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Abstract

Background: Biomedical literature concerns a wide range of concepts, requiring controlled vocabularies to
maintain a consistent terminology across different research groups. However, as new concepts are introduced,
biomedical literature is prone to ambiguity, specifically in fields that are advancing more rapidly, for example, drug
design and development. Entity linking is a text mining task that aims at linking entities mentioned in the literature to
concepts in a knowledge base. For example, entity linking can help finding all documents that mention the same
concept and improve relation extraction methods. Existing approaches focus on the local similarity of each entity and
the global coherence of all entities in a document, but do not take into account the semantics of the domain.

Results: We propose a method, PPR-SSM, to link entities found in documents to concepts from domain-specific
ontologies. Our method is based on Personalized PageRank (PPR), using the relations of the ontology to generate a
graph of candidate concepts for the mentioned entities. We demonstrate how the knowledge encoded in a
domain-specific ontology can be used to calculate the coherence of a set of candidate concepts, improving the
accuracy of entity linking. Furthermore, we explore weighting the edges between candidate concepts using semantic
similarity measures (SSM). We show how PPR-SSM can be used to effectively link named entities to biomedical
ontologies, namely chemical compounds, phenotypes, and gene-product localization and processes.

Conclusions: We demonstrated that PPR-SSM outperforms state-of-the-art entity linking methods in four distinct
gold standards, by taking advantage of the semantic information contained in ontologies. Moreover, PPR-SSM is a
graph-based method that does not require training data. Our method improved the entity linking accuracy of
chemical compounds by 0.1385 when compared to a method that does not use SSMs.

Keywords: Ontologies, Text mining, Entity linking, Biomedical literature, ChEBI, HPO, GO

Background

Entity linking matches each entity mention in a document
to an entry of a knowledge base (KB) that unequivocally
represents that concept [1, 2]. This task is a fundamental
component of text mining systems, in order to integrate
the information described in the literature across multiple
documents [3]. Entity linking has been applied to accom-
plish various objectives, for example, to link persons to
their family members [4], to enrich a domain-specific KBs
with information from Wikipedia tables [5], or to link
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events described in tweets [6]. Entity linking is funda-
mental to real-world text mining applications where the
same concept may be referred to in different spellings and
lexical variations across various documents. Due to the
diverse nomenclature of biomedical entities, it is often
a challenge to match these to KB entries. While several
biomedical Named Entity Recognition (NER) approaches
have been developed to recognize, for example, genes,
drugs and diseases entities in documents [7, 8], fewer
approaches exist to link these entities to a KB, given its
higher complexity.

Entity linking can be incorporated into a NER system
to perform both tasks at once. For example, by directly
matching a list of concept names and synonyms from a
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controlled vocabulary to the text, it is possible to directly
obtain the respective identifiers. However, this approach
will be restricted to the names and synonyms considered
in the KB, even when string matching algorithms can be
used to deal with misspellings and other lexical varia-
tions. As most state-of-the-art NER systems are based on
machine learning algorithms, they focus on recognizing
segments of text that refer to entities of interest, requiring
an additional method to match each named entity to a KB.
Entity linking can also be modeled as a ranking task, where
a list of candidate matches of an entity is ordered from
highest to lowest confidence level. The input data consists
of a graph, where nodes represent associations between
named entities and candidate matches obtained from the
KB. The edges represent links between concepts found
in an external database. The objective of this approach is
to select the set of candidate matches that maximizes the
global coherence between entities.

In biomedicine, ontologies are commonly used to orga-
nize knowledge about a specific domain, providing a
formal representation of concepts and their relations
according to the domain. As such, they can be used as
reference KBs for text mining tasks such as entity linking
[9, 10]. For example, an ontology enables us to calculate
the semantic similarity between two concepts and com-
pare which concepts have more in common. Therefore,
this source of information can be incorporated into entity
linking approaches to improve their performance.

The Human Phenotype Ontology (HPO) [11] pro-
vides a standardized vocabulary to describe phenotypic
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variations in human disease which can be used by com-
putational applications. This ontology was first released
in 2008, originally composed by 8000 concepts, with the
latest version containing 11,000 concepts. Figure 1a shows
an excerpt of this ontology, with focus on the ances-
tors of the concept “Bilateral vestibular Schwannoma”
(HP:0009589). The arrows describe is-a relations, pro-
viding a detailed classification of each concept. Chemi-
cal Entities of Biological Interest (ChEBI) contains over
46,000 molecular entities, with each entity being orga-
nized in an ontology structure [12]. The ChEBI ontology
contains is-a relations, but also other types of relations
such as has part, has role, and chemistry specific relations
such as is conjugate base of and is tautomer of. Figure 1b
shows the closest is-a ascendants of the ChEBI concept
“biliverdin (2-)”

