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Abstract

Background: The order of genes in bacterial genomes is not random; for example, the products of genes
belonging to an operon work together in the same pathway. The cotranslational assembly of protein complexes is
deemed to conserve genomic neighborhoods even stronger than a common function. This is why a conserved
genomic neighborhood can be utilized to predict, whether gene products form protein complexes.

Results: We were interested to assess the performance of a neighborhood-based classifier that analyzes a large
number of genomes. Thus, we determined for the genes encoding the subunits of 494 experimentally verified
hetero-dimers their local genomic context. In order to generate phylogenetically comprehensive genomic
neighborhoods, we utilized the tools offered by the Enzyme Function Initiative. For each subunit, a sequence
similarity network was generated and the corresponding genome neighborhood network was analyzed to deduce
the most frequent gene product. This was predicted as interaction partner, if its abundance exceeded a threshold,
which was the frequency giving rise to the maximal Matthews correlation coefficient. For the threshold of 16%, the

frequent gene product.

network, Binary classifier

true positive rate was 45%, the false positive rate 0.06%, and the precision 55%. For approximately 20% of the
subunits, the interaction partner was not found in a neighborhood of + 10 genes.

Conclusions: Our phylogenetically comprehensive analysis confirmed that complex formation is a strong
evolutionary factor that conserves genome neighborhoods. On the other hand, for 55% of the cases analyzed here,
classification failed. Either, the interaction partner was not present in a + 10 gene window or was not the most
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Background

A fundamental organizational unit of microbial genomes
is the operon consisting of a cluster of genes that are
transcribed into a single mRNA molecule [1, 2], which
allows for the quasi-parallel synthesis of the gene prod-
ucts. Commonly, proteins encoded in the same operon
work together, e. g., as enzymes catalyzing subsequent
steps of a metabolic pathway. Thus, genomic neighbor-
hood is a reliable indicator for the functional association of
proteins and an important element for the generation of
functional networks offered by databases like STRING [3].
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An early comparison of nine bacterial and archeal
genomes has led to the conclusion that proteins encoded
by conserved gene pairs interact physically [4]. An
example is the trp operon of Escherichia coli that con-
sists of the five genes trpA — trpE catalyzing tryptophan
biosynthesis from chorismate [5]. In E. coli, trpC
encodes as a fusion of two genes a bifunctional protein
that has TrpC and TrpF functionality. As Fig. 1a shows,
the five trp genes occur in the same order also in the
closely related y-Proteobacterium Salmonella enterica
enterica A3ES40 and in the genome of Bacillus subtilis
subtilis 168, where TrpC and TrpF are encoded by two
separate genes. In stark contrast, the BioCyc database [6]
indicates that zrpE lies isolated from other trp genes in the
genome of Agrobacterium sp. H13-3 and that the distance
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Fig. 1 Genomic neighborhood of the trpA gene (a) and of the hisF gene (b) in five bacterial genomes. The neighborhoods were deduced from
the BioCyc database [6] for the genomes of E. coli K-12, S. enterica enterica A3ES40, B. subtilis subtilis 168, Agrobacterium sp. H13-3, and A.
thiooxydans ZJ. The output of BioCyc is shown schematically, but drawn to scale; neighboring genes not related to tryptophan or histidine
biosynthesis are filled grey. The gene products of trpA and trpB and of hisH and hisF (all color-coded) form hetero-oligomers, respectively. The
conservation of the trpA and trpB neighborhood in all five genomes suggests the formation of a TrpA/TrpB complex. For the same genomes, the
neighborhood of the hisH gene would more likely propose a HisH/HisA/HisF, a HisH/HisA, or a HisA/HisF, but no HisH/HisF complex. Note that
HisH and HisF form a hetero-dimer, whereas HisA is a monomeric protein [7]
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to trpA is > 2,200,000 bp. In the genome of Acidiferrobacter
thiooxydans 7], the genomic neighborhood of #rpE con-
tains pabA (a trpG homolog), trpD, and trpC, but the dis-
tance to trpA is > 50,000 bp. However, in all five genomes,
trpA and trpB are genomic neighbors and the proteins
TrpA and TrpB are the two subunits that form the trypto-
phan synthase, which is a permanent, hetero-oligomeric
protein complex that experienced an intricate evolutionary
history [8]. These observations propose that a direct
protein-protein interaction is an evolutionary factor that
preserves genomic neighborhood considerably stronger
than a functional interaction of the gene products. Indeed,
cotranslational protein assembly and the order, in which
the gene products assemble to a complex affect the order
of genes in operons [9]; the latter effect is stronger for
weakly expressed genes [10].

