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Abstract

Background: Cellular aging is best studied in the budding yeast Saccharomyces cerevisiae. As an example of a
pleiotropic trait, yeast lifespan is influenced by hundreds of interconnected genes. However, no quantitative methods
are currently available to infer system-level changes in gene networks during cellular aging.
Results: We propose a parsimonious mathematical model of cellular aging based on stochastic gene interaction
networks. This network model is made of only non-aging components: the strength of gene interactions declines
with a constant mortality rate. Death of a cell occurs in the model when an essential node loses all of its interactions
with other nodes, and is equivalent to the deletion of an essential gene. Stochasticity of gene interactions is modeled
using a binomial distribution. We show that the exponential increase of mortality rate over time can emerge from this
gene network model during the early stages of aging.
We developed a maximal likelihood approach to estimate three lifespan-influencing network parameters from
experimental lifespans: t0, the initial virtual age of the network system; n, the average lifespan-influencing interactions
per essential node; and R, the initial mortality rate. We applied this model to yeast mutants with known effects on
replicative lifespans. We found that deletion of SIR2, FOB1, and HXK2 considerably altered the initial virtual age but not
the average lifespan-influencing interactions per essential node, suggesting that these mutations mainly influence the
reliability of gene interactions but not the overall configurations of gene networks.
We applied this model to investigate replicative lifespans of yeast natural isolates. We estimated that the average
number of lifespan-influencing interactions per essential node is 7.0 (6.1–8) and the average estimated initial virtual
age is 45.4 (30.6–74 ) cell divisions in these isolates. We also found that t0 could potentially mediate the observed
Strehler-Mildvan correlation in yeast natural isolates.
Conclusions: Our theoretical model provides a parsimonious interpretation of experimental lifespan data from the
perspective of gene networks. We hope that our work will stimulate more interest in developing network models to
study aging as a pleiotropic trait.
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Background
Understanding cellular aging is critical to our under-
standing of aging in general [1]. At the molecular level,
pathways that are known to influence lifespan often
play important and conserved functions within cells [2].
Molecular mechanisms of cellular aging are best under-
stood in the budding yeast Saccharomyces cerevisiae, a
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single-cell model organism [3–6]. The lifespan extension
effect of sirtuins and the TOR pathways were extensively
studied in the budding yeast and were found to be con-
served in other species [2, 7–9].
Aging of yeast cells can be measured by the replica-

tive lifespan — the number of cell divisions that cells
can accomplish before senescence—and the chronological
lifespan — how long cells can retain their proliferative
capability in the stationary phase [5]. The replicative
lifespan of yeast cells is analogous to the limited replicative
capability of primary culture cells that was first observed
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in human cells [10]. Survival curves of replicatively aged
yeast cells are generally sigmoidal and can be described
by the Gompertz model [11]. Genome-wide experimen-
tal studies have demonstrated changes at gene network
levels during the yeast aging process [12]. Cellular aging
in yeast is a stochastic process because a population of
genotypically homogeneous cells can live to different ages.
Broad sense heritability of yeast replicative lifespan has
been estimated to be around 22% [11].
In general, aging is quantitatively defined by mortal-

ity rate μ(t), which is the normalized declining rate of
viability S(t):

Mortality rate: μ(t) = − 1
S(t)

dS(t)
dt

, (1)

where t is time. Mortality rate μ(t) describes the chance
of dying over age, and aging occurs when mortality rate
is a positive and increasing function of time. Mortality
rate is also known as the force of mortality, failure rate,
hazard rate, and intensity function in various contexts
[13–15]. Mortality rate μ(t) is often an exponential func-
tion of time for biological aging, known as the Gompertz
model [16, 17].

Gompertz model: μ(t) = ReGt . (2)

In the Gompertz model, R is the initial mortality rate
when t is zero, and G is the Gompertz coefficient. The
initial mortality rate R can be interpreted as the lifes-
pan potential at birth. The Gompertz coefficient G has
a unit of 1/time, describes the acceleration of mortal-
ity rate μ over time, and hence is a measure for the
rate of aging. Given the role of gene networks in cel-
lular aging, it would be informative to gauge gene net-
work changes during yeast aging. It is not clear how
the classical Gompertz model of aging can be used to
interpret molecular mechanisms from yeast experimental
aging data.
Reliability theory is a well-established field in engi-

