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Abstract

Background: Late-Onset Alzheimer’s Disease (LOAD) is a leading form of dementia. There is no effective cure for
LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the
timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods
that are well positioned to address this challenge are becoming available.

Results: We conducted systematic comparisons of representative Machine Learning models for predicting LOAD
from genetic variation data provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our
experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area
under the ROC curve.

Conclusions: Machine learning models are promising alternatives for estimating the genetic risk of LOAD.
Systematic machine learning model selection also provides the opportunity to identify new genetic markers
potentially associated with the disease.
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Background
Alzheimer Disease (AD) is a neurodegenerative disorder
that gradually destroys brain function. It is characterized
by the loss of cognitive abilities such as memory, reason-
ing, language, and behavior. The disease leads to dementia
and ultimately to death. AD is the most common form of
dementia (60% – 80% cases) and occursmore often in peo-
ple aged 65 and older[1]. Age is not the only risk factor for
developing AD, it has been observed that there are specific
inherited genetic traits that increase the risk of Early-
Onset AD (EOAD) at an early age (< 60). Apart from
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the age differences, the clinical presentation of EOAD is
very similar to the presentation of late-onset AD (LOAD)
andmany aspects of the disease overlap with normal again
in many clinical and pathological aspects. The EOAD by
family inheritance is characterized by geneticmutations in
the APP, PSEN1, and PSEN2, related to amyloids but only
accounts for 5% of total AD [2].
The high prevalence of LOAD among the elderly is

caused by the increasing life expectancy coupled with the
lack of an effective treatment to either stop the advance
of the sickness or reverse the damage caused by it; and
up to this date, there are only two FDA-approved drugs
to treat AD cognitive symptoms. An estimate from Bal-
lard [3] shows that Alzheimer’s Disease affects between
4 and 6 percent of the population around 65 years old,
that the incidence of the disease doubles every five years
after 65 years of age, and by age of 85 between 30%-50%
is affected by some form of AD. Therefore, there are a
lot of efforts aimed at developing effective AD therapies,
and it is expected that preventive ones have a greater
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impact before the development of the disease [4]. To apply
these preventive treatments, a key component is detect-
ing those individuals at risk at an early stage of the disease.
There are multiple existing methods such as cognitive
tests, magnetic resonance imaging (MRI), positron emis-
sion tomography (PET) images, cerebrospinal and blood
biomarkers that can determine the development of AD
[5]. But these methods do not detect the formation or
propensity of the disease at a sufficiently early stage to
be highly effective. Additionally, pathological postmortem
examination is required for confirmatory diagnosis [6].
To complicate matters further, these biomarkers and MRI
features develop in a correlated manner with the develop-
ment of the disease and are at their most usefulness for
prediction when the disease has progressed to the final
stages.
A promising method for improving the prediction of

LOAD is through the study of risk factors, and genetic
testing has become an important source of information
that can profile the genetic component of LOAD risk.

One specific case is the gene Apolipoprotein E(APOE)
and its different alleles, which have been implicated as
the largest genetic risk factors for LOAD. Late-Onset
Alzheimer’s Disease is a complex multifactorial disease;
thus, the APOE variants do not give a definite prediction
of the disease by themselves.
Multiple other genes such as CLU, PICALM, CR1 [7]

have been shown to be statistically correlated and bio-
chemically plausible. These common variants found using
multiple genome-wide association studies (GWAS) have
been shown to explain only 33% of the phenotypic vari-
ance of LOAD, while the expected heritability component
of LOAD is around 79%, thus leaving over 40% unex-
plained [8]. LOAD is expected to have a known genetic
component, a missing (so far) genetic component, and
multiple environmental factors that contribute to the
complexity of the disease [9].
The complexity of LOAD can be studied using mod-

ern machine learning (ML) strategies that leverage well-
planned AD studies. With the aim to discern and discover