Entity linking is a challenging task for biomedical lit-
erature when compared to other domains. For exam-
ple, while there is no exact match for "iron chloride"
in ChEBI, a database of chemical entities with biologi-
cal interest [13], there are 157 abstracts on PubMed that
match that exact string at the time we were writing this
manuscript. These cases are problematic to automatic
approaches because the entity string itself is ambigu-
ous, requiring more advanced approaches to resolve this
ambiguity. According to the Human Phenotype Ontol-
ogy (HPO), dyschromatopsia and color-blindness refer to
the same phenotype. Therefore a search for one of those
names should retrieve documents that also mention the
other one. Another example, a protein may be mentioned

A B
Abnormality of the
nervous system Neoplasm anion
(HP:0000707) (HP:0002664), (CHEBI:22563)
T A A polyatomic
anion
Abnormal (CHEBI:33273)
peripheral nervous Neoplasm of the Neoplasm by
system nervous system anatomical site
morphology (HP:0004375) (HP:0011793) - -
(HP:0000759) organic anion
1 (CHEBI:25696) -
x oxoanion
Neoplasm of the (CHEBI:35406)
Abnormality of the peripheral nervous Neoplasm of x
cranial nerves system the ear
(HP:0001291) (HP:0100007) (HP:0012780)
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Abnormality of the Schwannoma N dianion
vestibulocochlear (HP:0100008 eoplasm of (CHEBI:38716)
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Fig. 1 Excerpts of the ontologies used in this work. Arrows indicate is-a relations. Each concept may have more than one ancestor as well as
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by its full name or by an acronym; in this case, the normal-
ization process should assign the same identifier to both
occurrences. To properly perform biomedical entity link-
ing, it is necessary to account for these issues, as well as
with the constant flow of newly published information.

PageRank is a graph-based algorithm initially developed
to rank web pages for search results [14]. An adaptation
of this algorithm, Personalized PageRank (PPR) [15], has
been successfully applied to Word Sense Disambiguation
[16] and Named Entity Disambiguation [17], which are
tasks similar to entity linking [18]. The PPR algorithm,
which we make use of in this work, is based on random
walks along the graph, with a given probability of jumping
to a specific source node.

Our main contribution is PPR-SSM, a novel domain-
specific entity linking method for documents annotated
with named entities that can be applied to various
domains. Our method uses the PPR algorithm on a graph
obtained from the relations established in the ontology,
and explores the semantic similarity between the can-
didate matches of each entity to maximize the global
coherence. We applied this method to three gold stan-
dards: i) one annotated with chemical entities; ii) one
annotated with human phenotypes; and iii) annotated
with gene ontology concepts. We used the ChEBI, HPO,
and GO ontologies as our domain-specific KBs in the
chemical, phenotype, and gene ontology gold standards,
respectively. This method outperformed string matching
and other PPR approaches. We also studied the effect of
different semantic similarity measures in the results. We
provide the code used in the experiments!, along with
usage examples and a Docker image.

Related work
Previous studies follow mainly two types of approaches:
local similarity approaches, where the similarity between
the entity text and candidate match is explored, and global
approaches, which attempt at selecting the set of candi-
date matches that best represents the entities of a docu-
ment [19, 20]. One of the most commonly used KBs for
entity linking is Wikipedia, which contains information
about a great variety of topics. For this reason, it can be
used to map entities of different domains to a KB. This
variety of topics also increases the difficulty of the task,
since the same expression can have different meanings
according to its context. The disambiguation pages show
the diverse meanings that an expression may have. For
example, “New York” can refer to the state, the city in
the state of New York, cities in other states, works of art,
sports teams and ship names.

Bunesco et al. presented a method based on Sup-
port Vector Machines, using a dictionary generated from

!https://github.com/lasigeBioTM/PPRSSM
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Wikipedia to detect and link entities [21] . Other authors
aimed at maximizing the global coherence between the
linked entities [22—24]. Pershina et al. presented a graph-
based method based on the Personalized PageRank (PPR)
algorithm to this task, incorporating both local and global
coherence [25]. They assumed that the probability of each
node is related to how likely it is to fit with the other
highest scoring nodes. More recently, Radhakrishnan
et al. presented a method that improved entity simi-
larity by training embedding vectors on a densified KB
[20]. Since the majority of entity linking gold standards
are based on Wikipedia, these systems are developed for
general KBs, and rarely focus on domain-specific KBs.

Graph-based approaches

Several graph-based approaches have been proposed for
entity linking. [26] developed a graph-based framework
to rank the entries of a database according to their rel-
evance to a query. [27] proposed a method to rank the
concepts and relations of an ontology according to their
importance to the domain. Although this method is help-
ful to better understand a domain using ontologies, the
authors did not explore its utility for other text mining
tasks. [28] explored Markov networks for entity linking,
applied to citation databases. These types of approaches
require training data, which is not always available, partic-
ularly in some biomedical domains. Unlike other authors
that explored graph-based methods for entity linking, we
propose a method that takes advantage of the semantic
relations described in the KB.