neering [14, 15], and its application in biological aging
was recognized decades ago [18–24]. Murphy proposed
a Bingo model in 1978 and considered an organism as
a serial configuration of subsystems [18]. Similarly, Skur-
nick and Kemeny, in 1978, modeled an organism as a
number of serial links and recognized that the weakest
link determines the organism’s age [19]. In 1985, Witten
argued that an organism can be modeled as a graph and
explored ways to regenerate the Gompertz model using
a serial configuration of components [20]. Gavrilov and
Gavrilova recognized the importance of non-aging com-
ponents and developed a sophisticated reliability model of
aging [23, 24]. All of these previous reliability models are
based on serially connected subsystems, analogous to seri-
ally connected fuse boxes. These previous models did not
capture interaction patterns in molecular networks and,

consequently, have not become effective tools to assist
molecular studies of aging, a challenge that we aim to
address.
The rationale of our modeling approach is based on the

need to develop a quantitative framework to evaluate gene
network changes during cellular aging. A null hypothesis
is often required in statistical analysis and interpretation
of experimental results. If experimental data can be suffi-
ciently accounted for by a simple null model, alternative
models with more complicated assumptions would not be
justified. To provide a quantitative framework to evaluate
gene network changes during cellular aging, we propose
a parsimonious gene network model that can serve as a
null hypothesis. Given the quantitative definition of aging
in Eq. 1, a system or an organism can be non-aging when
μ(t) is a constant C, which indicates a constant chance of
dying over time [23, 24]. In this kind of non-aging organ-
ism, the drop of viability is exponential, S = e−Ct , and is
identical to the exponential decay of radioactive isotopes.
Intuitively, as long as non-aging individuals can live to the
next day, their chances of survival will be as good as those
on the previous day. In bacterial phages, drop of viability
is exponential [25], indicative of non-aging characteristics
with a Gompertz coefficient G of zero. Hence, the null
hypothesis for cellular aging must assume that the com-
ponents of the network systems are non-aging and have
constant mortality rates.
In the following sections, we first propose a parsimo-

nious network model for cellular aging, then develop a
maximum likelihood approach for parameter estimations,
and, finally apply the model to infer global gene network
parameters from replicative lifespan data of the budding
yeast Saccharomyces cerevisiae.

Model
The first step in developing our gene network model for
cellular aging is to model the phenotype of cellular death.
We then modified the classical reliability model of aging
into a stochastic network model.

Modeling the phenotype of cellular death
We introduce the concept of an essential network mod-
ule, the basic building unit of our network model, to
model cellular death as a phenotype. About 17% of the
6600 genes in the yeast genome are essential ones: dele-
tion of any one of these genes leads to inviable cells
[26, 27]. We assume that one essential gene or essential
node (represented by a solid black circle) interacts with
n number of non-essential genes/nodes (represented by
open circles) in each essential network module (Fig. 1).
Based on our parsimonious rationale, gene interactions
are assumed to be non-aging: the strength of each gene
interaction declines exponentially over time. All gene
interactions have the same constantmortality rate λ in this
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Fig. 1 The proposed parsimonious gene network model for cellular aging. We assume that there are n number of aging-relevant interactions per
essential node and that these interactions are active in cells with a probability of p at time zero. There arem number of essential nodes in the
network. This proposed network model is equivalent to the classical reliability block model

model. For clarity, decline in non-aging interactions will
be termed decay, and the constant mortality rate will be
called the decay rate. An essential node will cease to be
active when it loses all of its n interactions, a scenario that
is equivalent to the deletion of an essential gene, and leads
to the failure of the entire network, i.e., cell death. The
viability of each non-aging interaction is e−λt . We assume
that decaying strength of gene interactions are indepen-
dent. In other words, loss of one gene interaction will
not affect the strength of the remaining gene interactions.
This essential network module is equivalent to a circuit
block with n parallel components in the classical reliabil-
ity aging model (see Figure 2b in reference [24]). Based on
the reliability theory [15, 24], the viability of the essential
module is

Sm(t) = 1 − (1 − e−λt)n (3)

and the mortality rate of the essential module, μm is

μm(t) = − dSm(t)
Sm(t)dt

= nλe−λt(1 − e−λt)n−1

1 − (1 − e−λt)n
. (4)

If we focus on lifespans t � 1/λ, the above equation can
be simplified to

μm(t) ≈ nλntn−1. (5)

In empirical networks such as yeast protein interac-
tion networks, essential genes/proteins often interact with
many other genes. Our model assumes that, among these
interactions, only n interactions on average are relevant
to cellular survival upon deletion of this essential node. In
other words, this networkmodel assumes that, on average,
there are n number of interactions that are relevant to the
essentiality for each essential node. We like to emphasize
that the proposed exponential change of gene interaction
strength is an imperative assumption for a null hypothe-
sis. In other words, we argue that network models with
non-exponential changes of gene interactions are alterna-
tive hypotheses and should only be used when they offer
significantly better fit to experimental data than the null
network model with non-aging gene interactions.