Fig. 1 ROC Curves for the FRESA.CAD Benchmarking Classifiers ROC Curves obtained using BSWiMS, Random Forest, RPART and LASSO of the
FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-Validation and the top 2,500 SNPs as inputs
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the multiple factors that affect the onset of AD, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
launched a longitudinal study to: “develop clinical, imag-
ing, genetic, and biochemical biomarkers for the early
detection and tracking of Alzheimer’s disease (AD)”. The
first goal of the study is: “To detect AD at the earliest pos-
sible stage (pre-dementia) and identify ways to track the
disease’s progression with biomarkers” [10]. Therefore,
ADNI is a well-planned study that produces the required
data to be data mined by ML. There have been several
machine learning strategies that have been used to explore
early stages of AD [11–13]. Most of the ML approaches
are based on exploring univariate associations with MCI
to AD conversions [13], and some efforts have been made
in building predictive multivariate models based on merg-
ing clinical, MRI, laboratory and PET imaging [14]. These
efforts have been very successful, and there are several
alternatives to predict the early stages of LOAD [15]. On
the other hand, similar ML approaches can be used to

predict AD risk based on gene variants; but most of the
efforts have been constrained to the use of advanced sta-
tistical approaches [16]. To fully explore the potential of
gene biomarkers in the prediction of LOAD, multivariate
ML is required. The number of approaches to be explored
is very large, and their validation requires complex explo-
ration of prediction performance and evaluation of the
internal structure, i.e., what are the Single Nucleotide
Polymorphisms (SNP) involved in the successful predic-
tion of LOAD? Hence, the aim of this work was to explore
the performance of genetic-based ML multivariate strate-
gies in predicting LOAD and to describe the main genetic
features associated with the risk of developing LOAD.
To achieve this goal, we used the benchmark tool imple-

mented in FRESA.CAD (Feature Selection Algorithms
for Computer Aided Diagnosis) [17, 18]. The benchmark
tool evaluates statistical feature selection methods, wrap-
per/filter ML methods, and the ensemble of models in a
coherent cross-validation and repetition method yielding

Fig. 2 ROC Curves for the FRESA.CAD Benchmarking Classifiers (Continued) ROC Curves obtained using SVM, KNN and the Ensemble of the
FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-Validation and the top 2,500 SNPs as inputs
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Fig. 3 Balanced Error of the FRESA.CAD Benchmark classifiers Comparison of the Balanced Error obtained using the different classification methods
of the FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-validation and using the top 2500 SNPs as input

a high degree of statistical confidence of the test per-
formance. FRESA.CAD additionally has the advantage of
returning the features most selected across the models
and can extrapolate to a valid analysis of the gene variants
which allows amore direct interpretation.We propose the

hypothesis that the FRESA.CAD Benchmarking tool can
achieve high predictive results by comparing and analyz-
ing multiple Machine Learning models applied to predict
the genetic risk a person has of developing Alzheimer’s
Disease from genetic information only. We expect these

Fig. 4 Accuracy of the FRESA.CAD Benchmark classifiers Comparison of the Accuracy obtained using the different classification methods of the
FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-validation and using the top 2500 SNPs as input
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Fig. 5 ROC AUC of the FRESA.CAD Benchmark classifiers Comparison of the ROC AUC Score obtained using the different classification methods of
the FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-validation and using the top 2500 SNPs as input

models to explain more of the missing heritability than
simpler models as the methods can represent nonlineari-
ties from gene interactions and use a broader amount of
SNPs in contrast to single markers from GWAS.