Biomedical entity linking

Wikipedia as a KB for entity linking has two proper-
ties that are useful for this task: redirect pages, which
account for synonyms and lexical variations; and disam-
biguation pages, which account for strings with multiple
meanings. While biomedical ontologies can incorporate
synonyms, there is no equivalent to disambiguation pages.
When such ambiguity arises, it is necessary to under-
stand the context of the sentence to determine the correct
definition.

The gene normalization task of BioCreative consisted in
determining the unique identifiers of genes and proteins
mentioned in scientific articles [29, 30]. The objective
of this task, as with the other BioCreative tasks, was to
promote the development of new text mining methods
specifically for biomedical text. The organizers selected
and manually annotated articles with gene names, using
Entrez Gene as reference. Three editions of this task
were organized, each edition increasing the difficulty,
with the final edition requiring the full-text annotation
and being species non-specific. The gold standards devel-
oped for this task were made available and can then be
used to benchmark new methods. Tsuruoka et al. [31]
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presented a method to develop heuristic rules for biomed-
ical entity linking automatically. Their method obtained
better computational performance than string matching
while requiring minimal expert knowledge in the develop-
ment of the rules.

A domain-specific ontology can be defined as a directed
acyclic graph where each node represents a concept of the
domain and the edges represent known relations between
these concepts [32]. This definition is the traditional rep-
resentation of existing biomedical ontologies, which are
nowadays a mainstream approach to formalize knowl-
edge about entities, such as genes, chemicals, phenotypes,
and disorders. Biomedical ontologies are usually publicly
available and cover a large variety of topics of Life and
Health Sciences. The success of exploring a given biomed-
ical ontology for performing a specific task can be easily
extended to other topics due to the standard structure
of biomedical ontologies. For example, the same mea-
sures of metadata quality have been successfully applied to
resources annotated with different biomedical ontologies
[33]. Zheng et al. [34] developed a graph-based approach
to biomedical entity linking, by performing collective
inference over a text window and using entropy to esti-
mate the importance of each edge. While their method
is similar to ours in some ways, we explore the ontol-
ogy even further by incorporating the information content
of each concept and its similarity to the other candidate
concepts. Our method combines the advantages of PPR-
based methods that do not require training data, with
domain knowledge from biomedical ontologies. There-
fore, it can be adapted for other domains, as long as there
is an exhaustive and domain-specific ontology available.

Results

Data

We evaluated our method on three gold standards, con-
sisting of biomedical documents manually annotated
with ontology concepts. Table 1 presents a comparison
between the gold standards. The ChEBI-patents corpus
consists of 40 patent documents annotated with chemi-
cal entities, using the ChEBI ontology as reference. This
gold standard was developed by a team of curators from
ChEBI and the European Patent Office. The documents

Table 1 Summary of the gold standards used for evaluation

Gold standard ~ ChEBI-patents ~ HPO-GSC ~ CRAFT-BP  CRAFT-CC
Documents 40 228 67 67

Total entities 18061 2773 9280 4075

w/ 1D 8407 2773 9280 4075

w/ candidates 6607 1890 9280 4075
Entities/doc 210.2 122 1385 60.8
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were selected to be representative of the universe of chem-
ical patent documents. Whenever possible, the curators
added the ChEBI concept identifier to the entity anno-
tations. Since we were interested only in linking entity
mentions to concept identifiers, we discarded entity men-
tions that were not assigned an identifier. There were 8407
textual entity mentions annotated with ChEBI identifiers
in this corpus, corresponding to 2081 unique entity men-
tions. The ChEBI team provides an API that can be used
to retrieve a list of concepts associated with a text search,
which we used to obtain the candidate list for each entity.
Since the annotation process was performed in 2009, we
also used the ChEBI API to update concept identifiers that
have changed since then automatically.

Additionally, we evaluated our method on a gold stan-
dard corpus of 228 scientific abstracts annotated with
human phenotypes, associated with the Human Pheno-
type Ontology (HPO), which we refer to as HPO-GSC.
We used an updated version of this corpus, which aimed
at improving the consistency of the annotations [35]. A
total of 2773 textual named entities were annotated in
this corpus, corresponding to 2170 unique entity men-
tions. We found that phenotype entities were more varied
regarding nomenclature due to the existence of more
synonyms for the same phenotype when compared to
chemical entities. Comparing with the ChEBI-patents cor-
pus, we can see that this corpus has fewer entities per
document (ChEBI-patents: 210 entities/document; HPO-
GSC: 12 entities/document). This ratio is relevant for
our method because it aims at maximizing the coherence
between entities, and documents with fewer entities are
more prone to errors. We obtain a list of candidates for
each entity through fuzzy string matching with the labels
and synonyms of the HPO.