A parsimonious stochastic gene network model for cellular
aging

We can now build a stochastic gene network model using
the essential network modules. We assume there are m
number of essential modules to build a network model of
aging as in Fig. 1. We assume that failure of any essential
module leads to failure of the entire network and, there-
fore, cell death. This is a reasonable assumption because
the absence of any single essential gene leads to inviable
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yeast cells [27]. We assume that essential genes do not
interact with each other and that their failures are inde-
pendent. With these assumptions, the network model is
mathematically equivalent to the serial construction of
blocks in the circuit model proposed by Gavrilov and
Gavrilova [23, 24].
We assume that gene interactions are stochastic and

that the chance of a gene interaction being active is p
at time t = 0 (Fig. 1). In intracellular gene networks,
gene interactions are inherently stochastic due to the
limited number of gene products, noise in protein expres-
sions, and the crowding nature of intracellular spaces
[28–30]. Furthermore, transcription noises can be ampli-
fied into noises at protein levels [31]. This stochastic
network model is mathematically equivalent to the classic
circuit model with binomially active components [24]. If a
network contains m essential modules and each essential
gene stochastically interacts with n non-essential genes,
based on Appendix C in reference [24], the mortality rate
of the entire network is

μnet(t) ≈cmnλp
n∑

i=1

(
n − 1
i − 1

)
(pλt)i−1(1 − p)(n−1)−(i−1) ,

(6)
when t � 1/λ,

and where c is a normalizing constant, c = 1
1−(1−p)n . It is

reasonable to approximate the modular mortality rate as
a summation of possible connection patterns in Eq. 6 if
we focus on the range of lifespans t � 1/λ [24, 32]. The
summation term in Eq. 6 is the binomial formula [ (1−p)+
pλt]n−1, which leads to the following re-arrangements:

μnet(t) ≈cmn(pλ)n(
1 − p
pλ

+ t)n−1 (7)

=R(1 + t/t0)n−1, (8)

where

t0 = 1 − p
pλ

and (9)

R = cmn(pλ)ntn−1
0 . (10)

The parameter t0 has the unit of time and is termed the
initial virtual age of the system (IVAS). The parameter R
is equivalent to the initial mortality rate in the classical
Gompertz model [23, 24].
The three-parameter mortality function in Eq. 8 can be

used to fit an experimental lifespan data set, which can
reveal t0 (the initial virtual lifespan) and n (the number of
lifespan-influencing interactions per essential node).
The network survival function based on the mortality

function in Eq. 8 is found to be

Snet(t) = e
Rt0
n (1−(1+t/t0)n), (11)

and the probability density function of network aging is
found to be

fnet(t) = Snet(t) · μnet(t). (12)

The maximum of the log-transformed likelihood summed
over the entire experimental data set will yield estima-
tions of model parameters. We have implemented these
numerical procedures in R codes.
Given our simple assumptions, it is important to test

the utility of this proposed parsimonious model for cel-
lular aging. Hence, we applied this network model of
cellular aging to the replicative aging of the budding
yeast due to the availability of many experimental data
sets obtained under controlled conditions. We suggest
that the estimated n from experimental lifespan data sets
may be termed the apparent average number of lifespan-
influencing interactions per essential node.

Results and discussion
Application in yeast mutants with known effects on
replicative lifespan
To further demonstrate the utility of our proposed model,
we applied it to experimental replicative lifespanmeasure-
ments of yeast mutants with known effects on aging [33].
We estimatedmodel parameters from replicative lifespans
using maximum likelihood methods. Replicative lifespans
were bootstrapped to mitigate potential ascertainment
errors.
SIR2 is a NAD-dependent deacetylase involved in chro-

mosome silencing, chromosome segregation, and DNA
recombination. Deletion of SIR2 shortens yeast replica-
tive lifespan, and over-expression of SIR2 extends it
[33, 34]. As shown in Table 1, our model fitting results
show drastically decreased t0 estimation in sir2� —the
deletion mutant of SIR2 and moderately increased t0 esti-
mation in SIR2OX—the over-expression mutant of SIR2
in comparison to the wildtype control BY4742. Based on
Eq. 9, t0 is inversely associated with the interaction decay-
ing rate λ. Lower values of λ indicate stronger reliability
of protein interactions. Hence, decreased value of t0 sug-
gests that deletion of SIR2 decreases the reliability of gene
interactions, whereas over-expression of SIR2 increases it.
Mutants of two other yeast genes were also studied.