Results
Figures 1 and 2 show the Receiver Operating Characteris-
tic Area Under the Curve (ROC AUC) of the MLmethods
on the ADNI dataset. The ROC AUC ranged from 0.60 to
0.70. The BSWiMS, LASSO, and RPART had equivalent
performance, and the ensemble of the methods had the
best performance with a ROC score of 0.719. Figures 3,
4, 5, 6, 7 and 8 show the detailed performance analysis
of the ML methods. The balanced error, the ROC AUC,
the accuracy as well as specificity and sensitivity for both
classifiers and the combinations with filters are depicted
as bar plots. These plots indicate that the support vec-
tor machine (SVM) engine with minimum redundancy
maximum relevance (mRMR) filter had the lowest perfor-
mance. On the other hand, the Least Absolute Shrinkage
and Selection Operator (LASSO) method gave the best
results among ML methods, which was further improved
by using the Ensemble of methods and achieving a ROC
AUC of 0.719.
Regarding feature selection: Fig. 9 shows the Jaccard

index of the different methods, while Fig. 10 shows the
average number of selected features. Finally, Fig. 11 shows
the top selected features by the ML method and their
selection frequency. These figures show that multivari-
ate ML methods selected different features to construct

their predictive models and that those features were not
constantly selected at each one of the cross-validation rep-
etitions. The method that constantly selected the same
features was BSWiMS, but it was, on average, based on
a single feature. On the other extreme, the mRMR filter
selected on average over 200 features at each interaction;
and 50% of the selected features were common between
selection sets.
A detailed analysis of the results presented in Fig. 11

indicates that APOE ε4 (rs429358) was chosen by all the
feature selection methods. LASSO is consistently using
more SNPs than net reclassification improvement (NRI)
filter and NRI selected more than the other filter meth-
ods. On the other hand, the classic mRMR filter selects
many markers, but the cross validation (CV) perfor-
mance results were not the best. The selection frequency
analysis reported by the benchmark function shows that
rs67636621, rs76566842, and rs16905109 deserve further
exploration. Table 1 presents the results of the eight most
important SNPs that were consistently selected by the ML
methods (more than 10% across feature selection meth-
ods). Most of them had a significant association with the
presence of AD according to the univariate Wilcoxon test
(p< 0.05). The APOE ε4 variant gives a very strong pre-
dictive power, and the remaining variants are then used
to further improve the models. Table 1 also shows the
location and the related genes of the top SNPs. One of
the notable results is SNP rs6448799 which is a variant
of LOC107986178 of the HS3ST1 gene. This gene has
been shown to have a near study-wide association with
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Fig. 6 ROC AUC of the FRESA.CAD Filter combinations Comparison of the ROC AUC Score obtained using the different combinations of classification
methods plus filters of the FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-validation and using the top 2500 SNPs as input

the “backward digits” working memory, supporting asso-
ciation of these variants with AD and Mild Cognitive
Disorder (MCI) [24].
Figures 12 and 13 show the validation performance

results of the benchmarked MLmethods based on the top
1000 SNP obtained from the IGAP-independent data set.
The ROCAUC ranged from 0.50 to 0.65, and the balanced
error rate (BER) ranged from 0.5 to 0.39. Filtered Naive
Bayes (AUC= 0.65, BER=0.42) was the top ML method,
followed by RPART (AUC=0.63, BER=0.39).
The feature selection analysis of the validation returned

a larger set of SNPs candidates. Figure 14 and Table 2
show the set of SNPs that were selected at least 10% of
the time. Despite the large number of SNPs only APOE
ε4 and rs6448799 appeared on both the full ADNI and
IGAP-independent validation set.

Discussion
Most of the experimental treatments in development for
LOAD require implementation at the very early stages

of the disease to be effective [25]. Genetic approaches to
predicting the risk of LOAD are a powerful and viable
alternative to traditional biomarker-based disease predic-
tion methods [26]. Traditional GWAS have only found
SNPs that so far can only explain 33% of the estimated 79%
[8] fraction of genetic risk associated with Alzheimer’s
disease. While this value is low for a reliable clinical pre-
diction, Machine learning methods have been proven to
perform better in detecting candidate SNPs and predict-
ing complex genetic diseases such as Type-2 Diabetes [27],
Inflammatory Bowel Syndrome [28] andObesity [29]. The
use of machine learning-based approaches for Genetic-
based Precision Medicine has increased in the current
decade and shows signs of increasing [30].
This study presented the hypothesis that Benchmarking

