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Abstract

residuals, model selection, and model averaging.

Background: Our current understanding of archaic admixture in humans relies on statistical methods with large
biases, whose magnitudes depend on the sizes and separation times of ancestral populations. To avoid these biases, it
is necessary to estimate these parameters simultaneously with those describing admixture. Genetic estimates of
population histories also confront problems of statistical identifiability: different models or different combinations of
parameter values may fit the data equally well. To deal with this problem, we need methods of model selection and
model averaging, which are lacking from most existing software.

Results: The Legofit software package allows simultaneous estimation of parameters describing admixture, and the
sizes and separation times of ancestral populations. It includes facilities for data manipulation, estimation, analysis of

Conclusions: Legofit uses genetic data to study the history of a subdivided population. It is unaffected by recent
history and can therefore focus on the deep history of population size, subdivision, and admixture. It outperforms
several statistical methods that have been widely used to study population history and should be useful in any
species for which DNA sequence data is available from several populations.
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Background

Genetic data now play a prominent role in research on
human prehistory. In less than a decade, we have learned
that modern humans carry DNA from Neanderthal ances-
tors [1] and also from a previously unknown “Denisovan”
population [2, 3]; we have learned that the European
Neolithic was primarily a movement of peoples [4, 5], but
that farmers and foragers then lived side by side, exchang-
ing genes for thousands of years [6]; we have learned that
Indo-Europeans arrived in Europe about 5000 years ago as
invaders from the Pontic Steppes [7]; and we have learned
that some populations carry DNA from “superarchaics,’
which separated from other humans perhaps a million
years ago [8, 9].

There are reasons, however, to be skeptical of these
new findings. First, many of the statistics used to esti-
mate archaic admixture have large biases. For example,
Rogers and Bohlender ([10], Fig. 4) document biases in
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one statistic that range from 50 to 600%, depending on the
separation time of Neanderthals and Denisovans. Petr et
al. [11] show that similar bias in another statistic underlies
an apparent (but artifactual) decline in the frequency of
Neanderthal DNA in Europe during the past 45,000 years.
To avoid these biases, one must simultaneously estimate
the parameters that underlie them.

In addition to bias, there are also problems of statisti-
cal identifiability, which arise when several models fit the
data equally well. Identifiability problems can lead us to
prefer incorrect models of history, and they can make con-
fidence intervals unrealistically narrow. Consequently, it is
likely that some of the recent findings summarized above
are incorrect.

The Legofit package [12, 13] introduces methods that
address these problems. It reduces bias by allowing simul-
taneous estimation of the parameters that introduce bias
into competing estimators. It uses model selection and
model averaging to cope with identifiability problems, and
it uses residual analysis to diagnose misspecified models.
This article will not attempt a comprehensive review of
genetic methods for estimation of population history.
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Instead, it will describe Legofit and compare it against sev-
eral methods that are widely used in the study of archaic
admixture.

Implementation

Nucleotide site patterns

Legofit works with the frequencies of nucleotide site pat-
terns [14, 15], which are defined below. The first step in
any analysis involves tabulating site pattern frequencies
from data. Legofit provides tools that tabulate these fre-
quencies from standard data formats and also from several
forms of simulation output.

Site patterns are illustrated in Fig. 1. A nucleotide site
exhibits the yn site pattern if random nucleotides drawn
from populations Y and N carry the derived allele, but
those drawn from other populations carry the ancestral
allele. They represent the special case of the site frequency
spectrum [16] in which the sample consists of one haploid
genome per population.

Many different gene trees—even trees with different
topologies—may contribute to any given site pattern.
Nonetheless, let us begin with a particular gene tree,
which is shown in Fig. 1. There we see a population net-
work and, embedded within it, the gene tree (or gene
genealogy) of one particular locus (nucleotide site). A
mutation on the red branch would generate yn, whereas
one on the blue branch would generate ynd. Mutations
elsewhere would generate other site patterns. Let B; repre-
sent the length in generations of the branch generating site
pattern i. For example, By, is the length of the red branch

yn: 0
ynd:

Fig. 1 Population network with embedded gene tree. A mutation on

the solid red branch would generate site pattern yn (shown in red at

the base of the tree). One on the solid blue branch would generate
ynd."0" and “1" represent the ancestral and derived alleles. Key: X,

Africa; Y, Eurasia; N, Neanderthal; D, Denisovan

Page 2 of 10

in Fig. 1 and B, is the length of the blue branch. The
gene tree will vary from locus to locus, and in any given
gene tree many of these lengths will be zero. For example,
By = 0in Fig. 1, because no single mutation on that gene
tree could generate site pattern xy.

