
METHODOLOGY ARTICLE Open Access

A general-purpose signal processing
algorithm for biological profiles using only
first-order derivative information
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Abstract

Background: Automatic signal-feature extraction algorithms are crucial for profile processing in bioinformatics.
Both baseline drift and noise seriously affect the position and peak area of signals. An efficient algorithm named
the derivative passing accumulation (DPA) method for simultaneous baseline correction and signal extraction is
presented in this article. It is an efficient method using only the first-order derivatives which are obtained through
taking the simple differences.

Results: We developed a new signal feature extracting procedure. The vector representing the discrete first-order
derivative was divided into negative and positive parts and then accumulated to build a signal descriptor. The
signals and background fluctuations are easily separated according to this descriptor via thresholding. In addition,
the signal peaks are simultaneously located by checking the corresponding intervals in the descriptor. Therefore,
the eternal issues of parsing the 1-dimensional output of detectors in biological instruments are solved together.
Thereby, the baseline is corrected, and the signal peaks are extracted.

Conclusions: We have introduced a new method for signal peak picking, where baseline computation and peak
identification are performed jointly. The testing results of both authentic and artificially synthesized data illustrate
that the new method is powerful, and it could be a better choice for practical processing.
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Background
In profile-based bioinformatics data analysis, digitized
signals have aroused universal interest with a broad
range of applications. Extraction of qualitative and quan-
titative information in a large number of analytical sig-
nals from the background noise, however, poses
significant challenges. In order to obtain accurate and
clear results, some effective methods should be proposed
and implemented to perform signal extraction before
further data analysis. For instance, mass spectrometry is
one of the most used tools to analyze large biological
molecules, where the meaningful conclusion of the
proteomic studies depends on the extracted signal peaks.

In health care, chemical sensing relies on various spec-
troscopic techniques, which are not meaningful until the
signals are extracted [1]. In agricultural applications,
such as audio sensing for animal monitoring [2], the
situation is exactly the same. Examples in bioelectrical
activity measurements, such as electrocardiograms
(ECG) and electroencephalograms (EEG) [3], mainly de-
pend on wavelet analysis for signal processing [4].
Two parameters of the signal are often studied: peak

position and peak area. Sometimes, the shape of signal is
further studied through detailed analyses. In general, we
can decompose a signal peak detection procedure into
three consequent parts: smoothing, baseline correction
and peak finding. Baseline removal and signal extraction
are the core problems in signal processing. The baseline
drift comes from the background fluctuation that appears
as slow but large-scale ups and downs. It is a kind of low-
frequency noise. When the signal peaks are selected ac-
cording to their height, width or shape, the distortion and
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vertical shift caused by the baseline drift result in a signifi-
cant interference. The high-frequency noises introduce
rapid small-scale fluctuations. When peaks are identified
as the signals, these noises harm the integrity of signal
peaks while generating many interfering peak points. Vari-
ous methods to smooth the noise and correct the drift
with signal reception have been developed. However, due
to randomness and complexity, the robust and accurate
signal picking remains a challenging task. In this context,
we propose a new signal feature extraction algorithm from
a raw profile. After comparison with several classical
methods, using various kinds of spectra and synthesized
profiles, the proposed method was found to be accurate,
flexible and easy to use.

Previous works
Baseline drift and random noise are common degrad-
ation problems in signal detection [5, 6]. Several
methods based on various theories have been developed
to solve these two problems. For pure computational
methods, the need to extract key signal features that en-
able advanced processing algorithms to discover useful
contextual information has led to the development of a
wide range of algorithmic approaches. These include
using Fourier analysis, wavelet analysis, the least squares
method, computational geometry, neural networks and
so on. Generally, after the removal of baseline drift, the
signal peak identification could be focused on extraction
using its width or area against the noise interference.
Baseline correction thus is used as the main component
of signal processing. This is especially true when instru-
ments are being used to detect chemical reactions. Actu-
ally, an important series of algorithms has been
developed in analytical chemistry in which numerous
types of spectra are primitively used. There is a long his-
tory of developing numeric algorithms for processing
the mass, fluorescent, or infrared spectroscopies. Shirley
backgrounds [7], airPLS [8], AIMA [9], and Orthogonal
Basis [10] are classic techniques playing important roles
in different applications and subjects. The unified vari-
ation model [11], LMV-RSA [12] and the techniques
based on neural networks [13], singular analysis [14],
optimization method [15] and computational geometry
[16] can also achieve improved effectiveness or effi-
ciency, and some are able to perform joint baseline-
correction and denoising.
In electronic signal processing, wavelet methods are

widely applied. For example, in audio processing, multi-
level 1-D wavelet analysis [17] is typically performed for
denoising. In ECG data processing, the EMD method
plays a dominant role [18]. It has made significant con-
tributions to the development of wearable health care
systems for breathing, cardiology and temperature
measurements.