ML methods on SNP dataset can aid in discovering novel
SNPs associated with the late onset of AD. Specifically,
we studied the capability of the FRESA.CAD benchmark-
ing method to discover and model the genetic risk factor.
Benchmarking allowed us to gain insight in the degree of
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Fig. 7 Sensitivity of the FRESA.CAD Filter combinations Comparison of the Sensitivity Score obtained using the different combinations of classification
methods plus filters of the FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-validation and using the top 2500 SNPs as input

genetic risk associated with LOAD by comparing and ana-
lyzing multiple Machine Learning models applied to pre-
dict the risk a person of developing Alzheimer’s Disease
from genetic information only. The Machine Learning
models were expected to find linear and nonlinear rela-
tionships between genes that could explain more of the
missing heritability of Alzheimer’s disease. Constructing
models with the capability to detect epistasic relationships
would be an important advancement compared to tra-
ditional single-variant GWAS studies. The results show
that some models obtained promising results in predict-
ing the development of the disease, namely BSWiMS,
LASSO, RPART, and the Ensemble. The best ROC AUC
score achieved with the ADNI-Discovery was ∼0.719
and 0.61 in the IGAP-independent subset. This result is
promising considering the upper boundary set by the cal-
culated heritability from purely genetic components (79%
as described in [8]). Furthermore, the model outperforms
those methods which only use the APOE4 gene, which
achieve around 63 65%, and simple deep learning mod-
els, which achieve 62%.. It is noteworthy that this study

showed marked differences between the ML methods in
modeling LOAD. On the other hand, the ADNI results
indicated a small subset of SNPs that can be used in
multivariate models, while the independent IGAP study
returned hundreds of possible candidates.
The models tested with the FRESA.CAD Benchmark

indicated that the ensemble method had a sensitivity of
70% with a specificity of 65%, implying a strong genetic
risk component in the ADNI cohort.. We also found
that different feature selection methods selected common
SNPs that have been already associated with Alzheimer.
Thus, SNP selection based on set overlap may be a pow-
erful method to discover clinically significant risk factors.
The reduced cohort for the confirmatory validation indi-
cated that the Naive Bayes classifier had a sensitivity of
33% with a strong specificity of 95%. The contradictory
findings between the full dataset and the validation subset
may be a class imbalance problem coupled with limita-
tions regarding the size of the dataset. Regardless of the
differences between cohorts, the presented results sup-
port the previous SNP finding that the APOE ε4 gene is
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Fig. 8 Specificity of the FRESA.CAD Filter combinations Comparison of the Specificity Score obtained using the different combinations of
classification methods plus filters of the FRESA.CAD Benchmarking with the ADNI-Discovery dataset for the Cross-validation and using the top 2500
SNPs as input

the main risk factor for Late Onset Alzheimer’s disease
[31]. Furthermore, we were able to confirm a new possible
variant associated with the disease: rs6448799. Accord-
ing to recent GWAS studies, this last genetic variant may
have a true correlation with Alzheimer’s Disease [24, 32].
Hence, FRESA.CAD Benchmark seems to be a promising
tool for Genomics analysis and finding candidate clinical
markers. This study is limited by the small sample size;
we expect that the predictive capability of the machine
learning models can be improved by increasing the sam-
ple size. Therefore, we believe that these models hold
much promise for the clinical diagnosis of Late-Onset
Alzheimer’s Disease and other complex diseases.
The upper limit of the genetic component alone

presents a challenge for the highly precise accuracy
required for a clinical diagnostic. One of the possible
solutions for this problem would be to complement the
genetic-based methods with imaging or clinical data. The
genetic analysis could be used to detect those individu-
als with a higher risk of developing Alzheimer’s Disease,

and then those individuals could be monitored on a yearly
basis with imaging technologies to detect the develop-
ment of the disease at the earliest possible moment.
LOAD polygenic scores currently available are not

capable to predict mild cognitive impairment to LOAD
progression [33]. Therefore, alternative models are also
required for the accurate prediction of disease pro-
gression. Additionally, alternative hypothesis such as
Pritchard’s Omnigenetics [34] could also be explored effi-
ciently using ML methods to model and identify cellular
networks and the respective flow of regulatory informa-
tion, finding a more comprehensive and general solution.