At a particular locus, and conditional on B;, the num-
ber of mutations on the branch generating pattern i is
Poisson with mean uB;, where u is the mutation rate per
nucleotide site per generation. We use the model of infi-
nite sites [17], which assumes that « is small enough that
we can ignore the possibility of multiple mutations on
a given branch. To this standard of approximation, the
unconditional probability of site pattern i on a random
gene tree is uE[B;], where the expectation is with respect
to the coalescent process constrained by the network of
populations.

Let I; represent the count of site pattern i across all
sequenced nucleotide positions. Its expected value is
E[I;] = uLE[B;], where L is the number of nucleotide posi-
tions in the sequence. The probability that a particular
polymorphic site exhibits pattern i is

p— FBl 1)
ZjGQ E[B)]
where Q is the set of site patterns under study.

In previous publications [10, 18] we and others have
derived analytical expressions for E[B;] under particular
models of history. This analytical approach becomes dif-
ficult as models grow in complexity. Legofit relies instead
on computer simulations, which make it feasible to deal
with complex models of history. In each iteration of the
simulation, the coalescent algorithm builds a gene geneal-
ogy analogous to the one in Fig. 1. From this genealogy,
legofit! calculates branch lengths (B;). It estimates E[B;] as
the average of B; across simulation replicates. Equation 1
then estimates P;.

This approach simulates branch lengths but not muta-
tions, and the simulations can be done in parallel. For a
given level of accuracy, it is orders of magnitude faster
than programs that simulate both mutation and recom-
bination, as shown in the Additional file 1. This speed
makes it possible to deal with the entire suite of site pat-
terns and with complex models involving tens of popula-
tions. Nonetheless, this is still a computationally intensive
approach. In a recent analysis [19], we studied nine dif-
ferent models. This took 10 days to do but would have
taken 12 years without parallel processing. This 440-fold
speed-up was possible because the calculations were par-
allelized not only across cores on each compute node,
but also across nodes on the cluster at our local Center
for High-Performance Computing. The legofit program

1\ e use lower case “legofit” to refer to the estimation program within the
(capitalized) “Legofit” package.
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parallelizes automatically across cores. Section 4 of the
Additional file 1 describes methods for parallel processing
on a cluster.

To validate our numerical approach to estimating prob-
abilities, we compared it with theoretical results in models
for which analytical theory is feasible [10]. We can also
validate by comparing the expected values generated by
our method to data simulated in other ways. This is done
in Fig. 2, which shows that all three simulators generate
distributions of site pattern frequencies that are centered
around the expected values estimated by legofit. This
verifies the reliability of our approach.

Models of history
A model of population history is specified in a file whose
name ends with “lgo” This file specifies the population
network and the location of genetic samples within it. It
uses a flexible syntax to describe population histories of
arbitrary complexity. Populations can separate, combine,
exchange migrants, and change in size. Changes in pop-
ulation size occur in discrete steps, and episodes of gene
flow are modeled as discrete events, but there is no limit
on the number of steps or episodes of gene flow. A model
with K samples generates 2K — 2 site patterns. For exam-
ple, 10 samples would generate 1022 site patterns, which
would provide a rich basis for estimating parameters.
Parameters fall into three categories: (1) free parameters
are estimated by legofit; (2) fixed parameters have values
that do not change; and (3) constrained parameters are
specified as known functions of one or more other param-
eters. Constrained parameters model relationships among
variables. We use them below to reexpress free variables
in terms of principal components.