FOB1 regulates the number of rDNA copies in yeast cells,
and its deletion extends yeast replicative lifespan [33].
HXK2, a hexokinase, limits glucose input for glycolysis,
and its deletion mutant is considered a genetic model
for calorie restriction [33]. Our results show that in both
single-deletion mutants of FOB1 and HXK2, estimations
of t0 increase and estimations of n remain in the same
range. In the double-deletion mutants where both FOB1
and HXK2 are absent, t0 increases with the largest mean
values, although n decreases moderately.
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As shown in Table 1, we found that the estimated IVAS
t0 is generally much greater than the average lifespan in
these yeast strains. In all the strains studied, the trends of
these changes remained when we bootstrapped the exper-
imental measurements, indicating these changes of t0 are
robust to ascertainment fluctuations during replicative
lifespan experiments.
When t � t0, the binomial network mortality rate

μnet will approach the classical two-parameter Gompertz
model of aging [24], and the Gompertz coefficient, G, is
found to be

G = n − 1
t0

. (13)

Hence, the proposed network model of aging can be
viewed as an extension of the two-parameter Gompertz
model and provides an alternative model to use in exam-
ining cellular aging.
Consistent with our view that the proposed model is an

extension of the Gompertz model, the proposed network
aging model performs similarly to the Gompertz model
during fitting based on the Akaike information criterion
(AIC) (Table 1). The ranges of estimated AIC using the
network model mostly overlap with those using the Gom-
pertz model. These observations were further supported
by the overlay of fitting density curves over the lifespan

histograms in these yeast strains (Fig. 2). Generally, when
the Gompertz aging model is a good fit for the experimen-
tal lifespan—such as for the wildtype BY4742, deletion
mutants sir2�, hxk2�, and fob1�—the proposed network
aging model is also a reasonably good fit. When lifes-
pan distribution becomes skewed in the over-expression
mutant SIR2OX, both the Gompertz model and the bino-
mial model become problematic.
To better interpret the estimated network parameters,

we compared the estimated network parameters with
the protein physical interaction network. The estimated
apparent average number of lifespan-influencing interac-
tions per essential node n is about 8 in the reference strain
BY4742 . The median number of protein interactions
for essential genes is about 35 per essential gene in the
yeast protein physical interaction network obtained from
BioGRID (version 3.4.154) [35]. The BioGRID yeast pro-
tein physical interacting networks have aggregated many
protein interactions measured under many experimental
conditions. Our network model of aging considered only
pairwise interactions between nodes that are relevant to
gene essentiality. These differences may indicate that only
a small portion of protein physical interactions are rele-
vant in gene essentiality and the cellular aging process. It
is also entirely possible that the binomial analytical form
of the proposed network aging model underestimates the

Fig. 2 Overlay of fitting curves with lifespan histograms in yeast mutants. Red fitting curves represent the binomial form of the network aging
model, and blue fitting curves represent the two-parameter Gompertz model. a BY4742. b fob1�. c hxk2�. d fob1�hxk2�. e sir2�. f SIR2OX
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average number of aging-relevant interactions per essen-
tial node, given the assumptions needed to reach an ana-
lytic form of solution. This limitation may be addressed in
future studies using simulation approaches to study aging
of empirical gene/protein networks.
When applying this simple parsimonious model to ana-

lyze experimental data, we suggest that the estimated
n, termed the apparent average number of lifespan-
influencing interactions per essential node, is similar to
other theoretical concepts such as the effective popula-
tion size in population genetics. The effective population
size, though often drastically smaller than the apparent
size of biological populations, can help us evaluate var-
ious models in population genetics. Another example is
the effective transmission rate of viruses in epidemiol-
ogy. In practice, the utility of the proposed network aging
model lies in its ability to help gauge potential gene net-
work changes from experimental lifespan results. Con-
sequently, we are currently developing likelihood-based
nested model testing approaches to compare the network
aging model parameters from different experiments.
Furthermore, our network model offers an interesting

perspectives on the aging of bacterial phages [25]. When
G approaches zero, the value of t0 approaches infinite
based on Eq. 13, which in turn suggests that the value of λ
approaches zero based on Eq. 9. An extremely small value
of λ—the decaying rate of gene interaction indicates that
the strength of gene interactions can remain strong for a
very long time during aging. Hence, our network model
predicts that the strength of gene interaction is extremely
reliable in bacterial phages.