Conclusions
This research study has shown the results of apply-
ing the FRESA.CAD Binary Classification Benchmarking
algorithms to predict the risk of developing Late-Onset
Alzheimer’s Disease from genetic variation data exclu-
sively. Conducting systematic comparisons on the classi-
fication performance of machine learning algorithms is a
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Fig. 9 Jaccard Index Jaccard Index metric of the different classifiers between features selected by each classifier of the FRESA.CAD Benchmarking
with the ADNI-Discovery dataset for the Cross-validation and using the top 2500 SNPs as input

crucial task for achieving the predictive potential of these
models. Model selection methodologies used to optimize
machine learning models also hold the potential for the
discovery of new genetic markers associated with the dis-
ease. Given that the preliminary results show promise, we
believe that a refined model could be a powerful tool for
the prediction and early detection of this disease. The cur-
rent models show limitations due to the complexity of the
disease and the size of the datasets, both of which stand to
benefit from the increasing availability of data. This paper
also demonstrates that Machine Learning methods are
powerful tools suited to analyze and leverage a multitude
of genes that could be used in a variety of complex diseases
similar to Alzheimer’s Disease. The current technological
trend points toward the large-scale application of these
methods with the ever-increasing demand for individual
genome sequencing and the availability of much larger
datasets.

Methods
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI
, PET, other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of MCI and early AD.

We selected individuals who have either a Cognitively
Normal or Alzheimer’s Disease. PLINK [19, 20] was used
to read the Variant Call Format data of the WGS and to
convert it to the more compact format of Binary Pedigree
Files (BED). After that, we used Python 3.5 and the library
PyPlink [21] to perform quality control procedures in a
similar pipeline to the one described by Turner [22].
We began by performing pre-quality controls on the

samples, using marker call rate, sample call rates and
Minor allele frequency (MAF) filtering. Once this is done
Identity-By-Descent (IBD) is performed with a value of
0.25 to find those individuals related to each other to be
removed. After the binary classification filter and the IBD
filter the samples are reduced from 808 individuals to 471
individuals. We named this the ADNI-Discovery dataset,
it is balanced in terms of cases/controls, has a mean age of
75.5 and it is slightly skewed towards males, as is shown in
Table 3.
Afterwards, marker call rate (≤ 99%) and MAF fil-

tering (≤ 0.01) are used to reduce the number of
SNPs to only those that are useful. Then, the Hardy-
Weinberg Equilibrium test is done (≤ 0.05) to further
clean SNPs. Finally LD-Based clumping (p-value ≤ 0.01,
r2 ≤ 0.05) is used to find those SNPs which are in
Linkage Equilibrium and are statistically relevant. For a
correct LD-based clumping the statistical data used as
reference should be obtained from a different data set
which is sufficiently large. In our case we used the sta-
tistical summary results from the International Genomics

http://adni.loni.usc.edu
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Fig. 10 Number of Features The number of features selected by each classifier of the FRESA.CAD Benchmarking with the ADNI-Discovery dataset for
the Cross-validation and using the top 2500 SNPs as input

