreground cells (d). User 4 selected 9 cell clusters with
99% foreground cells (e). User 5 selected 7 cell clusters with 100%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 034.csv.

Additional file 3: Clustering results for sample InTH_160720_026 using
flowEMMi with 7 congruent cell clusters and 76.4% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 8 cell clusters with 76% foreground cells (b). User 2
selected 14 cell clusters with 82.8% foreground cells (c). User 3 selected 9
cell clusters with 79.5% foreground cells (d). User 4 selected 12 cell clusters
with 86.9% foreground cells (e). User 5 selected 13 cell clusters with 95.9%
foreground cells (f).

The label of the clusters selected by using FlowJo is in accordance with
the colours of the clusters calculated by flowEMMi. The mean values and
abundances of all cell clusters calculated by flowEMMi and FlowJo can
be found in the additional file 026.csv.

Additional file 4: Clustering results for sample InTH_160715_019 using
flowEMMi with 8 congruent cell clusters and 64.6% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 6 cell clusters with 60.1% foreground cells (b). User 2
selected 10 cell clusters with 75.9% foreground cells (c). User 3 selected 6
cell clusters with 67.2% foreground cells (d). User 4 selected 12 cell clusters
with 87.7% foreground cells (e). User 5 selected 15 cell clusters with 90.6%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 019.csv.

Additional file 5: Clustering results for sample InTH_160714_033 using
flowEMMi with 9 congruent cell clustersand 74.7% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 7 cell clusters with 61.7% foreground cells (b). User 2
selected 17 cell clusters with 80.1% foreground cells (c). User 3 selected 8
cell clusters with 63.2% foreground cells (d). User 4 selected 16 cell clusters
with 92.7% foreground cells (e). User 5 selected 17 cell clusters with 90.2%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 033.csv.

Additional file 6: Clustering results for sample InTH_160729_027 using
flowEMMi with 10 congruent cell clusters and 66.4% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 6 cell clusters with 69.5% foreground cells (b). User 2
selected 14 cell clusters with 87% foreground cells (c). User 3 selected 6 cell
clusters with 69.9% foreground cells (d). User 4 selected 11 cell clusters
with 93.7% foreground cells (e). User 5 selected 12 cell clusters with 93%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 027.csv.

Additional file 7: Clustering results for sample InTH_160715_020 using
flowEMMi with 10 congruent cell clusters and 55.8% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 8 cell clusters with 64.2% foreground cells (b). User 2
selected 13 cell clusters with 78.2% foreground cells (c). User 3 selected 8
cell clusters with 70.5% foreground cells (d). User 4 selected 13 cell clusters
with 86.8% foreground cells (e). User 5 selected 17 cell clusters with 91.3%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 020.csv.

Additional file 8: Clustering results for sample InTH_160720_035 using
flowEMMi with 11 congruent cell clusters and 72.6% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 7 cell clusters with 69.5% foreground cells (b). User 2
selected 17 cell clusters with 81.7% foreground cells (c). User 3 selected 7
cell clusters with 71.5% foreground cells (d). User 4 selected 17 cell clusters
with 88.5% foreground cells (e). User 5 selected 15 cell clusters with 92%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 035.csv.

Additional file 9: Clustering results for sample InTH_160712_025 using
flowEMMi with 12 congruent cell clusters and 71.6% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 13 cell clusters with 76.5% foreground cells (b). User 2
selected 15 cell clusters with 82.1% foreground cells (c). User 3 selected 13
cell clusters with 79.1% foreground cells (d). User 4 selected 16 cell clusters
with 90.7% foreground cells (e). User 5 selected 15 cell clusters with 91.6%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
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flowEMMi and FlowJo can be found in the additional file 025.csv.

Additional file 10: Clustering results for sample InTH_160713_012 using
flowEMMi with 14 congruent cell clusters and 49.5% foreground cells (a)
and manual clustering performed by 5 expert users using FlowJo (b-f).
User 1 selected 13 cell clusters with 49.3% foreground cells (b). User 2
selected 20 cell clusters with 75.4% foreground cells (c). User 3 selected 14
cell clusters with 47.3% foreground cells (d). User 4 selected 19 cell clusters
with 66.3% foreground cells (e). User 5 selected 25 cell clusters with 92%
foreground cells (f). The label of the clusters selected by using FlowJo is
in accordance with the colours of the clusters calculated by flowEMMi.
The mean values and abundances of all cell clusters calculated by
flowEMMi and FlowJo can be found in the additional file 012.csv.

Additional file 11: Comparison of running time (note the logarithmic
scaling) vs F1 score for flowEMMi (characters ε, e, E in blue) and
flowMerge (characters μ, m, M in red). flowEMMi yields, on average
over all runs shown above ≈ 10.7% better F1 scores (flowEMMimean:
0.57, sd:0.17; flowMergemean: 0.53, sd: 0.20), at very different time
scales (flowEMMimean: 1 012, sd: 427; flowMergemean: 24 665, sd:
38 019). flowEMMi performs extremely well in a time constrained regime
at early Expectation-Minimization cutoff (using on the cutoff at < 1 instead
of cutoff < 0.01 or < 10−5) with F1 score mean: 0.56, sd:0.18, and a
running time in seconds of mean: 528, sd: 53. While flowMerge has
slightly worse F1 score characteristics (mean: 0.54, sd: 0.24), with running
times a lot higher (mean: 8 391, sd: 3 239). Since both algorithms are
parallelized, actual wall-clock times are lower by a factor of 2–3 on a 4-core
machine. Given running times are total core seconds used.

Additional file 12: Flow cytometric measurement of microbial cytometric
mock communities. Left: strains Stenotrophomonas rhizophila DSM 14405,
Escherichia coli DSM 4230, Kocuria rhizophila DSM 348, and Paenibacillus
polymyxa DSM 36 were grown in liquid culture, respectively. Right: strains
Stenotrophomonas rhizophila DSM 14405, Kocuria rhizophila DSM 348, and
Paenibacillus polymyxa DSM 36 were grown on plate. The beads were
introduced for instrumental alignment of the flow cytometer. Below:
manually set gate templates for the liquid (left) and plate (right) microbial
cytometric mock communities.

Additional file 13: Automated gating by flowEMMi revealed the
highest abundant subpopulations of the four strains Stenotrophomonas
rhizophila DSM 14405, Escherichia coli DSM 4230, Kocuria rhizophila DSM
348, and Paenibacillus polymyxa DSM 36 grown in liquid culture. From left
to right: full data set, including noise, rectangular cutout without corner
noise, gating on subset of data. Automatic gating by flowEMMi yields an
F1 value of 0.85.

Additional file 14: Automated gating by flowEMMi revealed the
highest abundant subpopulations of the three strains Stenotrophomonas
rhizophila DSM 14405, Kocuria rhizophila DSM 348, and Paenibacillus
polymyxa DSM 36 grown on plate. From left to right: full data set, including
noise, rectangular cutout without corner noise, gating on subset of data.
Automatic gating by flowEMMi yields an F1 value of 0.81.
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