On the other hand, the comparison of /is operons that
consist of the genes leading to the synthesis of histidine
[11] indicates some intricacies that may complicate a too
simplistic inference of direct protein interactions. The his
operon of E. coli contains eight genes and only the hisH
and the /isF gene products form a hetero-dimer, whereas
all other gene products are monomers. As shown in
Fig. 1b, the comparison of the /is operons from the five
species introduced above, makes clear that their 4isH and
hisF genes are no immediate neighbors, but are separated
by hisA, which encodes a monomeric enzyme [7]. If this
neighborhood of the three genes hisH, hisA, and hisF is
conserved in many genomes, it is not possible to deduce
in silico the formation of the HisH/HisF complex.

In literature, we did not find a comprehensive char-
acterization of a classifier that predicts the subunits of
microbial protein complexes by analyzing genomic neigh-
borhoods. Due to the more than 200,000 sequencing pro-
jects listed in the GOLD database [12], we expected a
statistically comprehensive sampling of neighborhoods that
is sufficient to determine the reliability of such a classifier.
We concentrated on the assessment of experimentally veri-
fied hetero-dimers based on the analysis of large sets of
genomes and addressed two specific questions:

1) How often are microbial proteins that form hetero-
dimeric complexes encoded in close genomic vicinity?

2) How reliable is the prediction of hetero-dimeric
protein complexes based on neighborhood conser-
vation deduced from a comprehensive number of
genomes?

Thus, we determined for the subunits of 494 hetero-
dimers the genomic neighborhoods from phylogenetic-
ally diverse species and assessed the frequency of the
most abundant gene products in a + 10 gene window. It
turned out that 80% of the known interaction partners
are encoded in a+ 10 neighborhood. Additionally, we
predicted for each subunit the product of the most fre-
quent neighbor as direct interaction partner. Applying a
threshold that balances false positive and false negative
predictions, 485 of the 1087 known interaction partners
were correctly identified by choosing the most abundant
gene neighbor.
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Fig. 2 rGNN of InterPro family IPRO04651 characterizing the histidine biosynthesis protein HisF. The circles represent three rep_nodes 40; their
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Results
Deducing phylogenetically diverse genomic
neighborhoods of bona fide bacterial hetero-dimers
We were interested to find out how reliable the genomic
neighborhood indicates for a given subunit (su«) of a het-
eromeric complex the interaction partner, if we analyze
its neighborhood in genomes from many phylogenetic-
ally diverse species. This approach relies on two, mutu-
ally reinforcing effects: i) Prokaryotic genomes are rather
unstable [13, 14], only 5-25% of the genes belonging to
operons are shared by at least two distantly related spe-
cies [15]. Thus, in the framework of this analysis, the
abundances of those genes must be low that encode in
the neighborhood of a given su such proteins that are
only functionally related or even functionally unrelated
to the su under study. ii) In contrast, if the propensity
for a direct protein-protein interaction affects genomic
distances, the specific interaction partners must often be
neighbors in a large number of phylogenetically diverse
genomes and thus stand out through higher abundances.
The prediction method considered here can only be
applied to hetero-oligomers. The simplest form of het-
eromeric complexes are hetero-dimers consisting of two
subunits. Thus, we chose a recently compiled set of bac-
terial hetero-dimers with known crystal structures that
do not possess additional interaction partners like DNA
[16]. The corresponding PDB [17] entries were analyzed
to deduce pairs of complex-forming subunits (s}, su?)

and the corresponding InterPro [18] and Pfam [19] fam-
ilies. These annotations were indispensable for the sub-
sequent analysis (see below); after the elimination of
ambiguous cases, 494 pairs of subunits remained. The
corresponding PDB-IDs and detailed results are listed in
Additional file 1: Table S1.

To create for all su; proteins neighborhoods that are
phylogenetically most comprehensive, we utilized tools
offered by the Enzyme Function Initiative (EFI), which
were developed to analyze sequence and function space
of protein families [20]. The EFI-Genome Neighborhood
Tool (EFI-GNT) computes a genome neighborhood net-
work (GNN) for a given sequence similarity network
(SSN). This SSN has to be created beforehand by means
of the EFI-Enzyme Similarity Tool (EFI-EST). Thus, for
each of the su; under study, we generated an SSN for
the InterPro family it belonged to. If delivered by EFI-
EST, we processed rep_node 80 networks, otherwise
rep_node 40 files (for details see Methods).