Application in yeast wild isolates and implication for the
streher-Muldivan correlation
We applied the proposed network model of cellular aging
using replicative lifespan data sets of wild isolates of
Saccharomyces cerevisiae [11]. As shown in Table 2, ranges

of AIC values for the network model generally over-
lap those for the Gompertz model, consistent with our
findings using the laboratory strains. We found that the
estimated IVAS (t0) is between 30.6 and 74.0 with a mean
value of 45.4 in our collection of wild yeast isolates, which
is in the same range of BY4742 (t0 = 56.2). The esti-
mated n is between 6.1 and 8.0 with a mean value of 7.0,
slightly lower than those estimated in the laboratory strain
background.
We found that the assumption of t � 1/λ can reason-

ably be met. If we assume activation of gene interaction
with p = 0.7, the range of 1/λ is 73–173 cell divisions with
a mean of 106. If we assume p = 0.9, the range of 1/λ
is 283–666 cell divisions with a mean of 408. The average
replicative lifespan of these natural isolates is 31. Hence,
these results confirm that the assumption of t � 1/λ
for our modeling approach can be met as long as interac-
tion activation probability p is greater than 0.5. In other
words, the heterogeneity of the gene network should be
moderate. For yeast gene/protein networks with over one
thousand essential genes, the condition of t � 1/λ indi-
cates that when a cell dies at the age of t due to a particular
weak essential module, the remaining gene interactions
remain largely functional.
The Strehler-Mildvan correlation has led to many

studies and debates in the field of research on aging
[23, 24, 36–38]. We found this correlation is significant
with p-value = 0.007 and R2 = 0.44 (Fig. 3a) in these wild
isolates. Interestingly, we found a significant positive cor-
relation between log10(R) and t0 with p-value = 0.014 and
R2 = 0.38 (Fig. 3b). Because of the inverse relationship of
t0 and G (see Eq. 13), we tested whether t0 could medi-
ate the correlation between the two Gompertz parameters
log10(R) and G. Using the mediation test [39], we found
that t0 mediated 86% of the correlation between G and
log10(R) with a p-value less than 2×10−16. The mediation
role of n was found to be non-significant. These results

Fig. 3 Potential mediator role of t0 in Strehler-Mildvan correlation in yeast natural isolates. a Strehler-Mildvan correlation in studied yeast natural
isolates. The size of each data point represents the value of t0. b A positive correlation between log10R and t0. The size of each data point represents
the value of G. Mediation tests show that t0 mediates the correlation between log10R and G



Qin BMC Bioinformatics          (2019) 20:599 Page 9 of 10

suggest that t0 may mediate the Strehler-Mildvan correla-
tion in replicative aging of wild yeasts. It should be noted
that there are concerns that the Strehler-Mildvan correla-
tion is caused by a degenerate manifold of Gompertz fit
[38]. This degeneratemanifold basically leads to a negative
auto-correlation between the two Gompertz parameters
along a narrow zone of the iso-average-lifespan curve dur-
ing numerical fitting of homogeneous populations. We
addressed these kinds of potential caveats of numerical fit-
ting in one of our previous studies [11] and in a recent
study [40]. Because we are dealing with heterogenous
yeast cell populations with diverse genotypes, we think
our observed Strehler-Mildvan correlation is not caused
by the numerical fitting process. We plan to conduct
future studies with larger data sets, systematic simula-
tions, and more sophistical mathematical models to fully
address these concerns.

Conclusions
We present a probabilistic gene network model of cellular
aging that can serve as a parsimonious model for inter-
preting experimental lifespan measurement. Our network
aging model converts the classic Gompertz coefficient
into two parameters: n (the average number of lifespan-
influencing interactions per essential node) and t0 (the ini-
tial virtual age). The parameter n is informative regarding
network configuration, and the parameter t0 is informa-
tive regarding interaction reliability and network hetero-
geneity. Applications of our model in yeast aging showed
that our model is as applicable as the classical two-
parameter Gompertz model. Overall, we showed that the
proposed network aging model can assist with the molec-
ular study of cellular aging. Given the pleiotropic nature of
aging, we hope that this work can stimulate more interest
in developing more sophisticated network models for the
study of aging.
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