Tabulating site patterns from data
The first stage of analysis involves tabulating site pat-
terns from DNA sequence data. These data need not be
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phased, but they should be free of ascertainment bias. In
the discussion above, I assumed that one haploid genome
is sampled from each population. Real samples are larger,
and a given nucleotide site may contribute to several site
patterns. The contribution to a given site pattern is the
probability that a sub-sample, consisting of one haploid
genome drawn at random from the larger sample of each
population, would exhibit this site pattern. For example,
consider a model with three populations, X, Y, and N, and
let pix, piy, and p;n represent derived allele frequencies at
the ith polymorphic site in the samples from these popula-
tions. Then site pattern xy occurs at site i with probability
zi = pixpiy (1 — pin) ([1], p. S131). Aggregating over sites,
Ly = > _;zi summarizes the information in the data about
this site pattern. In general, for the jth site pattern, the
analogous summary is ;. In this formulation J; is no longer
a count. It is the expected count in a random subsample of
the full sample.

The Legofit package includes programs for tabulating
site patterns from data and from several publicly-available
programs for coalescent simulation: ms [20], msprime
[21], and scrm [22].

Estimation
Legofit estimates parameters by maximizing the compos-
ite likelihood,

1,
L) =[]5'® (2)
je

where P; is as given in Eq. 1, @ is the set of site patterns
under study, and 6 is a vector of free parameters. This is
not the full likelihood, because it ignores linkage disequi-
librium and treats nucleotide sites as though they were

independent.
Legofit uses a numerical algorithm—differential evolu-
tion (DE, [23])—to maximize L. DE maintains a swarm
of points, which are initially distributed widely across the

calculated with legosim. Blue circles show 50 simulated data sets
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Fig. 2 Deviation from expected values in 50 data sets generated by each of three simulation programs: ms [20], msprime [21], and scrm [22]. All
simulations assume the same model of history, which is illustrated in Fig. 1 and described fully in the Additional file 1. Expected values were
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parameter space. In each generation, these points mutate
and recombine to form offspring, which then undergo
selection to form the next generation. The objective func-
tions of the points are evaluated in parallel, in separate
threads of execution. This process involves several stages,
beginning with an initial stage in which the objective func-
tion is evaluated with modest precision and progressing to
a final stage, which typically uses two million simulation
replicates per function evaluation. This provides much
more precision than a sample of two million polymorphic
nucleotide sites, because we are simulating branch lengths
only—not mutation or recombination. (See the Additional
file 1 for details).

Bootstrap confidence intervals

The Legofit package uses a bootstrap [24] to mea-
sure uncertainty. Because linked loci are not statisti-
cally independent, we cannot use an ordinary bootstrap.
Instead, Legofit uses a moving-blocks bootstrap [25],
which resamples blocks of nucleotides. By default, each
block consists of 500 polymorphic nucleotide sites.

Bootstrap replicates approximate independent samples
from the stochastic process that produced the original
data. By applying legofit to many bootstrap replicates,
we obtain an approximation of the sampling distribution
of the estimates. This distribution is used to estimate
confidence intervals.

Each bootstrap replicate is analyzed by a separate
instance of the legofit program. These instances can oper-
ate in parallel, on separate nodes of a compute clus-
ter. Legofit is thus parallel in two senses: within each
node, legofit uses multiple threads to parallelize across
the points maintained by the DE algorithm. It also uses
multiple nodes to parallelize across bootstrap replicates.

Model selection

The study of population history requires that we choose
among complex, non-nested models. Better fits can usu-
ally be achieved with more complex models, but this
improvement may be illusory—the consequence of fit-
ting noise rather than signal. Overfitting, as this is called,
can produce incorrect inferences about population his-
tory [26]. We may report evidence of gene flow or of
bottlenecks in population size where no such inference
is warranted. Reliable inference requires that we protect
against overfitting. This is not possible with the genetic
methods currently used to study archaic admixture.

In other statistical contexts, such problems might be
addressed via tools such as Akaike’s information crite-
rion (AIC, [27]), or the Bayesian information criterion
(BIC, [28]), which penalize complex models in a princi-
pled way. These tools, however, require access to the full
likelihood function, which is never available for genome-
scale data sets. Because of the size and complexity of

Page 4 of 10

the nuclear genome, all statistical methods simplify the
problem in some way. Legofit uses composite likelihood,
which ignores genetic linkage and treats nucleotide sites
as though they were statistically independent. This pro-
duces unbiased estimates but does not allow us to use AIC
or BIC.