Our work
In this article, we proposed a fully automatic scheme
using only the first-order derivative. Others attempted to
use the derivative for signal processing [19], where both
first and second derivatives were utilized. However, the
effect was not good enough and the derivative method
was not widely accepted.
In our algorithm, we used only the information of the

first derivative and built a straightforward procedure that
was able to simultaneously remove the baseline drift and
extract the peak signals. It was named derivative passing
accumulation (DPA) since it was based on the applica-
tion of accumulation on the first derivative. The profi-
ciency of this new method was mainly driven by the
excellent properties of the derivative. Compared to the
previous ones, this new algorithm is cleaner, more vigor-
ous and more efficient.

Results
We selected three representative classical algorithms for
comparison with our DPA method, i.e. wavelet [20],
EMD [18] and airPLS [8]. These three algorithms were
acknowledged as the most commonly used methods in
processing electronic and spectroscopic signals.
For the testing data, we chose mass spectroscopy, Ra-

man spectroscopy, audio, ECG and infrared spectros-
copies. These were the typical data forms in biological
measurements. As had been explained above, in one-
dimensional profile processing, the baseline correction is
the most important step. For methods based on thresh-
olding separation, the signal peak picking is close to a
completion of whole processing after the effective base-
line removal. Because we do not know the precise signal
information on these authentic data, to better present
the comparison, we will only implement the baseline de-
tection procedure in this part of testing. The results in-
tuitively illustrated the performance of the algorithms.
Then, we presented the analysis of the signal location

accuracy and peak area loss based on artificially synthe-
sized data to numerically measure the effectiveness.

Testing on authentic data
The results of the four algorithms with respect to the
Raman spectroscopy curve were shown in Fig. 1. The
testing data-trace was a spectrum from RRUFF database
[21]. It could be claimed from the results that the DPA
method apparently outperformed the EMD and the
Wavelet methods. At the same time, the DPA method
generated a very close result to the airPLS method,
which was the most widely used method specialized for
baseline detection in spectroscopy processing.
The results with respect to the mass spectroscopy data

are shown in Fig. 2. The testing data-trace is a MALDI-
TOF mass spectra produced in bacteria protein analysis.
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The EMD and the Wavelet methods generated overesti-
mated baselines. The airPLS method generated a dental
baseline which was not preferred. The DPA method cap-
tured the basic trend of the drift better.
The results of the four algorithms with respect to the

energy curve of a piece of audio are shown in Fig. 3. The
audio data were taken from the monitoring of a pig
farm.
The results on the ECG data are shown in Fig. 4. The

data were downloaded from the MIT-BIH Arrhythmia
Database [22, 23]. From Fig. 4, it is apparent that the
airPLS performed poorly when processing ECG data.
The corresponding baseline corrected results are shown
in Fig. 5. It is reasonable to conclude that the waveform
was more stable after the baseline removal using the
DPA method.

Moreover, on the motor imagery EEG signal, which
had been getting more attractive along with the rising of
Brain Computer Interface, the DPA method also outper-
formed its companions. The results tested on part of
motor imagery signal of the left-hand movement are
presented in Fig. 6. The testing data were taken from the
Project BCI - EEG motor activity data set.
The results of the infrared spectroscopy are shown in

Fig. 7. Infrared spectroscopy is a standard method for
detecting organic matters. The organic compound could
be qualitatively analyzed through infrared spectroscopy
whether it was a gas, liquid or solid. In biochemical
measuring, infrared spectroscopy is a basic and neces-
sary technique. The position, number, absorption inten-
sity and shape of the peaks in the infrared spectrum are
related to the structure and state of the compound. In

Fig. 1 The methods are implemented on the Raman spectroscopy for baseline detection. The DPA method generates a baseline similar to the
airPLS method and much better than the EMD and wavelet method

Fig. 2 The methods are implemented on the mass spectrum to detect the baseline. The DPA method captured the basic trend of the drift
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addition, the baseline drift is ubiquitous with the infra-
red spectra, which dramatically affects the peak detec-
tion. As such, the processing algorithm is important.
From the results, we claim that the airPLS and DPA
methods performed similarly and were better than two
others, while the wavelet method produced undercut
baselines and the EMD method produced overcut
baselines.