In order to compare our work with the state-of-the-
art, we used the Colorado Richly Annotated Full-Text
(CRAFT) Corpus with articles annotated with Gene
Ontology (GO) concepts [36]. The v3.1 release includes 67
articles from PubMed Central Open subset. The articles
in this corpus were independently annotated with con-
cepts belonging to the three GO sub-ontologies: Biologi-
cal Process (BP), Cellular Component (CC) and Molecular
Function (MF). The annotations pertaining to MF sub-
set were not used due to the low number of concepts
annotated and the high number of concept repetition. The
subsections of the corpus containing files annotated with
BP and CC concepts are thus referred as CRAFT-BP and
CRAFT-CC, respectively. There were 4075 named entities
annotated in CRAFT-CC and 9280 in CRAFT-BP.

Figure 2 shows an excerpt of the ChEBI-patents and
HPO-GSC corpora, to demonstrate the type of informa-
tion that was annotated by the curators. While in some
cases the label of the concept matches the textual men-
tion, in other cases there are some differences. Acronyms
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(A) HPO-GSC: PMID2888021
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[

» HP:0001067: Neurofibromas

(B) ChEBI-patents: WO2007045867

» HP:0009589: Bilateral vestibular Schwannoma

Mast cells are known to play an important role in allergic
and immune responses through the release of a number
of mediators, such as [histaminel [leukotrienes} cytokines,

CHEBI:25029: leukotriene

PGD2]| etc. | L

» CHEBI:18295: histamine

» CHEBI:15555: prostaglandin D2

| [
[Prostaglandin D2|(PGD2) is the majory

by mast cells in response to allergen challenge.

ontology ID and label. a HPO-GSC; b ChEBI-patents

» CHEBI:15843: arachidonic acid

cyclooxygenase metabolite of larachadonic acid|produced

Fig. 2 Example of the annotations associated with each of the gold standard used. For each entity mention, surrounded by a rectangle, we show its

are common to both phenotypes and chemical entities.
The HPO-GSC gold standard contains some overlapping
entities, which could be mapped to different ontology con-
cepts. While “neurofibromatosis” and “neurofibromas”
were mapped to different concept identifiers, the cur-
rent version of HPO merged those two concepts. As with
the ChEBI-patents gold standard, we retrieved the most
recent identifier of each concept annotated on each gold
standard. Other challenges consist in dealing with plurals
(both the entity text and concept label can be plural or sin-
gular) and abbreviations and acronyms (the ontology may
have some of these synonyms but not all).

We used the April 2018 release of ChEBI, the March
2018 release of HPO and the February 2019 release of
GO. The version of the ChEBI ontology that was used has
about 54k manually verified chemical compounds. This
ontology is curated by experts and updated monthly, while
various sources are used to keep it as complete as possi-
ble, including user submissions. The HPO contains about
13k phenotypes and is focused on medically relevant phe-
notypes, and associating those phenotypes with diseases.
This ontology is used in various applications that deal with
clinical data. The GO is a structured representation for
gene and gene product functions across many different
organisms, like humans or bacteria, and is divided in three
sub-ontologies as previously referred: Biological Process
(BP) includes concepts describing biological pathways, for
example, “cell death” (GO:0008219); Molecular Function

(MF) includes concepts related with elemental functions
such as “catalytic activity” (GO:0003824), being normally
the “building blocks” of the biological pathways described
by BP concepts; Cellular Component (CC) concepts refer
to the place where above events occur, like “cytoplasm”
(GO:0005737). The referred GO version includes 45,023
concepts, of which 29,699 belong to BP sub-ontology and
4,211 belong to CC sub-ontology. These ontologies tackle
specific and complex areas of knowledge that benefit
greatly from text mining methods.

Evaluation setup

We evaluated each model considering the entities that
were manually mapped to an ontology concept and for
which the correct solution was in the set of candidates.
Using the matching methods presented in the Methods
section, we obtain a list of candidates for each entity.
Table 1 shows that on the datasets used, most entities
had its solution in the respective candidate list. Figure 3
shows an example of how we applied our method to the
ChEBI-patents corpus.

We found that many concepts were not directly linked to
each other in the ontology, meaning that the graph of each
document would not have enough edges to apply PPR. For
this reason, we studied the effect of considering the transi-
tivity of subsumption relations, with a maximum distance
threshold between 1 and 8. For example, if 5 is the maxi-
mum distance allowed, we would consider that there is an
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disambiguate(es) =
CHEBI:16336

Fig. 3 Pipeline of the PPR-SSM method to the ChEBI-patents corpus. For each entity, a candidate list CL(e) is obtained. The proposed
ontology-based scoring function is applied to each element of the list, and the top scoring element is chosen

edge in the graph between two nodes if the shortest path
between the respective concepts in ontology is equal to or
less than 5 edges.