Legofit provides two methods of model selection: the
bootstrap estimate of predictive error (bepe, [24, 29]), and
a composite likelihood information criterion (clic, [30]).

Bootstrap estimate of predictive error (bepe)

Bepe is analogous to cross-validation, but uses bootstrap
replicates instead of partitions of the data. The first step in
the process uses legofit to fit a given model to each boot-
strap replicate. These runs report the predicted frequency
of each nucleotide site pattern. Legofit’s “bepe” program
then calculates the mean squared difference between
these bootstrap-predicted frequencies and those in the
real data and applies a small bias correction. The result-
ing estimate of predictive error compares favorably with
cross-validation ([24], sec. 17.6). It is convenient, because
we need bootstraps anyway for confidence intervals.

Composite likelihood information criterion (clic)

Clic generalizes Akaike’s information criterion (AIC, [27])
to the case of composite likelihood. Varin and Vidoni
([30], p. 523) define an information criterion that is the
negative of

clic= —InL(0) — tr{HC}, (3)

I have reversed the sign so that we can select models by
minimizing (rather than maximizing) clic. In this expres-
sion, L is composite likelihood (Eq. 2), 6 is the vector of
parameters, C is a matrix whose #jth entry is the sampling
covariance between the ith and jth parameters, and H is
the expectation of the negative of the Hessian matrix, and
“tr” represents the matrix trace.

I estimate C from covariances across bootstrap or simu-
lation replicates. H is a matrix of expectations of second-
order partial derivatives of In L with respect to pairs of
parameters. Rather than taking these expectations, I eval-
uate the derivatives at the maximum composite likelihood
estimate, 6 [31]. Within a small neighborhood near 6,InL
can be approximated by a quadratic surface,

InLO) ~ a+)_ Bi0i—=0)+ Y v(0i—6)(6;—0)), (4)
i i<j
where « is the Y intercept, and §; and yj; are regression
coefficients.

I estimate «, B;, and y;; by ordinary least squares, using
points in the neighborhood of the estimate, 6. Then H is
assembled using the second-order derivatives of InZ, as
implied by Eq. 4. Finally, C and H are used with Eq. 3 to
calculate clic.
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Bootstrap model averaging (booma)

Below, we will consider three models whose bepe values
are 2.17 x 1077,5.54 x 1077, and 6.17 x 10~°. The first
model has the smallest value and is therefore preferred.
But the other values are also small. Are we justified in
ignoring them? To answer this question, let us consider
the problem of model averaging.

When no model is clearly superior, it is better to aver-
age across several than to choose just one [32]. Otherwise,
confidence intervals are misleadingly narrow because they
ignore uncertainty about the model itself. In model aver-
aging, individual models are assigned weights as discussed
below. Parameters are estimated as the weighted average
of estimates from individual models. Most authors rely
on information criteria to provide the weights [33]. One
could use clic in this way, but I prefer bootstrap model
averaging [32], which works with either bepe or clic.

This method is implemented by the Legofit program
“booma” Some model selection criterion (bepe or clic)
is calculated separately for the real data and for each
bootstrap replicate. (To calculate bepe for a bootstrap
replicate, we pretend that the replicate is real data and
the real data are a bootstrap replicate.) If there are 50
bootstrap replicates, this process gives us 51 values of the
model selection criterion for each model. For each of these
51 cases, booma asks which model “wins,” i.e., which has
the lowest value of the criterion. The weight of the ith
model is the fraction of cases in which it is the winning
model.

Using these weights, booma averages across models to
obtain a model-averaged estimate of each parameter. If
a parameter is present in only a subset of the models,
the weights are re-normalized so that they sum to unity
across this subset. This averaging is applied not only to the
real data but also to each bootstrap replicate. This allows
us to estimate confidence intervals for model-averaged
estimators.