We chose a+ 10 neighborhood (for justification see
Methods) and created for each SSN, i. e. rep_node file, a
refined genome neighborhood network (rGNN) by util-
izing a modified version of AGeNNT [21]. In an rGNN,
the neighboring gene products are represented by the
Pfam families (pf_nodes) they belong to and the pf node-
specific SeqCount values indicate the number of neigh-
borhoods encoding this protein function. The SeqCount
values were transferred to relative frequencies flpf_
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nodes); see Formula (1). For each su;, we identified the
pf node with the highest frequency f;, .. (pf_node), which
was assumed to represent the putative interaction partner
of suf, if this frequency exceeded a lower threshold. We
analyzed only pf nodes occurring with a minimal fre-
quency of 20%; thus, this analysis of rGNNs considered
the large number of neighborhoods represented in the
InterPro and Pfam databases, but additionally focused to
the most frequent protein functions; see Fig. 2 for an ex-
ample. Interestingly, the median SegCount value for all s
u; elements was 133 contributed by 21.5 phylogenetic
phyla (median), which testifies for our analysis to a phylo-
genetically diverse representation of neighborhoods and
genomes.

Assessing the abundance of neighboring interaction
partners

Because some of the interacting proteins are composed
of more than one domain, they belong to more than one
InterPro family. Thus, our PDB-ID « InterPro «<» Pfam
mapping resulted in 1087 subunits su], for which we
knew the interaction partner involved in complex forma-
tion. These were the positive cases (P). Moreover, we
assumed that these su; do not form a complex with any
of the other proteins encoded in the genomic neighbor-
hood of su;. These proteins summed up to 596,767
negative cases (N) and we used the P and N cases to
compute performance values.

There are hetero-dimeric complexes, where the two
subunits are not encoded in close genomic vicinity as
exemplified by the B. subtilis enzymes PabA and TrpE
that form the anthranilate synthase [16]. As indicated by
BioCyc [6], pabA, which is a multipartner enzyme, is
part of the pabBAC-sul-folBK-yazB-yacF-lysS transcrip-
tion unit that starts in the B. subtilis genome at base
position 82,831, whereas trpE belongs to the trp operon
that begins at base position 2,377,619. Thus, we pre-
sumed that the number of false positive assignments
decreases, if we introduce a minimal threshold frequency
Sonin DY testing 7 (pf -node)=f.; see Formula (2). If a
pf_node reaching f,,;, represented a known interaction
partner, it was a true positive (TP), otherwise it was a
false positive (FP). All other pf nodes not reaching this
threshold were false negative (EN), if representing an
interaction partner and true negative (TN), if representing
one of the negative cases.

The Matthews correlation coefficient (MCC) [22] is
considered a fair performance measure even for unbal-
anced datasets, as it is deduced from all classified cases.
Thus, we incremented the threshold f,;, in 1% steps
between 1 and 100% and determined f,,;,-specific MCC
values; see Formula (4). As Fig. 3a indicates, the maximal
MCC-value of 0.50 was achieved for f,,;, = 16%. In this
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Fig. 3 MCC values versus the minimal threshold frequency f,,;, used
to predict interaction partners (a). The f,;, value (16%) resulting in
the highest MCC is indicated by a filled circle. Absolute numbers of
TP and FP predictions versus the minimal threshold frequency f,,,
(b). The two circles indicate the number of cases related to the
chosen f,,,;, value

case, 485 of the 1087 known interaction partners were
predicted as TP and 389 of the 596,767 putatively non-
interacting proteins were FP.

Figure 3b confirms that the number of FPs is — as
expected — negatively correlated with f,,;,, whereas the
number of TPs is less affected by the chosen f,,;, value.
Decreasing f,,;, below 16% would result in more FPs
than TPs, which is not desired. Figure 4a represents the
initial interval of a TPR versus FPR plot (ROC curve)
ending at an FPR of 2%. This rate corresponds to 13,024
FPs, which is far above an acceptable performance.
Choosing f,,,;, = 16% results in a TPR of 45% and an FPR
of 0.06% (see Formulae (3)); the latter rate must be
chosen low due to the enormous number of 596,767
negative cases. Interestingly, the results indicate for this
classifier a maximally TPR value of ~80%. This finding
suggests for approximately 20% of the hetero-dimers
that the subunits are not encoded in a+ 10 neighbor-
hood. The Precision/Recall curve shown in Fig. 4b



Esch and Merkl BMC Bioinformatics (2020) 21:5
p
(@ 100
80 -
g 60 -
14
o
40 -
20 -
0 T T -
0.0 0.5 1.0 1.5 2.0
FPR [%]
(b)
100
80 -
S
c 60 -
o
@
8 40
a
20 -
0 T T T T
0 20 40 60 80 100
Recall [%]
Fig. 4 TPR = Recall, FPR, and Precision for f,,;,-values incremented
from 0 to 100%. Initial interval of a ROC curve ending at an FPR of
2% (a). The Precision/Recall plot for the full range of threshold
values (b). TPR = Recall (45%), FPR (0.06%), and Precision (55%) values
for the classifier operated with f,,,,, = 16% are indicated by filled circles

indicates a nearly linear anticorrelation between Precision
and Recall (i. e., the TPR). For the f,,;, value suggested by
the MCC analysis, Precision is 55% and Recall 45%.