We use the scoring functions described in (3) and (10) to
rank the candidate list of each entity mention. In case of a
tie, we pick the candidate with more subclasses. We con-
sidered only candidates with a matching score higher than
0.7 for CHEBI-patents and HPO-GSC entities and higher
than 0.6 for CRAFT-BP and CRAFT-CC entities which
were determined empirically to be the best threshold val-
ues. We then compared the predicted candidate with the
gold standard to calculate the accuracy score.

The PPR algorithm was computed using the Monte
Carlo approach presented by Fogaras and Racz [15]. We
executed 2,000 iterations for each source node, perform-
ing five steps of PPR, with a probability of jumping to
source node equal to 0.2. These values were suggested by
Pershina et al. [25], which we kept since we saw no major
improvements with a different number of iterations, steps
or jump probability.

Experiments
Table 2 compares the accuracy of the proposed method
with a string matching baseline and two other versions of

Table 2 Accuracy of PPR-SSM compared with a baseline and PPR
model, on the ChEBI-patents, HPO-GSC, and CRAFT (Biologjical
Process and Cellular Component) gold standards

Method ChEBI-patents HPO-GSC CRAFT-BP CRAFT-CC
Top match 0.5271 0.6380 0.7744 0.6899
PPR 0.6654 0.5544 0.6923 0.6166
PPR-IC 0.8026 0.6557 0.8204 0.7247
PPR-SSM 0.8039 0.6825 0.8244 0.7258

the PPR algorithm: the first consisting of the PPR-based
approach proposed by Pershina et al. adapted to biomed-
ical domain-specific ontologies and the second adding
a weight to the contribution of each node based on its
Information Content (IC) (1). We performed a baseline
evaluation, which consisted in picking the top candidate
with highest string matching similarity. Adding semantic
similarity as a factor in the contribution of each candidate
has a positive effect, obtaining a higher accuracy than the
other approaches.

Figure 4 shows the effect of different maximum distance
thresholds between concepts of the ontology. We com-
pared paths of length 1, which means that there is a direct
relationship between two concepts, to length 8, meaning
that if there is a path shorter or equal to 8 between the
concepts in the ontology, an edge is created in the graph.
Each gold standard has a different optimal distance, with
ChEBI-patents obtaining its best accuracy with distance 3,
HPO-GSC with distance 6 and CRAFT-BP and CRAFT-
CC both with distance 1. According to our experiments,
the concepts linked by distances greater than those values
do not contribute positively to the estimation of coherence
within candidates. We used those distance values when
comparing different PPR-based approaches (Table 2) and
Semantic Similarity Measures (SSM) (Table 3).

We used three SSMs for our PPR-SSM model: Resnik,
Lin, and Jiang-Conrath (JC). Furthermore, we compare for
each SSM the usage of Most Informative Common Ances-
tors (MICA) and Disjunctive Common Ancestors (DCA)
to calculate the shared information content. Table 3 shows
the results of this comparison.

Comparing the results obtained with each SSM, we can
see that different measures obtain the best results on
each gold standard. While JC-DCA obtains the best accu-
racy on the ChEBI-patents, Lin-MICA obtains the best
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Fig. 4 Comparison of different maximum distance values using the PPR-IC approach. For the CRAFT corpora (both BP and CC), the maximum
accuracy is achieved using only direct links between concepts, while ChEBI and HPO-GSC benefit from including longer links

accuracy on HPO-GSC and on CRAFT-BP and Lin-DCA
on CRAFT-CC. In all cases, the Resnik measure obtains
lower scores than the PPR-IC model. The main difference
between Resnik and the other measures is that it does not
take into account the individual IC of the two concepts.
On ChEBI-patents, none of the measures had a noticeable
effect on the performance, and in most cases, it decreases
the accuracy. However, the PPR-IC model leads to consid-
erable improvement, so there would be fewer and more
difficult cases for the PPR-SSM model to resolve. A similar
situation occurred for both CRAFT-BP and CRAFT-CC,
despite the more modest increase in disambiguation accu-
racy by PPR-IC model comparing to ChEBI-patents. As
the effect of the PPR-IC model on HPO-GSC was not
as high, both Lin and JC measures improved the results.
These findings seem to suggest that SSM can increase
the disambiguation accuracy especially in cases where the
PPR-IC model does not improve accuracy substantially. If
the accuracy is already high, the SSM will have less impact
on its improvement.