If one model is clearly superior, its weight will be unity
and those of the other models will be zero. This provides
a simple criterion for choosing one model over its alter-
natives. For the three models mentioned at the top of this
section, the weights were 1, 0, and 0. This implies that the
differences among the bepe values are large compared to
those expected in repeated sampling from the stochastic
process that generated the original data. We are therefore
justified in rejecting all models but the first. This analysis
is described in more detail below.

Identifiability and principal components

Figure 3 illustrates a problem of statistical identifiability,
which arises frequently not only with Legofit, but with all
methods that estimate complex population histories. Each
panel in the figure is a bivariate scatterplot comparing two
parameters. Each point indicates the estimated values of
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the two parameters in one simulation replicate. In several
panels, the points fall along straight lines, indicating that
the parameters are tightly correlated. These associations
represent ridges in the composite likelihood surface and
imply that our statistical problem has fewer dimensions
than parameters. This does not lead to incorrect infer-
ences, but it does broaden the confidence intervals of the
parameters involved.

These problems can be ameliorated by reducing the
dimension of the parameter space. The Legofit package
includes pclgo, a program that calculates principal com-
ponents from the bootstrap replicates and then uses these
to re-express the free variables in terms of principal com-
ponents. Predictive error (as measured by bepe) can be
improved by excluding principal components with small
eigenvalues. This usually tightens confidence intervals.

By default, pclgo merely re-expresses the free variables
in terms of the principal components, and there is no
reduction in dimension. To reduce dimensionality, the
user must specify a tolerance criterion. The command
pclgo -tol 0.001 would include only those compo-
nents that explain at least a fraction 0.001 of the variance.
Different choices of this tolerance criterion constitute dif-
ferent models, and we can choose among them using bepe
or clic, together with booma.

Results

Rogers and Bohlender [10] document pronounced biases
in the statistics that underlie our current understanding of
archaic admixture. These biases are profound if there are
multiple sources of admixture. To check for such bias in
legofit, I simulate data under the model in Fig. 1, which
allows gene flow into Eurasia (Y) not only from Nean-
derthals (N), but also from Denisovans (D). Details of this
model and of all the analyses below can be found in the
Additional file 1. Here, I summarize results.

Figure 4 shows the true parameter values (red crosses)
and sampling distributions (blue circles) estimated using
legofit from 50 independent simulation replicates. I used
pclgo to reduce dimensionality. This involves excluding
dimensions that explain less than some arbitrarily-chosen
fraction of the variance. I considered three models: one in
terms of the original variables (without using pclgo), one
using principal components with no reduction of dimen-
sion, and one excluding components that explain less than
a fraction 0.001 of the variance. The weights of these three
models are 0, 0.42, and 0.58 using bepe and 0, 0.12, and
0.88 using clic. Thus, pclgo seems to improve estimates,
especially when some principal components are excluded.
Figure 4 shows the bepe version of the model-averaged
estimates.

All of the sampling distributions enclose the true
parameter values, and several are reassuringly narrow.
Nonetheless, some bias is evident in the distributions
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to calibrate the molecular clock

of Neanderthal admixture (mp) and Denisovan admix-
ture (mp). The mean estimates of these parameters are
closer together than are the true parameter values. This
is because Neanderthals and Denisovans are sister popu-
lations, and it is hard to tell them apart. We get a better
estimate of total archaic admixture, m1n + mp, than of the
difference, my — mp.

For comparison with legofit’s estimates of the admixture
fraction, Fig. 5 shows the behavior of three previously-
published estimators [2, 3] that have been used to study
archaic admixture in humans. Nea and den work by com-
paring the frequencies with which derived alleles are
shared by pairs of samples from different populations. Nea
has also been called Rneandertal [2]- Rogers and Bohlender
[10] show that these estimators have large biases, espe-
cially when (as in the present model) a population receives
gene flow from more than one source. Thus, it is no sur-
prise that nea and den exhibit large biases in Fig. 5. Indeed,

the black triangles show that the observed bias is in good
agreement with theoretical expectations.