Testing on synthesized data
In addition to the authentic data that can be used to il-
lustrate the practical performance of the new method,
we carried out detailed analysis on the peak identifica-
tion via artificially synthesized data in which the infor-
mation of the simulated signal peaks was precisely
known.

The synthesized data were generated by adding three
parts together: the long, softly fluctuating waveform
simulating the baseline drift; the sharp spikes with differ-
ent widths and heights to simulate the signal peaks; and
the white noise. The curve simulating the baseline was
constructed by using the Fourier series. According to
the mathematical theorem, any function f(x) could be
represented by the Fourier series expansion.

f ðxÞ ¼ a0 þ
X∞
k¼1

ðakcos kω0xþ bksin kω0xÞ

We randomly selected some long periods with random
coefficients in the summation. In this way, a slowly un-
dulating waveform was produced. We could theoretically
guarantee that the simulating baselines were sampled
from a broad scope. The signals were simulated using

Fig. 3 The baselines detected by the comparison algorithms on the energy curve of pig farm audio data

Fig. 4 The baseline detections implemented on the ECG data using the comparison algorithms. The DPA method works well and the result of
the airPLS method on this data-trace is invalid
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the Gaussian peak, which was a widely applied standard
model. Universal peaks with different heights and widths
could be produced by randomly choosing the mean and
variance in the Gaussian model. The noise was gener-
ated by sampling in a uniform distribution. The typical
synthesized data are shown in Fig. 8.
We implemented the four methods to remove the

baseline drift. The performance of the methods was
measured by the peak area loss rate. Since the position
and area of the signal peak were precisely known, the
peak area in the corrected trace could be calculated at
the preset peak location. The loss rate of each algorithm
is given by comparing the results with the preset peak
area. Since the classical wavelet, EMD and DPA method
were able to locate the signals directly, we examined the
peak identification performance in addition.

The results were graphically presented in Fig. 9. From
the results, it could be concluded that the DPA method
performed better than the other comparative methods in
the baseline detection. The error of the baseline that un-
fortunately occurred in the signals’ interval caused the
peak area loss. In this regard, the DPA outperformed the
wavelet and EMD methods but not the airPLS. As the
famous baseline correcting method, the airPLS method
was outstanding in most occasions. Its disadvantages
were that it was not able to process the ECG data and
the signal peak could only be extracted a step behind ra-
ther than simultaneously.
As mentioned above, except for the airPLS method,

the classical wavelet, EMD and our DPA methods were
implemented based on transforming. The three methods
were able to directly locate the signal peaks by setting

Fig. 5 The baseline corrections implemented on the ECG data using the comparison algorithms. The waveform appears more stable after the
baseline removal using the DPA method

Fig. 6 The baseline detection results for the motor imagery EEG data using the comparison algorithms. The DPA method generates a more
accurate result
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the threshold in the transformed intermediate represen-
tation. We carried out a set of experiments on these
three methods to test the detection accuracy (as mea-
sured by the peak missing rate) and area loss rate on the
correctly recognized peaks. The numerical results are
presented in Table 1. From this set of results, we claim
that the DPA method performed better than its two

companions with respect to the signal extraction
precision.

The limit of SNR for the algorithm
We added noises with different level of signal-to-noise
ratio (SNR) to give the limit bound of the algorithm.

Fig. 7 The baseline detection results for the infrared spectrum using the comparison algorithms. The airPLS and DPA methods performed
similarly and are better

Fig. 8 Upper: the baseline, Middle left: the signal peak, Middle right: the noise, and Bottom: the synthesized data-trace
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Fig. 9 The testing results of the four comparison methods implemented on randomly synthesized simulated signal traces
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Experiments were also carried out both on authentic
and synthesized data.
Figures 10, 11 and 12 present the results on motor

imagery EEG data corresponding to the raw signal,
added noise with SNR of 7 dB and with SNR of 6 dB
respectively. From Fig. 11 where SNR is 7 dB for the
added noise, the baseline detected by the DPA
method was close to the one in the raw data. For the
data with the SNR of 6 dB, there was a bump

(marked by the red frame in Fig. 12) which implied
some overcut. Therefore, the limit of the DPA in the
data was set as 7 dB.
Figures 13, 14 and 15 present the results of X-ray dif-

fraction data. The DPA algorithm generated accurate
baseline on the raw X-ray diffraction data (shown in
Fig. 13) and it was still valid when 6 dB noise was added
(shown in Fig. 14). An overcut appeared when the SNR
declined to 5 dB (shown in Fig. 15).