Table 3 Comparison of different semantic similarity measures for
PPR-based entity linking

SSM |Cshared  ChEBI-patents  HPO-GSC ~ CRAFT-BP  CRAFT-CC
) MICA 0.7916 0.6306 0.7444 0.6439
Resnik
DCA 0.7916 0.6340 0.7545 0.6439
i MICA 0.7965 0.6825 0,8244 0.7190
in
DCA 0.7965 0.6775 0.8216 0.7258
I MICA 0.8014 0.6775 08177 0.6985
DCA 0.8039 0.6633 0.8199 0.6997

Discussion

We manually analyzed the errors of the PPR-SSM model
on each gold standard, in order to understand the lim-
itations of our approach. On the ChEBI-patents corpus,
some errors were due to the same words being used to
refer to a family of compounds and a type of chem-
ical compound. For example, “polyamine” can refer
to CHEBI:51349 (polyamine macromolecule) and
CHEBI:88061 (polyamine). Other errors were caused
by the lack of edges between candidates, which happened
in some documents. In these cases, the PPR algorithm
cannot be applied, and the candidate with the highest
number of descendants is chosen, which is not always
the correct choice and does not take into account the
global coherence. Another common error is with chem-
ical compounds that have different charges, for exam-
ple, biliverdin and biliverdin(2-). These two
concepts are linked by is conjugate acid of and is con-
jugate base of relations. However, they have a different
set of is-a ancestors, having only organic molecular
entity and its respective ancestors in common. More
contextual information from the text could help under-
stand the specific molecule that is being mentioned.
Many entities of the gold standard were not annotated
with ChEBI identifiers (Table 1). These missing iden-
tifiers could improve the results of our method since
the graph of each document would be more exhaus-
tive, and the global coherence score would take into
account the complete set of entities. As both com-
pounds appear in the same candidate list, the fact
that the latter has a relation with the CHEBI:22563
“anion”), a concept with many descendants, resulted
in a higher score. In Fig. 1 we can see that “biliverdin(2-)”
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is one concept away from “organic anion’, which has 166
descendants.

On the HPO-GSC corpus, some errors were due
to concepts with similar meanings. For example,
“microretrognathia” and “micrognathia” are both facial
deformations related to the development of the fetal
mandible, and their respective HPO concepts have the
same edges. Another common error was when dealing
with child and parent concepts. For example, HP:0009588
refers to Vestibular Schwannoma and HP:0009589
to Bilateral vestibular Schwannoma and
both appear in the candidate list for Bilateral
vestibular Schwannoma. The parent concept,
Vestibular Schwannoma, obtained a higher score,
resulting in an error. Parent concepts are closer to the
top concepts, and therefore it will have paths to more
concepts. As it can be seen in Fig. 1a, HPO has several
instances where related concepts have similar labels,
with a difference of just one word. Even though we try to
account for this issue by giving more weight to concepts
with higher information content, sometimes this weight is
not enough and concepts that have more links are ranked
higher than the correct candidate. As the nomenclature
of phenotypes is not as systematic as the nomenclature
of chemical compounds, it is harder to perform entity
linking on this domain, resulting in lower accuracy scores.

On both CRAFT-BP and CRAFT-CC corpora, some
common errors occurred when dealing with child and par-
ent concepts, just like it had been previously described on
the HPO-GSC corpus. However, normally the candidate
with higher IC was picked, as this is a factor in the calcu-
lation of the coherence score (Eq. 10). For example, RNA
metabolic process (GO:0016070) and metabolic
process (G0:0008152) were on the candidate list for
metabolic (GO:0008152) and the chosen candidate
was the more informative concept RNA metabolic
process, which is not the correct candidate. Neither of
the concepts had links with other candidates, so it was
chosen the concept that had higher IC, RNA metabolic
process.

Another aspect to highlight on the CRAFT-BP and
CRAFT-CC corpora, although not the focus of the present
study, is the high recall achieved while performing disam-
biguation: 0.77295 and 0.84315, respectively. Comparing
with the values referred in [37], where the recall was less
than 0.20 for CRAFT-BP and less than 0.70 for CRAFT-
CC, the results obtained are a noticeable improvement,
even more if we consider that the precision (or accuracy)
has not been negatively affected.

Conclusion

Entity linking is an essential task in text mining systems
so that the information extracted can be linked to exist-
ing resources. However few approaches take advantage
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of the extensive knowledge encoded in domain-specific
ontologies. We proposed a method, PPR-SSM, that com-
bined existing entity linking graph-based approaches with
semantic similarity to calculate a global coherence score.
Using this score, we select the best candidate matches to a
named entity. Our method outperformed string matching
and PPR-based methods in four case-studies, obtaining an
accuracy of 0.8039 on the ChEBI-patents gold standard,
0.6825 on HPO-GSC, 0.8244 on CRAFT-BP and 0.7258
on CRAFT-CC. These results show the potential of the
proposed method to be adapted to other domains where
ontologies are available. The code used to implement the
method is publicly available?.

As future work, we could take advantage of the similar-
ities between ontologies to develop a joint approach, as
suggested by [38]. The authors of this paper have shown
that considering multiple ontologies together is benefi-
cial to biomedical EL. Other improvements would be to
improve the candidate generation process, so that more
entities have the correct candidate in their candidate list.
One possible approach would be to use word embeddings
to find the most similar concepts, instead of matching
the characters of the string. Furthermore, the document
graph could be improved using relation extracted from the
document between entities. This way, if a relation between
two entities is stated in the document, but not in the
ontology, we could still use that information.