Fig. 11 SNPs chosen more than 10% of the time as features of the FRESA.CAD Benchmark Heatmap of the main SNPs being chosen across all the
classifiers. The Y axis are the main SNPs being selected while the X axis represents the different classifiers of the FRESA.CAD Benchmarking with the
ADNI-Discovery dataset for the Cross-validation and using the top 2500 SNPs as input
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Fig. 12 Validation ROC Curves for the FRESA.CAD Benchmarking Classifiers ROC Curves obtained using BSWiMS, Random Forest, RPART and LASSO
of the FRESA.CAD Benchmarking with the ADNI-Validation dataset for the Cross-validation and using the top 1000 SNPs as input

of Alzheimer’s Project (IGAP) [23] to guide the clumping
algorithm and find the statistically relevant and inde-
pendent candidate SNPs. These summary statistics are
generated from 74,046 individuals. The Quality Control
Pipeline returned 8,239 SNPs in Linkage Equilibrium after
performing the LD-clump based on the IGAP Summary
Statistics. Finally, for performance reasons, we reduced
these 8,239 SNPs to only the top 2,500 SNPs based on
their p-value (ascending) as an input to the benchmark-
ing tool. The ADNI dataset was selected as the base of
the analysis even though it has a much smaller sample
size as it has the full WGS data available for each subject,
while the IGAP only makes the summary statistics openly
available.
For further validation, we also generated a second vali-

dation subset from the dataset where we took only those
individuals in the ADNI which did not take part in the
IGAP study for validation as there were some existing
individuals present in both datasets. Due to the reduced
data set size we further reduced the SNPs used as input

to just the top 1,000 SNPs (Also based on their ascending
p-value). In contrast with the full dataset, the valida-
tion set is highly unbalanced, with 78% of the samples
being controls, the mean age is slightly lower as shown in
Table 3.
Multivariate model-building and validation were done

using the FRESA.CAD Benchmarking tool that runs the
following ML methods:

• Bootstrap Stage-Wise Model Selection (BSWiMS), or
user-supplied cross-validated (CV) method.

• Least Absolute Shrinkage and Selection Operator
(LASSO)

• Random Forest (RF)
• Recursive Partitioning and Regression Trees (RPART)
• K Nearest Neighbors (KNN) with BSWiMS features
• Support Vector Machine (SVM) with

minimum-Redundancy-Maximum-Relevance
(mRMR) feature selection filter

• The ensemble of all the above methods
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Fig. 13 Validation ROC Curves for the FRESA.CAD Benchmarking Classifiers (Continued) ROC Curves obtained using SVM, KNN and the Ensemble of
the FRESA.CAD Benchmarking with the ADNI-Validation dataset for the Cross-validation and using the top 1000 SNPs as inputs
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Fig. 14 Validation SNPs chosen more than 10% of the time as features of the FRESA.CAD Benchmark Heatmap of the main SNPs being chosen
across all the classifiers. The Y axis are the main SNPs being selected while the X axis represents the different classifiers of the FRESA.CAD
Benchmarking with the ADNI-Validation dataset for the Cross-validation and using the top 1000 SNPs as input
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Table 3 Dataset and validation subset demographic metrics

Dataset Size Male Female Mean age Controls Alzheimer’s
cases

ADNI-Discovery 471 252 219 75.57 241 230

ADNI-Validation 167 92 75 72.17 130 37

The CV performance of these classification algorithms
is also complemented with the following feature selec-
tion algorithms and different filters: BSWiMS, LASSO,
RPART, RF, integrated discrimination improvement (IDI),
net reclassification improvement (NRI), t student test,
Wilcoxon test, Kendall correlation, and mRMR as filters
on the following classifiers: KNN, naive Bayes, nearest
centroid (NC) with normalized root sum square distance
and Spearman correlation distance, RF and SVM.
The results of the CV instances executed by the binary

benchmark were compared using the performance statis-
tics and ranked by their 95% confidence interval (CI). The
ranking method accumulates a positive score each time
the lower CI of a performance metric is superior to the
mean of the other methods and loses a point each time the
mean is inferior to the top 95% CI of the other methods.
The package returns the accuracy, precision, sensitivity,
the balanced error rate and the ROC AUC with their cor-
responding 95% confidence intervals (95% CI). We used
the ranking results to infer the suitability of ML methods
to predict AD in the ADNI dataset.
Finally, we independently analyzed the validation subset

(IGAP-independent) using the FRESA.CAD benchmark-
ing procedure.
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