Table 1 the peak extraction accuracy. For both peak missing rate and area loss rate, the lower the better

Testing
Number

Method

DPA Wavelet EMD

peak missing rate area loss rate peak missing rate area loss rate peak missing rate area loss rate

1 0.00% 7.29% 0.00% 15.74% 0.00% 11.82%

2 0.00% 9.86% 0.00% 15.29% 0.00% 12.09%

3 0.00% 13.47% 0.00% 21.04% 0.00% 19.25%

4 0.00% 17.20% 10.71% 13.76% 3.57% 19.18%

5 0.00% 15.68% 0.00% 36.56% 0.00% 9.27%

6 0.00% 19.16% 0.00% 26.74% 0.00% 19.07%

7 3.45% 2.57% 0.00% 19.55% 0.00% 24.07%

8 0.00% 3.13% 0.00% 26.02% 18.18% 17.21%

9 0.00% 8.62% 0.00% 36.43% 0.00% 36.02%

10 0.00% 4.72% 0.00% 35.12% 0.00% 28.44%

11 0.00% 11.26% 0.00% 47.87% 0.00% 16.22%

12 0.00% 3.60% 0.00% 44.72% 0.00% 8.37%

13 0.00% 9.21% 0.00% 39.72% 0.00% 15.70%

14 0.00% 8.78% 3.33% 35.35% 0.00% 10.60%

15 0.00% 6.83% 0.00% 16.24% 0.00% 38.08%

Fig. 10 The DPA method applies on the raw data of motor imagery EEG and generates an accurate baseline
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Figure 16 presents the results generated on synthesized
data with varying SNR. Subfigures from the first to the third
row show the baselines detected on the data with 7 dB, 6
dB, and 5 dB SNR. The results showed that from 7 dB to 6
dB, DPA algorithm output reasonable baselines. When im-
plemented on 5 dB data, DPA failed to produce accurate re-
sults due to the overcut marked in the red frame.
From these random testing results, we conclude that the

DPA algorithm could perform well if the level of SNR was
better than 7 dB. Since this value is an acceptable limit, we
claim that the newly developed method is practical.

Discussion
The testing results on both authentic and synthesized
data indicated that the newly developed Derivative Pass-
ing Accumulation (DPA) method in this article

outperformed other classical baseline detection methods.
For the signals with random peaks oriented to the same
direction, airPLS and DPA methods output similar re-
sults which were better than the others. For the data
where signal peaks oriented towards both positive and
negative directions (for example, the ECG signals),
airPLS failed while EMD, wavelet and DPA methods
performed well. Generally speaking, the DPA method
was wider applicable and more stable. It generated ac-
curate baselines in most cases. We have also tested the
limitations of the new method. Noises in different ratios
were added to the raw signals and it was found that
DPA worked well under at least 7 dB, which was a prac-
tical level.
The DPA method was not able to produce valid results

when the signal peaks were not fully recovered in the

Fig. 11 The DPA method generates a valid baseline on the data-trace with 7 dB SNR

Fig. 12 The DPA method applies on the motor imagery EEG data with 6 dB SNR. The detected baseline is with an inappropriate bump (marked
by the red frame)
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accumulated derivative form. In this case, the position
belonging to the signal interval might be identified as
the background point. That’s why, when the DPA algo-
rithm failed, the result was always overcut. Sometimes
the accumulated form was sufficient. However, the slight
misplacement of the identified signal interval led to an
obvious inappropriate bump in the generated baseline.
The uncertainty may be a main drawback of the DPA
method.

Conclusions
Signal processing plays an important role in biological
data analysis. It has a strong impact on the accuracy
of downstream operations leading up to the analysis
output. The new method developed in this article was
able to simultaneously implement baseline removal

and peak detection, which constituted the main con-
tent of the signal processing stage. Relying on the
simple passing accumulation procedure and with the
aid of the non-maximum suppression strategy, the
proposed DPA method could conduct rapid and auto-
matic calculations.
The results of comparison with the different algo-

rithms that were applied to real-life biological data
showed that the new method was more robust in a
wide range of applications. We further measured the
processing performance by testing the peak area loss
rate for the synthesized data. The results also indi-
cated that the DPA method had a superior accuracy.
In addition, the operation under the passing accumu-
lation also revealed its potential value for processing
higher dimensional scenarios beyond the data stream.