Methods
Problem definition
We now define the concepts necessary to understand the
entity linking problem and our proposed solution. We
consider the problem setting where a corpus of docu-
ments is annotated with entity mentions, and each entity
mention has a set of KB candidate matches. The objective
of entity linking is to link each entity mention to an entry
of a KB. We can define a KB as a tuple < C,R >, where C
is the set of concepts about a particular subject, and R the
set of relations between the concepts, where each relation
is a pair of concepts (c1, cp) with ¢1,¢p € C3. We consider
a candidate list CL(e) = {c.,...,c.} for each entity e € E,
where E is the set of named entities mentioned in a docu-
ment. We want to find the ¢, € CL(e) that best represents
eache.

For each document, we can construct a graph G consist-
ing of the edges defined by:

G ={(ece)le € E,c. € CL(e)}

where e corresponds to each named entity of a document
and ¢, to each candidate match of that entity. Hence, each
node of G represents a candidate to a given entity of the

Zhttps://github.com/lasigeBioTM/PPRSSM
3\We use typewriter to indicate a concept of a KB, italics to indicate relations
between concepts, and quotes to indicate entity mentions.
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document. The entities themselves are not represented
in the graph, only the candidate concepts associated with
them. However, different entities may have common can-
didate concepts, which would be represented as different
nodes in the graph.

Our objective is to define a function disambiguate such
that

disambiguate(e) = arg max{score(e, c.)}
Ce

where score is a scoring function that evaluates how likely
the candidate is to be the correct choice for entity e.

Ontology-based personalized pageRank

We assume that a measure of global coherence among the
candidate concepts could be used as a scoring function.
The coherence of a candidate concept quantifies how well
it fits among a set of concepts, while the global coher-
ence estimates how well a set of candidate concepts fit
with each other. This idea has been explored by other
authors, who suggest random walks methods such as PPR
to rank the importance of each node in a graph. Nodes
with greater weight would be more relevant to the results.
The weights are determined by simulating random walks
on the graph, with a certain probability of jumping to a
random node. The PPR algorithm is a variant of PageR-
ank where the jump is always made to the same node.
Using the graph previously described, we apply the PPR
algorithm to calculate the weights of each node in relation
to each other, which we use as a coherence score. While
Pershina et al. [25] use a general purpose KB to run the
PPR algorithm, we use domain-specific ontologies, which
usually contain more detailed nodes and edges.
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Note that in our graph model, each node represents a
candidate concept associated with a named entity. There-
fore, we consider only edges between nodes associated
with different entities, since only one element of each
candidate list can be correct. Our approach to entity link-
ing explores the structure of the ontology to generate the
graph. If a node is within distance d of another node, we
consider that they are linked. To calculate this distance,
we do not take into consideration the directionality of the
relations of the ontology. Therefore, any two nodes of the
same document can form an edge as long as there is a path
with length equal to or shorter than d between them, and
they are associated with different entities.

Figure 5 shows an example of the graph generated by
a set of named entities from an abstract annotated with
HPO concepts. To simplify the figure, we show only three
entities and the two highest scoring candidates of each
entity. We considered d = 6 for this example. Due to its
spelling similarity, tremor is a candidate match to the
entity “tumour’, when in fact the correct match should
be neoplasm. Note that neoplasm is a candidate for
that entity because HPO has tumour as a synonym of
neoplasm. The candidate tremor is linked only to one
other candidate, while tumour is linked to candidates
from both entities. Hence, neoplasm is more likely to
maximize the global coherence. Likewise, Abnormality
of the nervous systemislinked only to one candi-
date, so it will have a negative contribution to the global
coherence. Both candidates of the entity “neurofibromato-
sis” are linked to the same concepts. In these cases, we
adopt a conservative approach and pick the candidate
with more descendants in the ontology, since it represents
a more generic concept. Therefore, neurofibromas
would be the chosen candidate for that entity.

tumours of nervous
system

HP:0004375
(Neoplasm of the
nervous system)

HP:0000707
(Abnormality of the
nervous system)

HP:0001337
(Tremor)

HP:0002664
(Neoplasm)

HP:0009735
(Spinal
neurofibromas)

neurofibromatosis

Fig. 5 Example of the graph generated from abstract PMID2888021 using HPO. We show two candidate matches for each entity mention, and the
edges obtained from the HPO ontology between each matches. Each candidate match is represented by its ontology ID and its preferred label

textual entity
HP:0001067 :l mention
(Neurofibromas)
C D S
concept
q is-a relation
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The PPR algorithm is used to calculate the coherence
of each node in relation to another node, which can also
be interpreted as the PageRank score. To accomplish this,
we personalized the graph to each node, referred to as
the source node. We estimate the coherence of node # to
source node s, given by PPR(s — n), corresponding to the
weight of #n when personalizing to s. We multiply the PPR
score by the normalized IC value of the concept associated
with node #, in order to account for the different degrees
of specificity of the concepts of an ontology. Therefore we
calculate the coherence of node # relative to node s as

coherences(n) = PPR(s — n) - IC(n) (1)
We estimate IC of a node # as:
IC(n) = —log(p(n)) )

where p(n) is the probability of that node appearing on a
corpus [39].