Many studies have cited an estimate that about 6%
of Papuan DNA derives from Denisovans. This result is
due to Meyer et al. [3], who inferred it using TreeMix
[34]. However, these authors suspected that the result was
biased, because their analysis excluded Neanderthals ([3],
supp. note 12). The TreeMix results in Fig. 5 should avoid
this problem, because Neanderthals are included along
with Denisovans and moderns from Africa and Eurasia.
TreeMix was able to detect a signal of gene flow from
Neanderthals into Eurasians. As the figure shows, how-
ever, its estimate of the admixture fraction was profoundly
biased. TreeMix was unable to detect gene flow from
Denisovans into Eurasians. This episode of gene flow did
not appear in the output from any of the simulation repli-
cates. Instead, TreeMix reported evididence of gene flow
in various parts of the tree. These episodes of gene flow
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Fig. 4 Sampling distributions of legofit estimates based on the 50
simulated data sets shown in Fig. 3. Red crosses represent true
parameter values. Points have been vertically jittered to reduce
overplotting in this figure and in those that follow

were not consistent from replicate to replicate and did not
exist in the simulation model.

A worked example

In Fig. 4, we had the advantage of working with the true
model of history. This is never the case with real data. Let
us therefore consider how the analysis might proceed if we
did not know the true model in advance. We would start
by examining site pattern frequencies, which are shown
in Fig. 6. The most common patterns (apart from sin-
gletons) are xy and nd, reflecting the shared ancestry of
populations X and Y and of N and D. Let us therefore fit
a model with a tree of form ((X,Y), (N, D)). This model
is misspecified, because it omits gene flow. The residu-
als of this model are shown in Fig. 7 along with those of
a correctly-specified model. The misspecified model gen-
erates many residuals that are far from zero, and these

nea- X
den- X X
TreeMix- e . )

0.025  0.050  0.075
Admixture Fraction

Fig. 5 Bias in three previously-published estimators of archaic
admixture. Nea and den ([3], supp. note 11) estimate Neanderthal and
Denisovan admixture. TreeMix [34] estimates Neanderthal admixture.
Key: blue circles, estimates from simulated data shown in Fig. 3; red
crosses, true parameter values; black triangles, expected values of
statistics
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Fig. 6 Site pattern frequences simulated using msprime [21] under
the model in Fig. 1. Data are as in Fig. 3. Blue circles show 50 replicate
simulations, and red crosses show expected values

discrepancies provide clues about what is wrong with the
model. For example, note that the misspecified model has
positive residuals for yn and ynd but a negative residual
for y. This suggests that we should add N — Y gene flow
to the model, because such gene flow inflates the first two
of these site patterns but deflates the third.

Table 1 compares the two models and shows that the
one with N — Y gene flow is unambiguously better than
the one without gene flow. However, the residuals of this
new model (not shown) still show discrepancies, which
might lead us to consider adding D — Y gene flow to
the model. Table 2 shows that this third model is unam-
biguously better than the one with only one episode of
gene flow. The residuals (right panel of Fig. 7) show that
this model provides a good description of the data. In this
example, the correct model was identifiable because the
alternate models could not fully account for the pattern in
the data.

There are also less tractable identifiability problems. Let
us consider two. Figure 8 shows a model that is like that
in the simulations (Fig. 1) but has an additional episode
of gene flow from a “superarchaic” population (S) into
Denisovans (D), as suggested by Priifer et al [8]. When
the superarchaic admixture fraction is zero, this model
reduces to that used in our simulations. As expected,
legofit’s estimate of this parameter was very close to zero
in all simulation replicates, and all other parameters were
also well estimated. Consequently, this model provides
an excellent fit to the data, comparable to that in the
right panel of Fig. 7. Nonetheless, I expected bepe and
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Fig. 7 Residuals from misspecified and correctly-specified models. Each circle represents one of the simulated data sets in Fig. 3. The misspecified
model ignores the two episodes of gene flow seen in Fig. 1

clic to prefer the correct model because of its simplic-
ity. Instead, bepe and clic gave appreciable weight to both
models but preferred the more complex one, as shown in
Table 3. This did not lead to incorrect inferences, because
all parameters were well estimated.