Fig. 13 The DPA algorithm generates an accurate baseline on the raw X-ray diffraction data

Fig. 14 The DPA algorithm generates an accurate baseline on the raw X-ray diffraction data with added noises. The signal to noise ratio is 6 dB
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Fig. 15 The DPA method applies on the X-ray diffraction data with 5 dB SNR. The detected baseline is with an inappropriate bump (marked by
the red frame)

Fig. 16 From 7 dB to 6 dB, DPA algorithm outputs reasonable baselines. When implemented on 5 dB data, DPA fails to produce accurate results
due to the overcut marked in red frame. The first row: the baselines detected on the data with 7 dB SNR. The second row: results on the data
with 6 dB SNR. The third row: results on the data with 5 dB SNR
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Further applications in image processing and the
comprehension of higher dimensional mathematical
meanings could be studied in future.

Methods
The derivative is a local variable quantity that is not influ-
enced by baseline drift. Explicitly, the background fluctu-
ation is very small in a narrow interval, which could be
omitted when considering the derivative. Only the local
rise and fall apparently affect the derivative, so it is mainly
dominated by the signal peaks. Here, we adopted the easi-
est operation of simple differences to obtain the discrete
derivatives of the waveform. When we applied the differ-
ential operator on the data-trace, the rising interval had a
positive ascent and the falling interval had a negative des-
cent. The crest was the watershed that laid between the
rising and falling parts. A practical data-trace illustrating
this basic fact is presented in Fig. 17.
The first-order derivative trace was divided into posi-

tive and negative parts, which are denoted as P and N,
respectively. Both parts carried the information of the
initial data-trace reflecting the signal shape and location,
but the baseline drift was eliminated. The basic idea of
the new algorithm was utilizing this derivative to recon-
struct the signal peaks and estimate their locations to
discriminate the signal and background intervals. The
procedure was explained as follows and formally de-
scribed in Algorithm-1.
For the negative part N, its absolute value was used to

flip the trace to be positive, as shown in Fig. 18 (the
green line in the upper left of Fig. 18 is the negative part
that is denoted as N, and the cyan line in the upper right
of Fig. 18 is the flipped absolute curve). The flipped part
is denoted as N+.

While overlaying the two vectors P and N+, it is
easy to see that the derivative traces look like steady
peaks that are split from the initial trace at the crests
(as shown in Fig. 19). Moreover, the interval of these
peaks falls in the range of the corresponding initial
peaks.

Derivative Passing Accumulation
The key operation for rebuilding the signals is to shift
and accumulate the trace of P and N+.
The procedure is named the passing accumulation op-

eration and the schematic diagram is presented in Fig. 20.
The detailed calculation is given as follows. A shift width
k is designated. Set α = {a0, a1, · · ·, am}, and initialize ai,
where i = 0, ⋯, m, to 0. Move P = {p0, p1, · · ·, pm} and
N+ = {n0, n1, · · ·, nm} to each other w + 1 times and accu-
mulate the result as α. In each step j, ai = ai + pi − j + ni +
j. Thus, the result of our passing accumulation is pre-
sented by Eq. (1)

ai ¼
Xw
j¼0

pi− j þ
Xw
j¼0

niþ j ð1Þ

where w is the maximum shifting width and is
manually set up. The newly defined computation is
named as the derivative passing accumulation and
denoted as DPA for short. The effectiveness of this
computation is presented in Fig. 21, in which it
could be intuitively seen that the data-trace of a Ra-
man spectroscopy with serious baseline drift is
straightened and the signal peaks are kept and aug-
mented. The accumulating procedure is summarized
in Algorithm-1.

Fig. 17 The plot of the derivative. Left: the initial raw spectra data (The x-axis can be assigned with any independent variable, or simply use the
index of the point in the data sequence). Right: the plot of the derivative on each data point. The derivatives are categorized into positive part
and negative part
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Automating
In the preliminary version of the algorithm, the max-
imum shift width w was set manually and uniformly. In

the following upgraded version, the non-maximum sup-
pression was applied to automatically determine w for
each subscript in the derivative array, which thereby im-
proved the whole algorithm to become fully self-driven.
Non-maximum suppression (NMS) is a widely used
technique in computer vision tasks, such as the Faster
R-CNN [24]. The basic idea is to select the object ac-
cording to its descriptive value, i.e. to examine if its
value was the maximum among all those intersecting
with it. In our case, this principle could be explained as
follows.
On a fixed point (xi, yi) in the data-trace, for each

width w, we could compute the accumulation according
to Eq. (1) to get a function with respect to w,