One might argue that smaller neighborhoods reduce
the risk of predicting the wrong interaction partner. To
address this problem, we have additionally analyzed
the £ 3 neighborhood of those 27 cases, where the true
interaction partner reached rank two in our prior classi-
fication. The results are summarized in Additional file 1:
Table S2. For twelve cases (44%), the rank was unaltered;
for seven cases (26%), the rank deteriorated below two
and for eight cases (30%), the rank increased to one. This
finding suggested to us that smaller neighborhoods have
no pronounced effect on classification performance.

If several complexes are encoded in close vicinity, it is
difficult to predict interaction partners

Our protocol identified 485 of the 1087 known inter-
action partners correctly, and we wanted to elucidate
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reasons for the prediction of 389 FP cases, which are pf_
nodes (proteins) occurring in the GNNs with a higher
frequency than the true interaction partner.

Among the false predictions was the interaction
partner of SoxA, which forms together with SoxX the
hetero-dimeric SaxAX cytochrome [23]. The gene of
SoxY is located in the neighborhood of SaxA at vary-
ing positions, but the corresponding pf node had rank
three and the neighbors SoxY and SoxZ had higher
frequencies, which led to the FP prediction of a
SoxA:SoxZ interaction. SoxY and SoxZ form a com-
plex together with SoxB and soxVWXYZABCDEFGH
is a transcriptional unit in a-Proteobacteria [24]. The
STRING database (version 11.0) indicated that the
neighborhood of soxX, soxY, soxZ, and soxA is con-
served in all a- and p-Proteobacteria that possess
clear homologs of SoxA. This example illustrates that
it is hard to predict the correct interaction partner, if
the subunits of more than one complex are encoded
in close vicinity.

Discussion

Limitations of the current approach

Although the median of the phyla contributing to the Segq-
Count values of the f  (pf-node) nodes was 21.5, one
might argue that our approach overestimated the frequen-
cies of functionally related or even functionally unrelated
neighbors. The rigorous elimination of genomes from
closely related species might reduce this bias, but not the
one caused by the horizontal transfer of larger fragments
like selfish operons [25]. More efficient would be an elim-
ination method based on the pairwise comparison of the
protein functions [26] encoded in the considered neigh-
borhoods. Identical protein functions encoded in highly
similar local arrangements would indicate closely related
species or cases of horizontal gene transfer. However, this
approach would require a rigid preprocessing of the
genomes and a completely different software pipeline.

We used a dataset of 1087 subunits to determine the
optimal MCC value and identified a threshold f,,;, of
16% as optimal. If one considers our algorithm as a clas-
sifier, one might argue that the algorithm’s parameter
were optimized and tested on the same dataset. A cross-
validation technique could be used to exclude overfit-
ting. However, as we fixed only one parameter (the f,,;,
value), we consider the risk of overfitting minimal. The
dataset analyzed here consists of proteins devoid of non-
protein macromolecules that formed complexes with
stoichiometries of AB, A,B,, A3Bs, AyBs, Ae¢Bs, ABC,
and A,;B,C, [16]. As we analyzed only the full set of
these proteins, the determined performance values
might be misleading for test cases outside our train-
ing sample.
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Conclusions

By using EFI services that process large datasets, we have
confirmed for hetero-dimers that approximately 45% of
the subunits are the most frequent gene products in the
GNNs that correspond to a+ 10 neighborhood. Add-
itionally, our data suggest that approximately 20% of the
interaction partners are encoded outside of this genomic
window.

A survey of the oligomerization state of E. coli proteins
revealed that hetero-oligomers are a minority: 20% of
the proteins are monomers, whereas dimers and tetra-
mers are far more common; 79% of the complexes are
homo-oligomers with 2 to 12 subunits and only 21% are
hetero-oligomers [27]. Thus, for a comprehensive in
silico prediction of all types of protein complexes, a ma-
chine learning approach combining several features is
required in order to increase classification reliability; for
a recent review see e. g. [28].