Finally, we sum the coherence score of node # to each
source node s to estimate its global coherence:

coherence(n) = Z coherences(n) (3)
seG

Semantic similarity

Semantic similarity measures (SSM) estimate the similar-
ity between concepts using the relations defined by an
ontology [40]. We explore how taking into account the
semantic similarity between concepts can improve the
graph model previously described, by adjusting the con-
tribution of each node to another node. If two nodes share
more semantics, they should have a greater contribution
to each other’s global coherence score.

SSMs are normally restricted to subsumption relations
(is-a or subClassOf), which are transitive, meaning that if
R is the set of relations between concepts, (c1,c3) € R, and
(c2,¢3) € R, then (c1,c3) € R. Therefore, the ancestors of
¢ are given by

Anc(c) ={a: (c,a) € T}

where T is the smallest relation set on C that contains R
and is transitive.

Many SSMs explore the ancestors exclusive to each con-
cept, as well as their common ancestors. We can define
the common ancestors CA between two concepts as

CA(cy,c0) = Anc(cy) N Anc(cy)

Some SSMs use only the Most Informative Common
Ancestors (MICA), which can be considered the most
relevant to compare entities:

MICA(c1,¢p) ={a:a € CA(c1,c0) ANIC(a) =
max{IC(a) : a € CA(c1,c2)}} (4)
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Alternatively, SSMs can consider multiple inheritance
relations, which we refer to Disjunctive Common Ances-
tors (DCA):

DCA(cy,¢) ={a:a e CA(cy,c2)
A Va,eCA(er,er)PD(C1, 02, a) =
PD(c1,¢3,ax) = IC(a) > IC(ax)} (5)

where PD is a function that calculates the difference
between the number of paths of ¢; and ¢; to their common
ancestors.

SSMs can use the IC of the concepts to estimate its
similarity. Several measures have been proposed, one of
the most commonly used being the measure proposed by
Resnik [39]:

SSMpesnik (€1, ¢2) = ICspared (€1, €2) (6)

where ICgj 4 is the average of the information content of
the MICA or DCA.

Another SSM was proposed by Lin et al. [41], which bal-
ances the IC of the common ancestors with the IC of the
concepts themselves:

2 X ICsared(c1, €2)
SSMyin(c1,c2) = 7
Lin(C1,€2) IC(c1) + IC(c) (7)
Finally, Jiang and Conrath [42] proposed a measure of

distance between concepts of an ontology, given by

distjc(c1,c3) = IC(c1) +IC(c2)—
2 X ICgpgreq(c1,c2)  (8)

As an SSM should be inversely proportional to the dis-
tance (i.e. less distance, more similar), we can use this
distance to calculate a semantic similarity score:
S5 (er ) = | Ty st = 0 ©)
1, otherwise
Each of the presented measures uses the IC of the com-
mon ancestors between the two concepts. As such, they
can use either MICA or DCA to calculate the ICj,e4 fac-
tor. We adapted the coherence score of node e according
to source node s as:

coherence, = PPR(s — e) - SSM(s, e) - IC(e) (10)

where SSM corresponds to one of the three SSM previ-
ously described.

Models

We studied the effect of SSMs as a factor on the scoring
function, and how it affects the accuracy of entity linking
results. We first applied a baseline approach that consisted
in selecting the ontology concept label most similar to the
textual entity mention. This was implemented using the
Levenshtein distance to obtain the label with the short-
est distance to the text. This approach compares only
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the lexical form of the label, ignoring any context and
semantics.

Then, we applied the PPR algorithm, using an approach
similar to [25], but adapted to biomedical ontologies,
which we refer to as the PPR model. As shown in (1), we
can adjust the PPR score of each node with its IC. We
refer to this model as PPR-IC. As previously explained, our
adaptation of this approach has a distance parameter, cor-
responding to the maximum ontology distance between
concepts. We studied the effect of this parameter on the
PPR algorithm, to find the best value to use for further
experiments.

We can then further adjust the contribution of each
node to another node in the graph with the semantic sim-
ilarity between them. As opposed to the model proposed
by Pershina et al., we use all the candidates associated with
the other entity mentions and not just the top scoring.
This SSM factor will increase the weight of similar con-
cepts, most likely to be coherent with the source node,
and reduce the contribution of concepts less related to the
source node. We refer to this model as PPR-SSM and study
the effect of three SSMs on the accuracy of entity link-
ing. Furthermore, we compare two versions of each SSM:
one using the IC of the MICA (4) and another using the
DCA (5).
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