A wð Þ ¼
Xw
j¼0

pi− j þ
Xw
j¼0

niþ j ð2Þ

We would like to determine the width wi automatically
for position i (corresponding to the data point (xi, yi)).
According to the principle of non-maximum suppres-
sion, we select wi which meets the requirement of Eq.
(3),

A wið Þ ¼ max
jt−ij≤wi

A wtð Þ ð3Þ

Substituting (2) into (3), we get that the width wi must
satisfy the condition in (4),

Fig. 18 Upper left: the negative part N, upper right: flip N to get its positive version of N+, and bottom: overlay the trace of P and N+ at the
same position
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Fig. 19 Compare the initial trace with the overlaid derivatives. Upper: an arbitrary trace representing the general raw signal data. The x-axis could
be assigned with any independent variable, or simply use the index of the point in the data sequence. Bottom: the overlay of the positive part P
and the negative part N+ of the derivative. Remark: the overlaid diagram forms a profile similar to the initial trace. The fact inspired the idea of
using the two parts of the derivative to reconstruct the signals

Fig. 20 The passing accumulation operation. Left: slide positive part and negative parts toward each other to pass through. The value is
accumulated on each shift. Right: the accumulated result compared with the initial raw spectra
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wi ¼ kjk∈Zþ;
Xk
j¼0

pi− j þ
Xk
j¼0

niþ j ¼ max
t−ij j≤ k

Xwt

j¼0

pt− j þ
Xwt

j¼0

ntþ j

 !( )

ð4Þ

We just need to determine an appropriate wi accord-
ing to Eq. (4) instead of finding out all the possible

solutions. To implement the procedure in the program,
we can execute the accumulation adaptively by checking
if the requirement is met during the passing. In the
computation according to Eq. (1), the summation for
each index i could be implemented as follows. Set ai = 0
and start a loop to grow j from 0 to L

2 (L represents the
length of the derivative array). Accumulate the pi − j and

Fig. 21 The effect of DPA computation applied on an authentic Raman spectroscopy. Compared with the initial trace, the peaks are kept and
augmented at the same position and the baseline is straightened

Fig. 22 The peak identification results. Set a threshold on the result after DPA operation, in which the baseline is removed and signals are kept.
Then, the positions of peaks are identified and the points belonging to the baseline in the initial trace are extracted
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ni + j to ai. For each step in the loop, examine if the accu-
mulated value was maximum in its j-nearest neighbor-
hood. When the maximum requirement is not satisfied,
the accumulation at this index stops and the accumu-
lated value is stored. It also stops if all the j nearest
neighbors stop growing. The corresponding width w is
set equal to j consequently. The adaptive passing accu-
mulation is accomplished as the termination of the loop
or every width w is determined.
We summarized the scheme in Algorithm-2.

The complete algorithm
With the help of non-maximum suppression strat-
egy, the DPA was upgraded into an automatic pipe-
line. With the converted waveform T, it was
straightforward to get the final results. In T, since
the baseline drift was removed and the peaks were
kept in the corresponding interval, we just needed to
select a threshold [25] to divide the array into peak
points and baseline points. In this way, the signal
peaks were extracted. In addition, the baseline could
be constructed by linearly connecting the key points

that were selected according to the identified base-
line points. Figure 22 illustrated the schematic
diagram.
The complete procedure was summarized in

Algorithm-3 and named as the derivative passing accu-
mulation method (DPA).

Perspectives
In future, studies will be carried out in two directions.
First, we plan to improve the performance based on

fractional derivative techniques. Because, currently there
is a trend of exploiting fractional derivatives for solving
different identification problems. These show better re-
sults than standard first-order derivative-based algo-
rithms [26–28]. If we find a way to utilize the fractional
derivative for recovering the signals, a more accurate
separation of the baseline intervals will be achieved,
leading to better results.
Second, we will work on extending the application of

the DPA method to a 2-dimensional case. We will study
to discover the way of appropriately defining the accu-
mulation of derivatives for 2-D function. Thus, develop
the scheme for extracting the background, based on the
accumulated results. Consequently, the upgrade to a
higher dimension will enable the DPA strategy to
process image data and expand the application range.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3188-4.

Additional file 1. Testing data of the mass spectroscopy, infrared
spectroscopy and energy curve of audio.
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