Methods

Mapping PDB entries to InterPro and Pfam families

For the mapping of chains from PDB datasets, the ser-
vices offered by the European Bioinformatics Institute
(EMBL-EBI) were used [29]. The pages “https://www.ebi.
ac.uk/pdbe/entry/pdb/$ID/analysis” were parsed to de-
termine for the proteins of the PDB dataset with PDB-
ID $ID the InterPro and Pfam families. The PDB-IDs
were taken from a recently prepared dataset [16] consist-
ing of bona fide bacterial hetero-dimers. Mostly due to
the co-existence of more than one domain, 186 subunits
were mapped to more than one InterPro family, which
were all analyzed. Only in one of these cases (chain A of
the methylmalonyl-coa mutase PDB-ID 4req) the predic-
tion varied among the assigned InterPro families; com-
pare ranks in Additional file 1: Table SI.

Creating SSNs and GNNs

Our software pipeline consisted of scripts written in Py-
thon [30] that were executed on the compute-server of
the EFI or an in-house computer, which were all equipped
with Linux. All scripts are deposited at Github.

SSNs were computed command-line based on the EFI
cluster for InterPro families with default parameters
chosen by EFI-EST. An SSN consists of nodes each
representing a sequence; the nodes are interconnected
by edges weighted with the BLAST bit score resulting
from a pairwise alignment of the related sequences. For
large protein families, an extremely high number of
edges renders an SSN intractable; thus, EFI-EST does
not generate an output file, if the SSN would contain more
than 10,000,000 edges. To reduce network complexity,
EFI-EST maps sequences sharing at least x% sequence
identity to one node and generates representative node
(rep_node) x networks.
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The SSNs were uploaded to the EFI server for the gen-
eration of GNNs. “Raw” GNNs were converted to rGNNs
by means of an updated version of AGeNNT [21] that was
adapted to the current EFI interfaces. We oriented our-
selves on the architecture of the E. coli genome and a sys-
tematic analysis performed during the design of AGeNNT
[21] to determine the window size of the genomic neigh-
borhood to be analyzed. Approximately 80% of all E. coli
transcription units have fewer than five genes and 80% of
all directons, i. e., genes transcribed in the same direction
with no intervening one transcribed in the opposite direc-
tion, have fewer than ten genes [31]. Moreover, a system-
atic screening indicated that + 10 neighborhoods are best
suited to identify gene clusters [21]. Thus, we selected a +
10 neighborhood as default. In this case, the neighborhood
consists for each member of the InterPro family of exactly
those 20 gene products that are encoded in a + 10 window.
The output of the EFI-GNT is independent of the
localization of transcriptional units and represents the
function of these proteins by means of PFAM accession
numbers.

Consequently, an rGNN consists of rep_nodes, i. e., a
cluster of sequences from the InterPro family under
study and pf nodes representing enzyme functions
encoded in the respective neighborhoods. For edges be-
tween rep_nodes and pf _nodes, the coverage is given,
which is the relative number of neighborhoods contain-
ing the considered enzyme function represented by pf_
node. For each pf node, the SeqCount parameter indi-
cates the number of genomic neighborhoods possessing
this protein function. rGNNs are encoded as xgmml
files, which were parsed to deduce from the SeqCount
values the pf node with the highest frequency f} .. (pf-
node); this one was the candidate for the prediction of
interaction partners.

Classifying pf_nodes

For the determination of a relative frequency flpf node),
the pf _node-specific SeqCount(pf_node) value was divided
by the sum of all SeqCount(pf node*) values observed in
the rGNN under study, according to

f(pf-node) = SeqCount(pf-node)/ ZSequunt(pf,node*)
(1)
For the assignment of interaction partners, the fre-

quency of the chosen pf node was compared to the
threshold f,,,;, according to

pred(pf_node) — { 1 lfffnax (pf—n()de) mein (2)

0 otherwise

and pf node was considered as interacting, if pre-

d(pf_node) was 1.
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Performance measures

To assess the performance of a classification, we deter-
mined the false positive rate (FPR), the true positive rate
(TPR = Recall), the Precision

TP
TP + FP

(3)

FpP P
FPR = N Recall = TPR = 7 Precision =
and the MCC value

TP x TN-FP x FN

MCC =

/(TP + EN)(TP + FP)(TN + FP)(IN + FN)

(4)

In all formulae, P is the number of positive and N the
number of negative cases. TP is the number of true posi-
tives, TN the number of true negatives, FP the number
of false positives, and FN the number of false negatives.

Visualizing GNNs and rSSNs
All networks were visualized by means of Cytoscape [32].
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