Table 4 illustrates another identifiability problem. It
compares the standard model (Fig. 1) with one in which
the order of the two admixture events is reversed: D — Y
admixture precedes N — Y admixture. This change has
little effect on site pattern frequencies, and all parameters
are well estimated. I expected bepe and clic to weight these
models roughly equally. The table shows that they do give
appreciable weight to both models but prefer the (incor-
rect) reversed model. In another experiment (not shown),
using ms instead of msprime, bepe gave 94% of the weight
to the true model. Bepe and clic both behave sensibly
when dealing with models that are indistinguishable or
nearly so. In such cases, they tend to give appreciable
weight to several models. We cannot assume, however,
that they will always prefer the correct model.

Table 1 Booma weights for models with and without N — Y

Discussion

There are two reasons for studying site patterns rather
than the full site frequency spectrum, the first of which
involves statistical power at deep time scales. As we
look backwards into the past, large samples coalesce
rapidly to small collections of ancestors. For this reason,
although large samples are essential for recent history,
their value is limited in the distant past. Furthermore,
the random-haploid samples used by legofit provide an
advantage: they insulate the analysis from recent popula-
tion history. If we had sampled several haploid genomes
from population X in Fig. 1, then our model would
need parameters describing changes in the size of X
since its separation from Y. With legofit, these param-
eters aren’t needed, because no coalescent events can
occur until X and Y merge into their ancestral popula-
tion. Thus, site pattern frequencies reduce the parameter
count without losing much power at deep time scales.
They allow us to study the deep history of multiple
populations.

Table 2 Booma weights for models with and without D — Y

gene flow gene flow
Weights Weights
bepe clic Model bepe clic Model
0 0 No gene flow; full dimension 0 0 No D — Y gene flow; full dimension
0 0 No gene flow; reduced dimension 0 0 No D — Y gene flow; reduced dimension
0.04 0.5 N — Y gene flow; full dimension 042 0.12 D — Y gene flow; full dimension
0.96 0.5 N — Y gene flow; reduced dimension 0.58 0.88 D — Y gene flow; reduced dimension

All models re-express free variables in terms of principal components. Models with
reduced dimension exclude principal components that explain less than a fraction
0.001 of the variance

All models include N — Y gene flow and re-express free variables in terms of
principal components. Models with reduced dimension exclude principal
components that explain less than a fraction 0.001 of the variance
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Conclusions

The Legofit package provides computer programs for
estimating population histories. It uses the frequencies
of nucleotide site patterns to summarize genetic data.
The package includes programs that tabulate these fre-
quencies, calculate their expected values, and use them
to estimate parameters describing population history. It
includes facilities for model selection and model averag-
ing. It uses principal components to reduce the complexity
of high-dimensional models of history. Legofit outper-
forms several methods that have been widely used to study
archaic admixture in humans and should be useful in any
species for which DNA sequence data is available from
several populations.

Availability and requirements

Project name Legofit

Project home page https://github.com/alanrogers/legofit
Operating system Linux and macOS

Table 3 Booma weights for models with and without
superarchaic admixture

Weights
bepe clic Model
0.24 0.04 No superarchaic admixture; full dimension
0.02 0.16 No superarchaic admixture; reduced dimension
0 0 Superarchaic admixture; full dimension
0.74 0.80 Superarchaic admixture; reduced dimension

All models include N — Y and D — Y gene flow and re-express free variables in
terms of principal components. Models with reduced dimension exclude principal
components that explain less than a fraction 0.001 of the variance

Page 9 0of 10

Table 4 Booma weights for models with and without reversing
the order of the two admixture events in Fig. 1

Weights
bepe clic Model
0.18 0.02 True model; full dimension
0 0.22 True model; reduced dimension
0 0.02 Reversed model; full dimension
0.82 0.74 Reversed model; reduced dimension

All models include N — Y and D — Y gene flow and re-express free variables in
terms of principal components. Models with reduced dimension exclude principal
components that explain less than a fraction 0.001 of the variance

Programming language C and Python

Requirements pthreads and the Gnu Scientific Library
License Internet Systems Consortium License

Any restrictions to use by non-academics none
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